
 1

A Guide to the MARIE Machine Simulator Environment
Accompanying The Essentials of Computer Organization and Architecture by Linda

Null and Julia Lobur

Version 1.0 – January 2003

Introduction

Your authors have made every effort to create a MARIE machine simulator that is as
Really Intuitive and Easy to use as the MARIE architecture is to understand. Your
authors believe that the best way to gain a deep understanding of the MARIE machine —
or any computer system for that matter—is to write programs for it. Toward our goal of
helping you to understand how computers really work, we have created the Marie
machine simulator, MarieSim. MarieSim is an environment within which you can write
your own programs and watch how they would run on a real "von Neumann
architecture" computer system. By running programs on this simulator, not only will
you see your programs in action, but you will also get a taste of assembler language
programming without learning any particular assembly language beyond the simple
instructions that your authors have presented.

MarieSim was written in the Java language so that the system would be portable to any
platform for which a Java Virtual Machine (JVM) is available. Students of Java may
wish to look at the simulator's source code, and perhaps even supply improvements or
enhancements to its simple functions.

Installation

The MARIE machine simulator requires Sun's Java SDK 1.4.0 or later. This software is
available at no charge from the java.sun.com Web site. After this package is installed,
the Java archive file MarieSim.jar (case sensitive) can be placed in the directory of your
choosing. The following command will uncompress the archive:

 jar xvf MarieSim.jar

If the archive uncompresses correctly, you will have the main MARIE simulator class
file, MarieSim1.class and two MARIE code example files in your directory. Jar will also
create two subdirectories, Meta-inf, and MarieSimulator. The MarieSimulator
subdirector contains all of the (many) other classes required for simulator operation.
(The Meta-inf subdirectory is created by jar.) Note: The MARIE simulator can be run
directly from the jar file; however, "Help" and other text files will not display.

If you also wish to see MARIE's source code, you can obtain the MarieSource.jar file
that contains all of the Java source for the Marie simulator. This file is uncompressed
in the same way as the simulator jar file:

 jar xvf MarieSource.jar

The java source will be uncompressed into the same directories as the class files.

To run the MARIE machine environment, the java classpath must be set to point to the
directory where the MarieSim1.class file is located. For example, if your classpath is
C:\j2sdk1.4.0_01, and you have located the MarieSim1.class file in a directory named
C:\j2sdk1.4.0_01\marie, you must change your classpath to

 2

C:\j2sdk1.4.0_01\marie. Within a Windows environment, you do this by using the
SET command (set CLASSPATH=C:\j2sdk1.4.0_01\marie). In a Linux/Unix
environment, the .cshrc file contains the classpath. (Check with your system support
staff if you are unsure as to how to change this file.)

The MARIE simulator environment is invoked using the command:

 java MarieSim1

within the directory that contains the MarieSim1.class file. (Note: This command is
case sensitive!)

The MarieSim Environment

Figure 1 shows the graphical environment of the MARIE machine simulator. The screen
consists of four parts: a menu bar, a central monitor area, a memory monitor and a
message area.

Figure 1: The MarieSim Graphical Environment

The central monitor area contains a program monitor area, six of MARIE's seven
regi sters, and an output area, representing MARIE's seventh register.
The memory monitor area displays the contents of all 4096 addresses of MARIE's
memory. Each horizontal row of the memory area contains 16 memory addresses.
Therefore, the address labels at the left side of the memory area are given in increments

 3

of 16, with titles above each column indicating the offset from the memory address of
each row of memory. For example, the memory address DE8 is found in the column
labeled +8 of the row labeled DE0. All addresses are given in hexadecimal.

As the simulator executes your program, the instructions in the program monitor area
are highlighted along with any memory in the memory area that the instruction is
accessing. These highlights are most visible (on a fairly "fast" system) when you set a
500 millisecond (or greater) delay between instructions. (See below). With a little
experimentation, you will find an optimal value for your system.

During the course of executing your program instructions, status messages may appear
in the message area at the bottom of the screen. When your program ends, you will see
either a "Program halted normally" or "Program halted abnormally" message. If you
never see this message, either your program hasn't started running yet, or it is in a loop
and you'll need to halt it manually.

The MarieSim Controls Menu

The menu at the top of the simulator gives you control over the actions and behavior of
the MARIE machine Simulator system.

