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A set is an unordered collection of distinct objects.
The objects are the elements of the set.

Notation: We write x ∈ A to mean that x is an element of A, and
x 6∈ A to mean that x is not an element of A.

E.g. Consider the set A = {1, 3, 5, 7, 9}. Then 3 ∈ A and 4 6∈ A.

E.g. We often write N to denote the set of nonnegative integers
{0, 1, 2, 3, 4, . . .}. The text calls this the set of natural numbers.

We can also write the above set A as

A = {x ∈ N | x is odd and x < 11} .

Our set A = {1, 3, 5, 7, 9} is the same as the set
B = {5, 1, 3, 9, 7}.
That is, A = B. This is because the sets A and B have exactly the
same elements as each other:

∀x [ (x ∈ {1, 3, 5, 7, 9})↔ (x ∈ {5, 1, 3, 9, 7}) ].

Also note that “repetitions don’t count” in a set: the set
{1, 3, 1, 5, 1, 7, 7, 9} should be written as {1, 3, 5, 7, 9}.



Let C and D be two sets. We say that C is a subset of D if every
element of C is an element of D. We write this as C ⊆ D. E.g.

{1, 3, 9} ⊆ {1, 3, 5, 7, 9} {1, 3, 5, 7, 9} ⊆ N {3} ⊆ {1, 3, 9}

Which of the following are correct?

(a) {3} ⊆ {1, 3, 9} (b) {3} ∈ {1, 3, 9}
(c) 3 ⊆ {1, 3, 9} (d) 3 ∈ {1, 3, 9}



More terminology:

If C is a subset of D, then D is a superset of C . We write this as
D ⊇ C .

Thus D ⊇ C if and only if C ⊆ D.

The notation “E 6⊆ F” means “E is not a subset of F .”

Every set is a subset of itself: e.g. {1, 3, 9} ⊆ {1, 3, 9}. Sometimes
we only want to consider subsets of a set G that are different from
G . We call these proper subsets. That is:

We say that H is a proper subset of G if H ⊆ G and H 6= G . We
write this as H ⊂ G .
(Note the analogy to ≤ and <.)



Again, let A = {1, 3, 5, 7, 9}.
What is {x ∈ A | x is even} ? Answer: The set with no elements.
This is called the empty set, and we write it ∅ or {}.

Observe that ∅ ⊆ {1, 3, 5, 7, 9}. In fact, the empty set is a subset
of every set!

Question: What is {∅} ? It is not the empty set. Rather, it is the
set whose single element is the empty set. The empty set is a
mathematical object, so it can be the element of a set.

For example, the power set of a set S is the set of all subsets of S
(Sec. 2.1.5). Thus, the power set of {1, 3, 9} is

{∅, {1}, {3}, {9}, {1, 3}, {1, 9}, {3, 9}, {1, 3, 9}}

(this is a set with 8 elements, each of which is a set).



Some special sets of numbers:

N = {0, 1, 2, 3, . . .}, the set of natural numbers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers (from the
German word “Zahlen” meaning “numbers”)

Z+ = {1, 2, 3, . . .}, the set of positive integers (note: some books
refer to this set as N, and say that 0 is not a natural number)

Q = {mn |m, n ∈ Z and n 6= 0}, the set of rational numbers (from
the word “quotient”)

R, the set of real numbers

R+ = {x ∈ R | x > 0}, the set of positive real numbers

Intervals: For example,
[1.32 , 7.04] = {x ∈ R | 1.32 ≤ x ≤ 7.04},
(1.32 , 7.04) = {x ∈ R | 1.32 < x < 7.04},
[1.32, 7.04) = {x ∈ R | 1.32 ≤ x < 7.04},
(1.32, 7.04] = {x ∈ R | 1.32 < x ≤ 7.04},



More about the “set builder” notation (Sec. 2.1.8)

Here are two examples of sets we have mentioned using the “set
builder” notation:

[1.3, 7] = {x ∈ R | 1.3 ≤ x ≤ 7}
{1, 3, 5, 7, 9} = {x ∈ N | x is odd and x < 11}

Both of these are of the form

S = {x ∈ U |P(x)}
where P is a predicate (as in Section 1.4) (i.e. P(x) is a
proposition for each x), and U is the domain of the predicate.

