
Pedagogic Value in Understanding Computer Architecture

of Implementing the Marie Computer from Null and Lobur

in the Logic Emulation Software, Multimedia Logic

Timothy Daryl Stanley

George Embrey

Daniel Prigmore

Leslie Fife

Brigham Young University - Hawaii
BYUH #1854

Laie, Hawaii 96762-1294
1-808-293-3388

Stanleyt@byuh.edu

Scott Mikolyski

Don Colton

ABSTRACT
In our computer architecture course, we ask students to design an

instruction set for an eight- or sixteen-bit computer and then

implement that design in an emulated computer using a logic

emulation package. In Winter semester 2006 a team of three

students decided to design and implement the “Marie” computer

instruction set described in the book by Null and Lobur[2]. The

project proved to be highly motivational for this team, and they

produced an excellent result. This paper describes that design

process, the resulting computer, and learning from the project.

Categories and Subject Descriptors
C.1.1 Computer Systems Organization: PROCESSOR

ARCHITECTURES Single Data Stream Architectures Von

Neumann architectures

General Terms

Design

Keywords
Microprocessor design, Computer architecture, Logic Emulation,

Education.

1. INTRODUCTION
Starting from the premise students learn by doing, we ask students

in our computer architecture course to design and implement an

instruction set and architecture in a logic emulation software

package called Multimedia Logic (MML)[1]. The reasons for this

choice include that MML is open source, free, and has a rich,

visually pleasing set of input and output devices.

The stage is set for this task by working through a couple of

designs with the students. These are typically 8-bit computers

using alternate design architectures. For example one is von

Neumann with a several-step execution cycle and the second is a

Harvard architecture with single-cycle instruction execution.

These are designed from an instruction set and register design.

More detail on this process is given in the papers “From Archi

Torture to Architecture: Undergraduate students design and

implement computers using the multimedia logic emulator” [2],

and “Simple Eight Bit, Emulated Computers for Illustrating

Computer Architecture Concepts and Providing a Starting Point

for Student Designs” [3]. Students are then asked to start by

providing an instruction set and register layout. We then discuss

challenges presented by the architectural choices, and discuss

solutions. This work is normally done in small teams of two to

three students, but if an individual would prefer to work alone,

they have that option.

Using this approach many novel computers and circuits have been

designed and build by our students. Some of these include 16-bit

Harvard and von Neumann designs. Some related circuitry

developed includes an eight-bit multiplier, a sixteen-bit register

array of sixteen registers, and a 128 bit XOR encryption unit. This

paper focuses on a particular project from Winter Semester 2006,

called the Marie computer with is described in the book by Null

and Lobur. This Marie computer was designed and implemented

by a three-student team.

2. MARIE BY NULL AND LOBUR
In the book “The Essentials of Computer Organization and

Architecture”[4] the authors introduce Marie, “Machine

Architecture that is Really Intuitive and Easy.” They provide with

the resources for their book, a Java application that emulates the

Marie. It also edits and assembles programs written for Marie and

provides assembly listings and core dumps of the Marie memory

space. The Marie emulated computer interface is shown in figure

1.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise, to republish, to

post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WCAE '07, June 9, 2007 San Diego, CA

Copyright 2007 ACM 978-1-59593-797-1/07/0006…$5.00

Figure 1 Marie computer emulator from Null and Lobur [4]

One novel feature is a data path animation that illustrates the steps

that occur as each instruction is executed. As each component of

the data path is used it is highlighted. This data path animator is

shown in figure 2.

Figure 2 Marie data path simulator by Null and Lobur [4]

The Marie was designed to have a limited but adequate set of

thirteen instructions. These instructions were chosen to allow

direct and indirect addressing and provide enough capability to

allow real assembly language programs to be written, but without

the onerous task of learning a complex instruction set. Between

the very complete description in the book and the java Marie

application this is a very well defined instruction set and

architecture. Figure 3 gives the complete Marie instruction set

along with register transfer notation (RTN) for the process by

which each instruction is executed. Note that some instructions

like clear the accumulator and halt can be executed in one cycle

while others like save and jump (JnS) require seven steps. This

turned out to be one of the major design challenges of this project.