The File Menu

The features available through the File menu are shown in Figure 2 If you already have
an assembled MARIE program at your disposal, all you need to do is load it and run it.
If you want to write a program from scratch, you should select the File | Edit option. The
Edit option gives you a simple way to write and assemble programs in MARIE assembly
language.

Figure 2: MarieSim File Menu Options

Although you can use any plain text editor (perhaps one with fancier features) to create
your source code, the simulator's built-in editor gives you one-button access to the
assembler. The MARIE editor frame is shown in Figure 3.

 4

The MARIE Editor

Once you select File | Edit, and if you do not have a file loaded in the simulator (as
shown in Figure 3), the editor frame is displayed with a blank text area. If, however,
you have already loaded an assembled file into the simulator, the source code for that
file is automatically brought into the editor if the editor can locate it.

Figure 3: The MarieSim Editor

MARIE assembly code source files must have an ".mas" extension, for MARIE Assem-
bler. Both the edi tor and the assembler recognize files of this type. Once you have
saved a file with an ".mas" extension, the Assemble menu option becomes enabled and
you can assemble your program by selecting the Assemble current file menu pick. If you
load an existing ".mas" file, the Assemble button is automatically enabled. Any modifi-
cations that you have made to your to your assembly-language file are automatically
saved by the editor prior to its invoking the assembler. This process is shown in Figure
4, using the example from Table 4.5 in the text.

 5

Figure 4: Preparing to Assemble Source Code

Figure 5: An Unsuccessful Assembly

If the assembler detects errors in your program, the editor sends you a message and the
assembly listing file appears in a popup frame as shown in Figure 5. All that you need
to do is correct your program and press the Assemble current file button once more. If the
file contains no other assembler errors, you will see the screen shown in Figure 6. If

 6

you wish, you can display or print the assembly listing file, by using the editor or any
text-processing program.

The listing file will be placed in the currently-logged directory, along with the "MARIE
machine code" file, if assembly was successful. The listing file is a plain-text file with
an ".lst" extension. For example, when Fig4_5.mas is assembled, the assembler
produces Fig4-5.lst. You may view it, print it, or incorporate it into another document
as you would any plain text file. If assembly is error-free, a ".mex" or MARIE
EXecutable file will also be placed in the same directory as the source and listing files.
This is a binary file (actually a serialized Java object) that is executable by the
simulator.

For example, if your assembly source code is called MyProg.mas, the listing file will be
called MyProg.lst and the executable will be called MyProg.mex.

Once you have achieved a "clean" assembly of your program, you will see the message
shown in Figure 6. If you are satisfied with your program, you can exit the editor by
closing its window or selecting File | Exit from the menu.

Figure 6: A Successful Assembly

As implied above, the MARIE editor provides only the most basic text-editing functions,
but it is tailored to the MarieSim environment. The Help button provides you with some
general help, as well as an instruction set "cheat sheet" that you can use for reference
as you write your programs.

The frame in which the editor appears may look a little different on your system, but
you can manipulate it as you can with any frame, that is: you can maximize it,

 7

minimize it, hide it or close it. This is true of all frames spawned by the editor as it
responds to your commands.

Loading Your Program

After you have successfully assembled your program, you must load it into the simula-
tor by selecting the File | Load menu option from the simulator. This option brings up a
file chooser panel that lists all of the MARIE executable files in your current directory,
and the names of other directories that are available to you. All you need to do is
highlight or type the name of the file that you wish to run.

Note: Each time you reassemble a file, you must reload it.

Figure 7: A Program Ready to Run

Figure 7 shows the MARIE simulator after an executable file has been loaded. The
program monitor window shows the assembly language statements as they were
written, along with their hexadecimal equivalents. At the left-hand side of the program
monitor, you will see the addresses of the program statements. The statement that has
just been executed by the simulator is shown in green highlight, so that you can see the
effect that the instruction has had upon the state of the machine. Of course, when the
program is first loaded, the green highlight will be on the statement at the first address
of your program. You will also notice that the PC register is set at the address of the
first statement in your program, indicating that this i s the next statement that will be
run.

