EECS1019 Removed from MATH/EECS 1019: Discrete Math
Propositional
    - Eval/Build If ¬α, then α → γ
    - Simplify If ¬ β, then (γ → β iff ¬ γ)
    - Precedence & Parse Trees ¬P ∨ Q ∧ R → P ∧ Q   ≡   ((¬P)∨(Q ∧ R)) → (P ∧ Q)
    - Pleasing Father (A ∨ B)→ C)   ≢   (A → C) ∨ (B → C)   ≡   (A ∧ B)→ C)
Quantifiers
    - And-Or Tree Game Prover/Adversary Game on Tree
    - Negations ¬∃xP(x) ≡ ∀x¬P(x)
    - Restricted Domain ∃x∈S,P(x) ≡ ∃x,(x∈S)∧P(x) and ∀x∈S,P(x) ≡ ∀x,(x∈S)→P(x)
    - Empty Set ∀x∈S,P(x) is true if S is empty.
    - Sets of Tuples α is true for each tuple in S = {❬x1,y1,x2,y2❭ | x1&x2∈U, y1=y1∃, y2=y2∃(x1)}
    - Skolem/Auxiliary Functions ∀x∃yP(x,y) ⇒ P(x,y(x))
    - Free and Bound Variables: α(x)∧∀xβ(x)
    - Understanding from the Inside ∀x [∃y+y=0] ≡ ∀x Property(x)
    - Constructive & Contradiction I don't like proofs of ∀x P(x) that assume the contradiction so that it can construct an x.
Instead, say "Let x be an arbitrary object."
    - The Proof Viewed as a Game: Boss gives values to free variables.
Oracle assures you of A when proving A→B.
Prover works to prove by providing good ∃x objects.
Adversary works to disprove by providing worst case ∀y objects.
    - Game Tree ∃Mw1∀Mb1∃Mw2∀Mb2... White-Wins(Mw1,Mb1,Mw2,Mb2,...)
    - Solution to Hard Problem ∃ solution y HardProblem(y) & ∀ potential counter examples x ¬HardProblem(x)