Figure 3 Marie instruction set with register transfer steps [4]

2.1 Decision to Design and Build Marie
Since the professor was using Marie in his computer organization

class, he wanted an implementation of the actual Marie computer

to use as a visual aid for these organization classes. Also the

Marie is very well defined and comes with an excellent assembler.

Also a number of programs were available to test the design. So,

even though it is more complex than the usual design projects

accomplished for our computer architecture classes, our team of

three students took the challenge to design and implement the

Marie in Multi-Media Logic. The project took about 300 hours

over the semester to complete, but the students reported finding

the project compelling and learning a lot.

2.2 Implementing Marie in Multimedia Logic

Implementing the Marie computer took twelve pages in

Multimedia Logic. Each page fills a single canvas comfortably.

These twelve pages are included as figures 4 through 15. They

are presented for completeness, even though many are similar.

Notice that many registers are composed of sixteen data latches (D

flip flops). One exception is the in and out registers which only

use the lower eight bits. The images are captured with the

computer running a “Hello World!” program.

Figure 4, shows the Memory Address Register (MAR) with it’s

interface devices. The MAR connects to the bus and to the

address lines of the memory.

Figure 4 Memory Address Register (MAR) for Marie

computer

Figure 5, shows the Memory Buffer Register (MBR) which holds

data read from or to be loaded into memory and the accumulator,

and provides one operand to math operations.

Figure 5 Memory Buffer Register (MBR) for Marie computer

Figure 6, shows the accumulator and the ALU. Since the

accumulator always provides one of the inputs to the ALU this is

hard-wired between the output of the accumulator and the “A”

input of the ALU, and also between the output of the ALU and the

input of the accumulator.

Figure 6 Accumulator and ALU for Marie computer

Figure 7 shows the input register which is loaded from the

keyboard in the I/O module and read by input commands. In the

case of this particular program, “Hello World”, input is not used

so the input register shows as “undefined” as indicated by the

partially illuminated LEDs.

Figure 7 Input Register for Marie computer

Figure 8 shows the output register which holds data to be

displayed on the ACSII display device. Again, it is the lower

eight bits from the data bus when an output command is given.

While the actual Java Marie from Null and Lobur provides the

option of hex, decimal, and ASCII I/O we have only provided

ASCII I/O in this implementation. However the other options

could be easily added.

Figure 9 shows the instruction register which holds the instruction

currently being executed. It’s output is the principle input to the

instruction decoding module.

 Figure 10 shows the memory. This is a sixteen data bit memory

with twelve address lines. A twelve bit address is used since four

bits of each instruction is used for operation code, and the

remaining twelve bits are available for an address. This is a true

von Neumann design where data and instructions share the same

memory space. With the limited instruction set available in Marie

the ability to modify program memory during execution allows an

effective and efficient, if dangerous indirect write command.

Figure 8 Output Register for Marie computer

Figure 9 Instruction Register (IR) for Marie computer

Figure 10 Memory for Marie computer

Figure 11 shows the program counter. In many multi-cycle

designs the same ALU is used to both increment the program

counter and perform mathematical and comparison operations. In

this case to simplify the data and control paths a separate ALU is

used to increment the program counter as shown in figure 11.

Figure 11 Program Counter (PC) with incrementer for Marie

computer

Figure 12 shows the data bus. The data bus involves the heavy

use of multiplexers to enable only one device to drive the bus at a

time.

Figure 12 Bus for the Marie computer

Figure 13 shows the control logic, which is the most difficult part

of the design. The purpose of the control logic is to convert each

instruction into a sequence of control line states to accomplish the

instruction being executed. Some commands have many sub

tasks while some have none, further complicating the instruction

decode process. The key component in the decoder is the “Read-

Only” memory that takes as inputs the current state and provides

as an output the control line signals. The switch at the upper left

of this figure enables and disables the clock for this computer to

start and stop program execution. Below the clock control switch

is a push button that allows the computer to be stepped one clock

pulse at a time. The lower array of switches provides op codes for

diagnostic purposes.