For [1.3, 7], U is R and P(x) is “1.3 ≤ x ≤ 7.”
For {1, 3, 5, 7, 9}, U is N and P(x) is “x is odd and x < 11.”

We interpret {x ∈ U |P(x)} as “the set of all x in U such that
P(x) is true.” This is also called the truth set of P (in U).

In the context of sets, we often call U the “universal set.”
(Informally, it is the set of all objects currently under
consideration.)



More notation for quantifiers:

In the class of Jan 12, to emphasize the importance of being clear
about the domain of a quantifier, we considered the statement

∃x (5 < x2 < 8) .

We noted that it is False if the domain of the quantifier is the set
of integers Z, but it is True if the domain is the set of rational
numbers Q.

It is often convenient to include the specification of the domain
directly with the quantifier, as follows:

∃x ∈ N (5 < x2 < 8) (False),

∃x ∈ Q (5 < x2 < 8) (True).

This also applies to ∀, and to nested quantifiers:

∀x ∈ R, ∃y ∈ N (y > x) . (∗)

(Historical remark: The statement (∗) is called the Archimedean
property of the real numbers.)



Question: Suppose we know that P(x)→ Q(x) for every x in U.
What is the relation between {x ∈ U |P(x)} and {x ∈ U |Q(x)}?
(A) {x ∈ U |P(x)} ⊆ {x ∈ U |Q(x)}
(B) {x ∈ U |P(x)} ⊇ {x ∈ U |Q(x)}
(C) Either one is possible, depending on P and Q

To help us figure this out, let’s look at an example. We’ll take

U = Z, P(x) : x > 9, Q(x) : x > 5.

We know ∀x ∈ U (P(x)→ Q(x)), and
{x ∈ Z | x > 9} ⊆ {x ∈ Z | x > 5}.
So in this case (A) is true. Is (A) always true whenever we know
that P(x)→ Q(x) for every x in U? Let’s check.

Assume P(x)→ Q(x) for every x in U. Let y ∈ {x ∈ U |P(x)}.
Then P(y) is true. (And y ∈ U.) Therefore Q(y) is true.
Therefore y ∈ {x ∈ U |Q(x)}.
We conclude that every element of {x ∈ U |P(x)} is in
{x ∈ U |Q(x)}.
Therefore {x ∈ U |P(x)} ⊆ {x ∈ U |Q(x)}. This proves that (A)
must be true.



Section 2.1.6: Cartesian products

Let A and B be sets. Their Cartesian product, written A× B, is
the set of all ordered pairs (c , d) such that c ∈ A and d ∈ B.

E.g. {1, 2, 3} × {2, 3, 4} is the set

{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}.
Note the contrast between an ordered pair and a set with two
elements: for ordered pairs, order matters (e.g., (2, 3) 6= (3, 2)),
and repetitions are allowed (e.g., (3, 3)).

(Warning: You need context to know whether “(2, 3)” is meant to
be an interval or an ordered pair!)

Similarly, A× B × C is the set of all ordered triples (u, v ,w) such
that u ∈ A, v ∈ B, and w ∈ C ;
and, if n is a positive integer,
A1 × A2 × · · · × An is the set of all ordered n-tuples (x1, x2, . . . , xn)
such that xi ∈ Ai for i = 1, 2, . . . , n.

E.g. {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}
is the set of all 5-tuples (x1, x2, x3, x4, x5) where each xi is 0 or 1.
These can be identified with bit strings of length 5 (Sec. 1.1.6).

We can also write {0, 1}×{0, 1}×{0, 1}×{0, 1}×{0, 1} as {0, 1}5.



