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1.6: Rules of inference, and logical arguments

This section formalizes the steps in the construction of a logical
argument. These ideas will be developed further in EECS/MATH
1090, Introduction to Logic for Computer Science.

We’ll look at some examples of logical arguments.

1. Suppose we know the following:
If the car moves, then it has fuel.
The car has no fuel.

What can we conclude?

Here is one way to look at the question.

The first statement is (car moves)→(car has fuel), which can be
expressed as [(¬ car moves) or (car has fuel)].

The second statement is ¬(car has fuel)

So we conclude (¬ car moves), i.e. that the car does not move.



1. Suppose we know the following:
If the car moves, then it has fuel.
The car has no fuel.

Then we can conclude that the car does not move.

Let P and Q denote the statements

P : The car moves Q : The car has fuel.

Then the above argument can be written

P → Q
¬Q

∴ ¬P

“modus tollens” rule
This corresponds to the tautology

[(P → Q) ∧ (¬Q)]→ ¬P.

P Q P→Q (P → Q) ∧ ¬Q [(P → Q) ∧ (¬Q)]→ ¬P
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2. Suppose we know the following:
Joan will not go to work if she has high fever.
If Joan has pneumonia, then Joan has high fever.
Joan is at work.

Can we conclude that Joan does not have pneumonia?

Statements: W: Joan is at work
H: Joan has high fever
P: Joan has pneumonia

Steps of the logical argument:

(1) H → ¬W Premise
(2) W Premise
(3) ¬(¬W ) Double negation law (Section 1.3)
(4) ¬H Modus tollens, using (1) and (3)
(5) P → H Premise
(6) ¬P Modus tollens, using (4) and (5).

This completes the proof that Joan does not have pneumonia.



Another rule of inference is

P → Q
P

∴ Q

The “modus ponens” rule.
This corresponds to the tautology
[(P → Q) ∧ P]→ Q.

This is so obvious that it is easy to forget that it is a rule of
inference:

If Joan has pneumonia, then she has high fever.
Joan has pneumonia.

∴ Joan has high fever.

In contrast, the argument

P → Q
Q

∴ P

is NOT valid.
It is a “fallacy” (Sec. 1.6.6),
but, sadly, we often see it invoked.

E.g. If COVID is a hoax perpetrated by a secret global conspiracy,
then all mainstream media would say that COVID is a real danger.
All mainstream media say that COVID is a real danger.
Therefore COVID is a hoax perpetrated by a global conspiracy.
INVALID ARGUMENT



Most of the rules of inference in Table 1 of Section 1.6 are pretty
simple. You should know them, but you do not need to memorize
their names. For example,

P ∧ Q
∴ P

P ∨ Q
¬P

∴ Q

P → Q
Q → R

∴ P → R

Examples from Exercise 4, Section 1.6: What rules are being used?

It is hot today or the pollution is dangerous. It is not hot today.
Therefore, the pollution is dangerous.

Kangaroos live in Australia and are marsupials. Therefore,
kangaroos are marsupials.

Steve will work for IBM next summer. Therefore, next summer
Steve will work for IBM or he will spend all his time at the beach.

The last one is the rule
P

∴ P ∨ Q



There are also rules for quantified statements in Sec. 1.6.7–1.6.8.

Exercise 13(b). Which rules are being used?
Somebody in this class enjoys whale watching.
Everyone who enjoys whale watching cares about ocean pollution.
Therefore, somebody in this class cares about ocean pollution.

Let the domain be the set of people in this class.
Let W (x) be the sentence “x enjoys whale watching.”
Let P(x) be the sentence “x cares about ocean pollution.”

Premises: (A) ∃x W (x), and (B) ∀x (W (x)→ P(x)).
From (A), W (y) is true for some person y in the class.
(Existential instantiation)
From (B), W (y)→ P(y) for this person y .
(Universal instantiation)
Since W (y) and W (y)→ P(y), we obtain P(y). (Modus ponens)
Since P(y) is true, ∃x P(x). (Existential generalization)

This completes the formal proof.



Remarks:
1. The proof on the preceding slide is different (shorter) from the
one in the back of the textbook. Upon reflection, there is a minor
flaw in the proof we just did. We were given the premise
”Everyone who enjoys whale watching cares about ocean
pollution”, not ”Everyone in this class who enjoys whale
watching. . . .” It is easy to go from the given to what we need, but
it does require one more step.

2. This level of detail may seem excessive, but if you want to teach
a computer to reason, then this is the level of detail that you need.