Figure 13 Control logic for Marie computer

Figure 14 shows the conditional execution logic which allows the

next step to be skipped depending on the value in the

accumulator. A parameter passed with the instruction determines

if the instruction is skipped if the accumulator is greater than zero,

equal to zero, or less than zero. In our implementation only the

test for the Accumulator equal to zero and the accumulator not

equal to zero work.

.

Figure 14 Conditional execution logic

Figure 15 Input / Output interface for Marie computer

Figure 15, the final module is the Input, output and halt control.

This is the module a user would interact with. When the

simulation is executing, mouse clicking on the keyboard icon will

remove the red from the figure and the computer keyboard will

provide data into the circuit

2.3 Pedagogic Value of this project
In the students own words: “Fortunately, every member of our

group was highly motivated not only to succeed, but to excel at

our task. We decided from the onset to exceed the expectations of

our professor. Approaching the project with a desire to learn how

computers really work was the primary source of motivation for

our group and the key to our success. This method made a huge

impact on our project because an understanding of the various

components that are used to build a computer allowed us to try

several different ways to accomplish a task when previous

attempts failed. Additionally, this approach helped our group

develop a machine that was as straightforward as we could make

it while still being functional.

Apart from learning the inner workings of computers, we learned

how to function as a team. Group members were assigned various

components of the MARIE computer to work on but we found

that typically the efforts of the individual needed to be revised by

the group as a whole. The most effective strategy we arrived at

was to have at least two members of the group in front of one

monitor to brainstorm, create, and revise. This team-centered

approach increased our productivity dramatically over working

independently. Furthermore, the group methodology ensured that

another person was almost daily monitoring the effort we put in to

the project and lazy or sluggish work would not be tolerated. This

forced each member of the group to contribute and work hard.

 The most rewarding moment during the semester came

when our MARIE computer ran its first program from start to

finish. After countless hours of building the machine and the

often frustrating times fine-tuning it, our first program to run was

a simple “hello world”. The satisfaction that came from

completing the monumental task we had is indescribably

gratifying. Hard work and persistence definitely paid off. What is

more, we now have a significantly greater understanding of how

computers operate.”

3. CONCLUSIONS
A three student team has designed and built the Marie computer

in Multimedia Logic. The computer can take code assembled

with Null and Lobur’s java emulator and run it. Since this is a

full emulation of the Marie computer, access is available to all of

the control lines, data bus, and intermediate states that are not

accessible in the java emulator. Through this process they have

learned computer architecture by doing, and have produced a

valuable teaching aid for computer organization classes learning

assembly language using the Marie instruction set.

Some have asked why build an emulated MARIE computer when

an excellent assembler, simulator, and data path simulator already

exist. The reason is a desire to have students fully appreciate

David Patterson’s comment that a CPU is “a data path and control

circuitry. [5]” These students fully appreciate data paths and

control circuitry because they have designed and built both.

Others have asked, “How large of a project is needed to meet this

understanding. The goals of this educational experience could

have been met with an eight bit computer design, but highly

motivated students don’t just meet the minimum requirement.

4. ACKNOWLEDGMENTS
Our thanks to George Mills, the author of Multimedia Logic, for

making his product available without cost on his web site

www.softronix.com. Also thanks to Linda Null and Julia Lobur

for developing the Marie instruction set and building an emulator

and data path animator for it.

5. REFERENCES
[1] Mills, George, Multimedia Logic, www.softronix.com

[2] Stanley, Wong, Prigmore, Benson, Fishler, Fife and Colton,
From Archi Torture to Architecture: Undergraduate students

design and implement computers using the multimedia logic

emulator, Computer Science Education, Vol. 17, No. 2, June

2007, pp. 143 – 154

[3] Stanley, Xuan, Fife, Colton, Simple Eight Bit, Emulated
Computers for Illustrating Computer Architecture Concepts

and Providing a Starting Point for Student Designs, Ninth

Australasian Computing Education Conference (ACE2007),

Ballarat, Victoria, Australia, January 2007.

[4] Null, L., and Lobur, J. The Essentials of Computer

Organization and Architecture. Jones and Bartlett

Publishers, Sudbury, MA 200

[5] Patterson., and Hennessy. Computer Organization and

Design, the Hardware/Software Interface. Morgan

Kaufmann Publishers, San Francisco, CA, 2005