Section 2.1.4: Cardinality

Definition: Let n ∈ N and let S be a set. If S has exactly n
elements, then we say that n is the cardinality of S , and we write
|S | = n. In this case we also say that S is a finite set.

Examples: (a) {1, 3, 5, 7, 9} has cardinality 5. It is a finite set.

(b) Is the empty set finite? Yes. It has cardinality 0, and 0 ∈ N.

(c) If A and B are finite sets, then A× B is finite, and its
cardinality is |A| |B|.
(d) If B is a finite set, and A ⊆ B, then A is finite and
|B − A| = |B| − |A|. (This equation is false if A is not a subset
of B.)

An infinite set is a set that is not finite. (More about this in
Section 2.5.)
Some examples of infinite sets are N, Z, Q, and R.



2.2.1: Basic Operations on Sets

The set of elements that are in C and are in D is called the
intersection of C and D, and is written C ∩ D.

Example: Recall our set A = {1, 3, 5, 7, 9}. Let Odd be the set of
all the nonnegative odd integers. We have

{1, 3, 5, 7, 9} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∩ Odd

= {x ∈ N | x < 11} ∩ {x ∈ N | x is odd}
= {x ∈ N | (x < 11) ∧ (x is odd) }

In general, for two predicates G and H,

{x ∈ U |G (x)} ∩ {x ∈ U |H(x)} = {x ∈ U |G (x) ∧ H(x)}.

Similarly, the set of elements that are in C or are in D is called the
union of C and D, and is written C ∪ D.

{x ∈ U |G (x)} ∪ {x ∈ U |H(x)} = {x ∈ U |G (x) ∨ H(x)}.

(Notice the visual similarity between symbols ∪ and ∨, as well as
between ∩ and ∧.)



Next, consider negation. Suppose J = {x ∈ U |P(x)}.
How can we describe {x ∈ U | ¬P(x)}? This is the set of all
elements of U that are not in J. We call this the complement of J
in U, and write it J.

Example: What is the complement of {1, 2, 3, 4}? This question is
too vague. To determine the complement, we must specify what
the universal set is.

The complement of {1, 2, 3, 4} in N is {0, 5, 6, 7, 8, . . .}.
The complement of {1, 2, 3, 4} in Z is
{. . . ,−3,−2,−1, 0, 5, 6, 7, 8, . . .}.
The complement of {1, 2, 3, 4} in R is

{x ∈ R | x < 1 or x > 4} ∪ (1, 2) ∪ (2, 3) ∪ (3, 4).

Definition: If A and B are sets, then A− B is the set
{x ∈ A | x 6∈ B}. This is called the difference of A and B, or the
complement of B with respect to A. Note that B does not have to
be a subset of A in this definition.

E.g. {1, 3, 5, 7, 9} − {1, 2, 3, 4} = {5, 7, 9} .



Sec. 2.2.2: Set Identities

Example: Prove A ∪ (B − A) = A ∪ B (for all sets A and B).

First proof:

A ∪ (B − A) = {x ∈ U | (x ∈ A) ∨ [(x ∈ B) ∧ ¬(x ∈ A)] }
= {x ∈ U | [(x ∈ A) ∨ (x ∈ B)] ∧

[(x ∈ A) ∨ ¬(x ∈ A)] }
(using p ∨ [q ∧ r ] ≡ [p ∨ q] ∧ [p ∨ r ])

= {x ∈ U | [(x ∈ A) ∨ (x ∈ B)] ∧ T}
(since [p ∨ ¬p] ≡ T )

= {x ∈ U | (x ∈ A) ∨ (x ∈ B) }
(since [p ∧ T ] ≡ p)

= {x ∈ U | x ∈ (A ∪ B) }
= A ∪ B.



Second proof that A ∪ (B − A) = A ∪ B:

We’ll prove this by showing

(i) A ∪ (B − A) ⊆ A ∪ B and (ii) A ∪ B ⊆ A ∪ (B − A) .

