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More about Implication

Medical knowledge tells us that any one of the following can occur:
Joan has pneumonia and has a fever,
Joan does not have pneumonia and does not have a fever, or
Joan does not have pneumonia but does have a fever,

and that the following cannot occur:
Joan has pneumonia but does not have a fever.

We can summarize the above knowledge by the sentence

If Joan has pneumonia, then Joan has a fever.

The corresponding truth table is

P: Joan has pneumonia Q: Joan has a fever If P then Q

T T T
F F T
F T T
T F F



Comment: In its logical usage, the statement “If P then Q” does
not include any assumption or suggestion that P causes Q, or that
some natural law states that Q is consequence of P, or anything
like that. The logical proposition “If P then Q” only tells us that
“It not possible that P is true and Q is false.”

In other words, the statement “If P then Q” is no more than the
contents of the truth table

P Q If P then Q

T T T
F F T
F T T
T F F

So the following propositions are all TRUE:

(a) If 27 + 38 = 65, then 27 + 38 + 1 = 66.
(b) If 27 + 38 = 65, then 2 + 2 = 4.
(c) If 27 + 38 = 100, then 27 + 38 + 1 = 101.
(d) If 27 + 38 = 100, then 10000 = 0.
(e) If 27 + 38 = 100, then 2 + 2 = 4.



Here are two more implication statements to consider:

G : If x > 9, then x > 5. H : If x > 5, then x > 9.

Comments? As written, these are not propositions, because the
truth value depends on x . In spite of this:
Poll: Informally, which of these looks as if it should be valid?
Vote (A) for G, or (B) for H.

Write G (x) for the propositional function “If x > 9, then x > 5.”
Write H(x) for the propositional function “If x > 5, then x > 9.”

Using our definition of truth value for if-then statements, we see
for example that
G (3) is True, G (6) is True, G (10) is True,
H(3) is True, and H(6) is False.

In fact, G (x) is true for every real number x , but H(x) is false for
some real x .
Thus, the idea behind sentence G above is the following true
proposition: “For every real number x , (if x > 9 then x > 5).”

(This may help clarify why the p→q truth table makes sense.)



For each real number x , we defined the sentences

G (x) : “If x > 9, then x > 5”, and
H(x) : “If x > 5, then x > 9.”

We observed that the following is true:

GG: “For all real numbers x , G (x) is true.”

Using the notation “∀”, which means “for all” (or “for every”),
we can express GG as

GG: ∀x G (x).

Similarly, define the statement HH by

HH: ∀x H(x). That is, “For all real x , if x > 5, then x > 9.”



We have defined

G (x) : “If x > 9, then x > 5”, and
H(x) : “If x > 5, then x > 9.”

HH: “∀x H(x).” That is, “For all real x , if x > 5, then x > 9.”

But HH is False, because H(6) is false (as are H(7), H(5.1), etc.)
That is, ¬HH is True.
And we know that HH is false because there is at least one x such
that H(x) is False. That is,

There exists an x such that ¬H(x) is True. (1)

Using the notation ∃, which means “there exists” (or “there is at
lest one”), we can write the above sentence (1) as

∃x (¬H(x)).

This statement is in fact logically equivalent to ¬HH:

(∗) ¬(∀x H(x)) ≡ ∃x (¬H(x)).

The relation (∗) is always correct, whatever H(x) is.



We have seen that for any propositional function H(x), the
equivalence

(∗) ¬(∀x H(x)) ≡ ∃x (¬H(x)).

holds. (See subsection 1.4.9.) Similarly, we always have

(∗∗) ¬(∃x H(x)) ≡ ∀x (¬H(x)).

For example, here is how one could find equivalent forms of the
(true) statement “There is no number that is less than 2 and
greater than 8”:

¬[∃x (x < 2 and x > 8)] ≡ ∀x [¬(x < 2 and x > 8)] (by (∗∗))

≡ ∀x [¬(x < 2) or ¬(x > 8)]

(since ¬(p ∧ q) ≡ (¬p) ∨ (¬q))

≡ ∀x [x ≥ 2 or x ≤ 8] .



An important note on domains

When we write ∀x or ∃x , we need to be clear about what possible
x ’s are permissible; that is, what is the domain of the quantifier ∀
or ∃. (See Sections 1.4.4–1.4.5.)

For example, the statement

∃x (5 < x2 < 8)

is False if we only allow x to be a natural number or an integer,
but it is True if we allow x to be a real number or a rational
number (i.e. a fraction). If the domain is not clear, then we could
write something like

∃x (x is an integer and 5 < x2 < 8)

or we could write something like “Let our domain be the set of
integers.”
(Or, as we shall see in Sec. 2.1.7, writing Z for the set of integers,
“∃x ∈ Z (5 < x2 < 8).”)