Section 1.7: Introduction to Proofs

A proof is a logical argument that is written to convince the reader
that a particular proposition is true.

Each step in a proof should have a clear reason for why it is true.

In this section, and in most of the rest of this course, we shall work
with “informal” proofs that are somewhat less constrained than
the “formal” logical arguments of Sections 1.1–1.6, where every
single step needed justification by an explicit rule or formula
chosen from a small list.
We can think of a formal logical proof as something that a
machine could read and verify, while an informal proof is
something for a human being to read and verify.

An informal proof should be logically complete and correct, and
should be written so that the reader can comprehend the overall
structure and the details of the logical argument unambiguously.
Precision and clarity are essential.



To illustrate, we shall prove the following.

Proposition 1.A. Let n be an integer. Then n2 is even if and only
if n is even.

4 is the square of 2. Both are even. (True for n = 2.)

9 is the square of 3. Neither is even. (True for n = 3.)

16 is the square of 4. Both are even. (True for n = 4.)

25 is the square of 5. Neither is even. (True for n = 5.)

Is this a proof? Can we use this reasoning to obtain a proof?

It is important to understand the meaning of the statement of the
proposition. It can be restated as follows:

Proposition 1.A. For every integer n, (n2 is even) ↔ (n is even).

Thus, however many squares we list, it will not be enough to prove
this for EVERY integer n.

(Besides, to determine whether (621270328984)2 is even or odd,
do we really want to have to calculate the value of this square?)



Proposition 1.A. Let n be an integer. Then n2 is even if and only
if n is even.

Before we try to find a proof, we need to be clear what we mean
by “even.”

Definition: An integer m is even if there exists an integer k such
that m = 2k . An integer m is odd if there exists an integer k such
that m = 2k + 1.

Every integer is either even or odd. (Something to think about: Is
this obvious?)
E.g. 86 is even because 86 = 2× 43.
−86 is even because −86 = 2× (−43).
0 is even because 0 = 2× 0.
83 is odd because 83 = 2× 41 + 1.
−83 is odd because −83 = 2× (−42) + 1.



Proposition 1.A. Let n be an integer. Then n2 is even if and only
if n is even.

Equivalently:
Proposition 1.A. For every integer n, (n2 is even) ↔ (n is even).

First convince yourself why this is true (or why it is not true.).

Well, if n = 2k, then n2 = (2k)2 = 4k2 = 2(2k2).
And (2k2) is an integer, so this shows that n2 is even.

We still need to write this more clearly, but is this reasoning
adequate?
Poll:
(A) This reasoning can be made into a full proof.
(B) This reasoning only proves “If n2 is even, then n is even.”
(C) This reasoning only proves “If n is even, then n2 is even.”
(D) This reasoning is not useful for proving the proposition.

Answer: (C).



Proposition 1.A. Let n be an integer. Then n2 is even if and only
if n is even.

Recall that p ↔ q is equivalent to (p → q) ∧ (q → p).
So Proposition 1.A is equivalent to the following:

Proposition 1.A. Let n be an integer.
(a) If n is even, then n2 is even.
(b) If n2 is even, then n is even.

To prove Proposition, we can prove parts (a) and (b) separately.
We already know the idea behind part (a):

Proof of (a): Assume n is even. Then n = 2k for some integer k .
Then

n2 = (2k)2 = 2(2k2) .

Since n2 = 2(2k2) and 2k2 is an integer, it follows that n2 is even.
This proves part (a).

Now we need to prove part (b).



Proposition 1.A. Let n be an integer.
(b) If n2 is even, then n is even.

First, what is the idea behind (b)? Suppose n2 is even. Then
n2 = 2k for some integer k . Now what??

Let’s try something different. Consider the contrapositive of (b).

Recall (p → q) ≡ (¬q → ¬p).

The contrapositive of (b) is

(b’) If n is not even, then n2 is not even.

Proof of (b’): Assume n is not even. Then n is odd. Therefore
n = 2k + 1 for some integer k . Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since n2 = 2(2k2 + 2k) + 1 and (2k2 + 2k) is an integer, it follows
that n2 is odd. Hence n2 is not even. This proves (b’).

Since (b’) is logically equivalent to (b), we have proved (b).

And this completes the proof of Proposition 1.A. Q.E.D.



Next class: Read Section 1.7 and 1.8.1–1.8.2.

Homework 1 is posted in Connect, due Sunday Jan 22 at 11:59 pm.


