
Chapter on Machine Learning
By Jeff Edmonds

Computers can now drive cars and find cancer in x-rays. For better or worse, this will change the world (and
the job market). Strangely designing these algorithms is not done by telling the computer what to do or
even by understanding what the computer does. The computers learn themselves from lots and lots of data
and lots of trial and error. This learning process is more analogous to how brains evolved over billions of
years of learning. The machine itself is a neural network which models both the brain and silicon and-or-not
circuits, both of which are great for computing. The only difference with neural networks is that what they
compute is determined by weights and small changes in these weights give you small changes in the result
of the computation. The process for finding an optimal setting of these weights is analogous to finding the
bottom of a valley. “Gradient Decent” achieves this by using the local slope of the hill (derivatives) to direct
the travel down the hill, i.e. small changes to the weights. There is some theory. If a machine is found that
gives the correct answers on the randomly chosen training data without simply memorizing, then we can
prove that with high probability this same machine will also work well on never seen before instances.

Coding: When writing computer code, the instructions are painstakingly written by humans. This works
great for simple repetitive tasks. Expert systems of the 80’s however failed. Though we are able to
walk, it is hard to explaining how to do it!!!

Machine Learning: When designing neural networks, the instructions are 100% dictated by weights
〈w1, . . . , wm〉. Like the brain, these are way too hard to understand. They are learned using a simple
algorithm, finding patterns in lots of data. Walking, for example, has enough of a pattern that machine
learning can copy it.

Evolution: Add just a little random change that is encouraged by some feed back to go in the right direction
and the Emergent Complexity that arises is awe inspiring. I find the parallels between evolution and
machine learning oddly spiritual.

Hopeful Applications: Self diving cars, image processing, speech processing, robots, art, medical, finan-
cial, and legal experts. Hopefully these will make the world a better place.

Scary Applications: People losing their jobs, the system watching you, ads customized to you, cyberse-
curity picking out “criminals” in a crowd, killing machines, machines deciding your fate. These might
make the world a worse place.

Abstract Thinking: We can talk about many aspects of machine learning without needing to know the
nature of the machine or the nature of the data. We talk of knowing if image is a face without
mentioning noses. This simplicity let’s us focus on what is important and ensures that what we say
works for any model of machine and for any computational problem.

Supervised Training Data: The input that we receive is a set of input/output pairs
{〈~x1, y1〉 , 〈~x2, y2〉 , . . . , 〈~xD, yD〉}. In order to be able to draw a simple graph for intuitive pur-
poses, we pretend each input ~xd is a real numbers. But more likely it is something complex like
an image. For each such input, yd is the answer provided by a Supervisor. When yd is a single
real number, we call the process regression. When yd is a label like cat or dog, we call the process
categorizing. Another way of visualizing the data is to assume that each input ~xd is some point in
some height dimensional space and the supervisor’s answer ys is indicated by the colour of the point.

Cat: If the input ~xd is an image of a cat, then the computer just sees a big matrix of numbers. From this,
meaning must be extracted. This seems to me to be magic. On the other hand, the brain manages to
do it.

Machine: Our goal is to build a machine M~w(~x) that takes an input ~x and returns an answer y. It is
parametrized by a vector of m real valued weights ~w = 〈w1, . . . , wm〉. This includes anything that the
learning process learns and remembers about the data and uses later to make predictions.

Linear and Non-Linear Regression: For example, yd might be the likelihood of rain on day d, x〈d,1〉

whether there are clouds, x〈d,2〉 which the colour of coat the man is wearing, and 〈w1, w2〉 their level of
effect on rain. Our machine might might then approximate yd with M~w(~xd) = w0+w1x〈d,1〉+w2x〈d,2〉.
Who knows, maybe if people are wearing yellow coats, then these might be rain coats and hence it is
more likely to rain. The model designer could make the types of machines learned more powerful by
adding additional terms like +w3 x〈d,2〉

2. Here x〈d,2〉
2 is a hand picked precomputed features of the

input ~xd and w3 is its weight that is learned during the learning process. Though this machine is now
non-linear in the input ~xd, we still call this linear regression, because the answer is linear in the learned
weights w3. In contrast, learning M~w(~xd) = x〈d,1〉

w1 + x〈d,2〉
w2 , being non-linear in the weights, would

be much harder.