Another example with predicates and quantifiers

Consider two propositional functions P(x) and Q(x), and the two
propositions

R : ∀x [P(x)↔ Q(x)]

S : [∀x P(x)]↔ [∀x Q(x)]

Poll: Which of the following is true (for every P(x) and Q(x))?

(A) R is true if and only if S is true.
(B) If R is true, then S is true (but not the converse)
(C) If S is true, then R is true (but not the converse)
(D) None of the above.

It is not hard to find an example that shows that (A) is false. E.g.
For the domain of integers: P(x) : x < 6 and Q(x) : x > 2; or for
the domain of Canadian voters, P(x) is “x thinks Justin Trudeau is
smart” and Q(x) is “x would vote for Trudeau”.
For both of these examples, R is False and S is True (since both
sides of S are False).
This also shows that (C) is False. What about (B)?



R : ∀x [P(x)↔ Q(x)]

S : [∀x P(x)]↔ [∀x Q(x)]

Is it true that R → S?
Assume R is True. Then there are two possibilities:
(a) Either P(x) is true for every x , or
(b) There exists at least one x such that P(x) is False.

In case (a), we see from R that Q(x) is also True for every x . Then
∀x P(x) and ∀x Q(x) are both True. So S is True in case (a).

In case (b), let x0 be one of the x ’s such that P(x) is False.
Then we see from R that Q(x0) is also False.
Then ∀x P(x) and ∀x Q(x) are BOTH FALSE.
So S is True in case (b).

Combining (a) and (b), we see that S is True in all cases.
We have proved that if R is true, then S is true.



1.5: Nested quantifiers

Example: Our domain will be the set of integers.

For each x , let K (x) be the sentence

K (x) : ∃y (x < y) .

E.g., K (4) is the statement “∃y (4 < y).” True.

Poll: Which is correct:
(A) K (x) is true for every x
(B) K (x) is never true
(C) K (x) is true for some x but false for other x
(D) The question does not make logical sense

(A) is correct. (For example, whatever x is, you can take y to be
x + 1, and then x < y .)
This shows that “∀x K (x)” is a True proposition. That is,

∀x [∃y (x < y)] .

We can omit the square brackets: ∀x ∃y (x < y).



We have demonstrated that

L : ∀x ∃y (x < y)

is True. Can we say whether

M : ∃y ∀x (x < y)

is true? Analyze M as we did L. For each y , let J(y) be the
sentence

J(y) : ∀x (x < y) .

Then M is the sentence ∃y (J(y)).

Poll: Which is correct:
(A) J(y) is true for every y
(B) J(y) is never true
(C) J(y) is true for some y but false for other y
(D) The question does not make logical sense

Answer: (B). That is, ¬∃y (J(y)). So M is False.



Conclusion: We have shown that

L : ∀x ∃y (x < y) is True, but

M : ∃y ∀x (x < y) is False.

That is, the order of quantifiers is important!



A famous quotation:
You can fool all of the people some of the time, and some
of the people all of the time, but you cannot fool all of the
people all of the time.
– Abraham Lincoln (16th president of the USA)

Let’s try to express this with quantifiers.

Let L(x , t) be the sentence “You can fool x at time t.” Here the
domain of x is the set of all people, and the domain of t is the set
of all times.

You cannot fool all of the people all of the time: ¬[∀x ∀t L(x , t)].

You can fool some of the people all of the time:
Poll: Which expression best describes this part?

(A) ∀x ∃t L(x , t)

(B) ∃x ∀t L(x , t)

(C) ∀t ∃x L(x , t)

(D) ∃t ∀x L(x , t) Answer: (B)



You can fool all of the people some of the time, and some
of the people all of the time, but you cannot fool all of the
people all of the time.
– Abraham Lincoln

L(x , t) is the sentence “You can fool x at time t.”

You can fool all of the people some of the time.

There are two plausible interpretations for this:
(A) ∀x ∃t L(x , t)
(B) ∃t ∀x L(x , t)

Poll: Which seems like the better interpretation?

(A) says that each person has some time when they can be fooled.
(B) says that there is some time when everyone can be fooled.

Assuming that Mr. Lincoln intended (A), then we have:

[∀x ∃t L(x , t)] ∧ [∃x ∀t L(x , t)] ∧ ¬[∀x ∀t L(x , t)].
– Abraham Lincoln



Important: In addition to attending lectures, you are expected to
read the textbook. It would be a poor use of time for me as
instructor to repeat everything that you could be reading in the
book. I tend to spend class time on the parts of the text that are
most fundamental, and/or more difficult to understand.

Next class: We shall discuss Section 1.6, and may start Section 1.7.

Homework 1 is posted in Connect, due Sunday Jan 22 at 11:59
pm. It covers Sections 1.1–1.6.