To prove (i): Let y ∈ A ∪ (B − A).
Then y ∈ A or y ∈ (B − A). These are two cases to check.
First case: If y ∈ A, then obviously y ∈ A ∪ B.
Second case: If y ∈ B − A, then y ∈ B and y 6∈ A. In particular,
y ∈ B. Hence y ∈ A ∪ B. This proves (i).

To prove (ii): Let w ∈ A ∪ B.
First case: w ∈ A. Then w ∈ A ∪ (B − A) (in fact,
w ∈ A ∪ [anything]).
Second case: w 6∈ A. Since w ∈ A ∪ B, we must have w ∈ B.

Therefore w ∈{x ∈ U | x ∈ B, x 6∈ A} = B − A.

Hence w ∈A ∪ (B − A). This proves (ii).

This completes the proof that A ∪ (B − A) = A ∪ B. Q.E.D.



Third proof that A ∪ (B − A) = A ∪ B:

We can use a membership table, analogous to a truth table.
It lets us examine all possible cases of whether an element is or is
not in A, and again for B.

We use a “1” to indicate that an element is in the set, and a “0”
to indicate that it is not.

A B A ∪ B B − A A ∪ (B − A)

1 1 1 0 1
1 0 1 0 1
0 1 1 1 1
0 0 0 0 0

Since columns 3 and 5 agree in each row, it follows that
A ∪ (B − A) = A ∪ B.

(Similar idea to a Venn diagram)



Section 2.2.4 describes a way to represent (sub)sets as bit strings.

Example: Among the set of all provinces, let Salt be the subset of
those that touch salt water.

We can take the universal set to be the set of all ten provinces.
We need to specify an order for the members of the universal set.
Alphabetical order is a natural choice:

AB, BC, MB, NB, NL, NS, ON, PE, QC, SK.

Then Salt contains all the provinces except AB and SK. Thus we
can represent Salt by the bit string

Salt : 0111111110.

The set of all provinces that share a land border with the USA is

Land : 1110001011 .

We find the intersection Salt∩Land by taking the “bit AND” (Sec.
1.1.6):

0111111110 ∧ 1110001011 = 0110001010 .



We can take unions of more than two sets at a time.
(Similarly for intersections.)

Example: Let J1 = {1, 2, 3}, J2 = {2, 3, 4}, J3 = {3, 4, 5}, etc.
I.e., for each positive integer n, let Jn = {n, n + 1, n + 2}.

Poll: Then J3 ∪ J4 ∪ J5 ∪ J6 =

(A) {1, 2, 3, 4, 5, 6}
(B) {1, 2, 3, 4, 5, 6, 7, 8}
(C) {3, 4, 5, 6}
(D) {3, 4, 5, 6, 7, 8}

Poll: How many elements are in J3 ∩ J4 ∩ J5 ∩ J6?

(A) 4

(B) 3

(C) 2

(D) 1

(E) 0



Notation:

J3 ∩ J4 ∩ J5 ∩ J6 =
6⋂

n=3

Jn J3 ∪ J4 ∪ J5 ∪ J6 =
6⋃

n=3

Jn

We can also take unions of infinitely many sets. For example, using
Jn = {n, n + 1, n + 2} again, we have

J1 ∪ J2 ∪ J3 ∪ · · · = {1, 2, 3} ∪ {2, 3, 4} ∪ {3, 4, 5} ∪ · · ·

=
∞⋃
n=1

Jn

= {1, 2, 3, 4, 5, . . .} = Z+.

And

J1 ∩ J2 ∩ J3 ∩ · · · = {1, 2, 3} ∩ {2, 3, 4} ∩ {3, 4, 5} ∩ · · ·

=
∞⋂
n=1

Jn

= ∅.



Next class: Read Sections 2.3 and 2.4.

There are two homework items currently posted:
• Homework assignment 2: Questions in Connect, as usual, due
Sunday January 29; and
• Problem Set A: Two proofs to write up and submit (by
Crowdmark; details to be announced), due Thursday February 2.

The first Midterm Test will be Tuesday February 14.