Neural Networks: Our machine might also be something much more complex like a neural network. All
you need to know now about it now is that how it computes y = M~w(~x) is dictated by its weights
~w = 〈w1, . . . , wm〉.

Error: Given some setting ~w = 〈w1, . . . , wm〉 of the weights, we want to measure how well the machine
M~w(~x) does at getting the correct answers y on the training data {〈~x1, y1〉 , 〈~x2, y2〉 , . . . , 〈~xD, yD〉}.
The easiest thing to do would be to count the fraction of the data set for which the machine gets
the correct answer, namely yd = M~w(~xd). However, this gives little feedback on how to improve the
machine. If answer y is a real number, the difference yd − M~w(~xd) gives us a measure of how close
our machine is to the correct answer. We could take the absolute value of this |yd −M~w(~xd)| because
we do not care which direction the error is in, but |z| is too pointy at z = 0 making the math near
impossible. Instead, we square it and sum over all data items, namely E(~w) =

∑

d(yd − M~w(~xd))
2.

When the answer y is a category like “cat”, we can have the machine instead produce a real number
telling us the “probability” that it thinks it is a “cat”. The error would then be based on how close
the probability of the correct answer is to one.

Machine Learning: Given the training data, our goal is to find the weights ~wopt that minimizes the error
E(~w). This is all that machine learning is.

2

Error Surface: We think of the error as a function of the weights ~w because they are the parameters that
we are able to tweak. If we pretend that the weights consist of one real number ~w = 〈w1〉, then we
can graph the error function on paper with w1 being the x-axis and the error E(~w) being the y-axis.
We are looking for a minimum. With two real numbers ~w = 〈w1, w2〉, we get an error surface. The
first weight w1 can tell you your East-West location, the second w2 your North-South location, and
the error E(~w) your altitude. This gives you a topological map of your error surface. We are looking
for a location ~w in a valley.

Blind: In practice the weights ~w = 〈w1, . . . , wm〉 consist of tens or hundreds of thousands of real numbers
making for a very high dimensional space to search. With 10,000 weights with 0 to 9 integer values,
there are 1010,000 settings of the weights. A super computer on each atom of the universe working for
the age of the universe couldn’t dent this list!

Linear Regression: If the machines are linear in the weights as in M~w(~xd) = w0 + w1x〈d,1〉 + w2x〈d,2〉 +
w3 x〈d,2〉

2, then there are formulas that will give you the weights ~wopt that minimizes the error E(~w).
Not so for complicated machines.

Gradient Decent: When I asked my young son how to find the top of the hill, he answered “Just keep
going up.” When ask which direction to head, he answered “in the direction that is steepest.” When
ask how do you know when you are at the top, he answered “When you can’t go up anymore.” This
is how we will find the bottom of a valley. It might not find the global minimum, but we hope that it
finds a machine that is good enough for our purposes. From this we get self driving cars!

Smooth/Differentiable: This error surface is such that an infinitesimally small change in any one of the
weights wk causes an infinitesimally small change in the output of the corresponding neuron of the
neural net, in the output M~w(~xd) of the machine, and in the error E(~w) =

∑

d(yd−M~w(~xd)
2. Dividing

the change in E(~w) by the change in wk gives the derivative δE
δwk

. The vector of these derivatives

∆(~w) =
〈

δE
δw1

, δE
δw2

, . . . , δE
δwm

〉

is called the gradient. This is computed efficiently by a process called

back-propagation using the calculus learned in high school. The figure below provides a little of the
math as to why this vector gives the direction of steepest decent. Intuitively, the weights wk that
influence correct answers are increased and those that influence wrong answers are decreased.

Algorithm: Method for finding weights ~wopt that minimizes the error E(~w) is as follows:

Start with random ~w = 〈w1, . . . , wm〉
Repeat:

〈loop−invariant〉: We know where we are ~w = 〈w1, . . . , wm〉.
Calculate our height E(~w).

3

Calculate the direction and slope of steepest descent.
Change ~w by a small step in this direction and distance proportional to the slope.
Stop when every direction is up.

Generalizing: This machine is optimized to do well on the training data. But how well does it generalize
to other inputs that it has never seen before? There is a “no free lunch” theorem that says that no
one method works in all cases. But there are a few principles. Consider the following three examples,
A, B, & C. Each dot give the 〈xd, yd〉 of one training data item. The curve gives the answer that the
machine gives for each input x. Ask yourself which of these three gives the best answers for values of
x that it has never seen before?

Underfitting: A is an example of Underfitting in which the class of machines just doesn’t have the
capacity to learn the material.

Overfitting: C is an example of Overfitting in which the class of machines is so powerful that is can
memorize the answers for just about any function. The problem is that if you cheat on the exam
by making a table of all the answers you were taught, then you learn nothing and are stuck when
a new question comes.

Compression: B seems like a good balance of under and over fitting. On a test, if you summarize the
learned material, compressing it to all fit on one “cheat sheet”, then hopefully you understand it
and do well when a new question comes. Compression occurs when the weights ~w = 〈w1, . . . , wm〉
with which the machine learns, does not contain enough bits of information to store the training
data answers 〈y1, . . . , yD〉.

Regularization: A common way to find this balance is to minimize not just the error but a sum of
the error and of some measure of how complex your machine is. William of Ockham says “All
things being equal, the simplest solution tends to be the best one.”

Theory: Learnable Probably Approximately Correct (PAC): If on the randomly chosen
training data, a machine is found that gives good answers, even though compression is required,
then we can prove that with high probability this same machine will also work well on never seen
before instances. The proof does not measure the quality of the machine but of the training data.
If the data is chosen randomly then with high probability it is representative of the entire universe
of possible data.

Neural Networks: Let’s now understand neural networks in more detail. It is made of layers of artificial
neurons. The input layer has an input wire for each pixel of the input image receiving a value between
0-1 indicating the pixel’s brightness. The output layer has a wire for each category indicating the
“probability” that the input image is in fact a cat or dog. In between, the layers are said to be
hidden. These have no human designated meaning. Meaning is “learned” by choosing weights ~w =
〈w1, . . . , wm〉.

4

When a neuron in the brain fires, it sends a signal to its neighbors across its synapses. These synapses
have different weights in their influence. When a neuron’s incoming signal reaches a threshold it fires.
Similarly, an artificial neuron takes a real valued signal xi along each of its incoming edges, multiplies
this by the edge’s weight wi, and fires if the weighted sum z =

∑

i=0..n xiwi reaches its threshold. In
this way, a neuron is able to compute a And, Or, or Not gate and hence is powerful enough to be able
to compute anything a digital computer can compute. So we can later do gradient decent, we change
the threshold activation y = σ(z) so that it transitions gracefully. Instead of YES/NO we allow maybe
so, i.e. if the weighted sum is close to its threshold, then it outputs a half instead of 0-1.

Vectors: Let’s try to understand how to best think about all of these numbers. A data input ~x =
〈x1, . . . , xm〉, eg a image of a cat, is just a large tuple of real values. As such it can be thought as
a point in some high dimensional vector space. Whether the image is of a cat or a dog partitions
this vector space into regions. Classifying your image amounts to knowing which region the
corresponding point is in. A linear separator separates two regions with a plane. It is unlikely
that this will work to separate cats from dogs. Instead, each layer of the neural network transforms
the input ~x until it can categorize it.

Correlation of Vectors: Machine Learning is all about finding complex correlations. Suppose I am
starting a dating service. For each client I will collect properties. For each pair of clients, we
measure how compatible they are. The first two clients in the figure below each like movies a
lot. This adds 15 × 20 = 300 to their compatibility. They are both neutral on nature, adding
only 3× 2 = 6. They differ on being extroverted making them (−20)× 30 = −600 incompatible.
Summing over all properties gives a total compatibility of -874, i.e. incompatible. The first and
third client with 910 are much more compatible.

5

Denote the vector/tuple of values for the first client with ~w = 〈w1, . . . , wm〉 and with the second
with ~x = 〈x1, . . . , xm〉, their compatibility(~w, ~x) is computed as

∑

i wixi. This is called the dot

product ~w · ~x between these vectors. If these vectors are thought of arrows in high dimensional
space then the angle between them is given by cos(Θ) = ~w·~x

|~w|·|~x| . If ~w · ~x is positive, the angle Θ

is less than ninety degrees and if it is negative, then it is more. If you shine a light perpendicular
down onto ~w, the length of ~x’s projection will be |~x| · cos(Θ) = ~w·~x

|~w| . For some given distance d,

the set of all vectors ~x with this projection length equaling d are those within the hyper-plane
perpendicular to ~w a distance d from the origin. When ~w·~x

|~w| is less than this d, then ~x is on the

near side of this plane and when more than it is on the far side.

Linear Layer = Matrix Multiplication: The simplest layer of a neural network is linear. A novice
reading a machine learning paper might not get that many of the symbols are not real numbers
but are matrices. Hence the product of two such symbols is matrix multiplication.

Consider feeding the dth training data input ~xd =
〈

x〈d,1〉, . . . , x〈d,m〉

〉

into the neural network. Its

ith value x〈d,i〉 is fed into the network’s ith input wire. The set of all of these values x〈d,i〉 can be

organized into a matrix X =
[

x〈d,i〉

]

〈d,i〉
whose dth row corresponds this dth training data input

~xd.

Let w〈i,j〉 denote the weight of the edge from the ith input wire to the jth artificial neuron in the

first layer of the network. These values can be also be organized into a matrix W =
[

w〈i,j〉

]

〈i,j〉
.

The total incoming signal into the jth hidden neuron on the dth input ~xd is denoted z〈d,j〉. Again

these values form a matrix Z =
[

z〈d,j〉
]

〈d,j〉
.

This jth hidden neuron has many incoming edges, the ith of which is labeled with weight w〈i,j〉 and
receives the input value x〈d,i〉. These are multiplied and these products for the different incoming
edges are added together, i.e. z〈d,j〉 = x〈d,1〉×w〈1,j〉+ . . .+x〈d,I〉×w〈I,j〉 =

∑

i x〈d,i〉×w〈i,j〉. Note
that this is the exact calculation computed in the matrix multiplication Z = X ×W as the 〈d, j〉
entry of matrix Z is given by the dot product of the dth row of matrix X and the jth column of
matrix W , summing over index i.

Non-Linear Layer: Given signal z〈d,j〉, the jth hidden neuron ideally either fires or it doesn’t. The
picture is either a cat or not. One might model this by having the hidden neuron fire if this

6

signal z〈d,j〉 passes a threshold. Typically, a constant w〈0,j〉 is added into the sum so that the
threshold is shifted to zero. To be more graceful, a typical activation function used is the sigmoid
function y〈d,j〉 = σ(z〈d,j〉) that has the hidden neuron output close to one when input sum z〈d,j〉 is
very positive, output close to zero when it is very negative, and in between it changes gracefully.
The problem with the sigmoid activation function is that its derivative and hence the gradient
of steepest decent is close zero for large activation values z making learning slow. To solve this
problem, the rectilinear activation function does not change the signal, i.e. y = z when it is
positive and zeros it, i.e. y = 0, when negative. Note for positive z, the slope here is always one
making learning faster. Recent work has shown that this activation function works surprisingly
well for many applications.

Convolution and Recurrent Layer: Suppose the input is an image and the neural network is
trained to find a cat. This problem is invariant over the location of the cat, namely the net-
work should answer yes no matter where in the image the cat is located. This invariant can be
built into the design of the neural network by having a set of weights be learned to find a feature
in some small part of the image and to use those same weights translated all over the image.
Similarly, if the input in a stream of speech, then the same set of weights can detect the word cat
at the beginning and at the end of the stream. These changes decrease the number of weights
that the neural network has, making learning easier, decreasing computation time, and decreasing
overfitting.

The Singularity: If technology grows just slightly faster than exponentially, then at some point in time,
the expected about of technology will be infinite. What will life look like after that?

7