Keep in mind that the program monitor window is there only to help you visualize what
is going on. The program instructions are, in reality, pulled from the memory panel at

 8

the bottom of the screen. Once you have loaded your program, you will notice that the
memory monitor contains the hexadecimal program instructions in the addresses
corresponding to those in the program monitor window. A green highlight will move to
different memory location as your program runs, accessing various storage locations.

Once loaded, your program can be executed using any of three different run options.

The Run Menu

The Run menu offers a number of features that allow you to have control over how your
program is executed by the simulator. As shown in Figure 8, the first option on this
menu is Run | Run, which executes the statements in your program in sequence to
termination. When you select Run | Run, the Stop button becomes enabled, giving you
the chance to halt your pr ogram should it get stuck in a loop or simply is taking too
long to run.

Figure 8 shows the Run menu option that you would use to put your program into step
mode. Step mode allows you to execute your program one statement at a time. After
executing each statement, the simulator pauses until you press the Step button (or the
program terminates).

Note: If the simulator is in step mode, and you subsequently select Run | Run, the
simulator automatically terminates step mode and enters run mode.

Figure 8: The Run Menu

The Run | Set Delay Option

By default, the MARIE simulator pauses for approximately 10 milliseconds between
subsequent executions of program statements when it is in run mode. The main
purpose for this delay is to allow you to halt exe cution of your program, should you
desire to do so. The delay feature may also be used to allow slow-motion viewing of
your program statements as the simulator executes them. You can put the simulator in
this slow-motion mode by setting the delay to 500 milliseconds or longer.

The delay-setting screen is shown in Figure 9. To change the execution delay, just
move the slider bar to the desired number of milliseconds and press the Okay button.

 9

Figure 9: Setting Execution Delay

Setting the slider: As you would expect, you can move the slider pointer by clicking and
dragging it with your mouse. You can also move it using the cursor-movement keys on
your keyboard. Page Up and Page Down move the slider by large increments, and your
left and right arrows move it by smaller increments, allowing for precision setting of the
slider bar.

The Run | Restart Option

The next option under the Run menu is the option to Restart the simulator. This option
simply resets the program counter to the first address of the program that is loaded in
the simulator. Any changes that your program may have made to the simulator's
memory stay in place.

The Run | Reset Option

To completely start over from scratch, use the Run | Reset option. Selecting this option
has the same effect as pressing the reset key on a personal computer. All memory is
cleared and the registers are reset to zero. Because this option eradicates everything in
the simulator, you will be asked for confirmation before proceeding with the reset
(unlike pressing the reset button on most PCs!).

The Run | Core Dump Option

Many computers dump the entire contents of their memory after they encounter certain
severe errors. If you have used Windows NT, you may have experienced the famous
"blue screen of death" which appears while the system is dumping its memory to a
dump file. When it encounters a fatal error, the MARIE simulator does not
automatically provide a core dump, you need to request one through the Run | Core
Dump menu option. This menu option provides you with the popup frame shown in
Figure 10.

 10

As you can see from the figure, the popup shows two sliders (which, like the delay
slider, can be controlled using cursor keys). The scales on the sliders range from 0 to
4095 and are given in decimal. The hexadecimal translation of the slider values
appears in the text boxes to the right of the sliders. The initial values of the core dump
are set to the memory address space occupied by your program. In the illustration, our
program occupies memory addresses 100h through 106h. You can move these sliders
to any addresses that you wish.

If you press the Okay button from the core dump selection frame, another frame soon
appears, containing the contents of MARIE's registers and the memory addresses that
you selected. This screen is shown in Figure 11.

Figure 10: Setting Memory Core Dump Range

Figure 11: A MARIE Core Dump

 11

Before showing it to you on the screen, the simulator writes your core dump to a disk
file with a ".dmp" extension. So if the name of your program is MyProg.mas, its dump
file will be named MyProg.dmp. It is a plain text file that you can edit using any plain
text editor, if you so desire.

Breakpoints

Breakpoints are flags placed on computer instructions that tell the system to pause
execution at the instruction where the breakpoint is set. Breakpoints are useful
because a long series of instructions can be executed quickly (as in initializing an array,
for example) before the system pauses to allow you to inspect the contents of registers
and memory before proceeding. In the MARIE simulator, breakpoints are set by
clicking on the square to the left of the instruction number in the program monitor
area. One such breakpoint has been entered at instruction 101h in the program shown
in Figure 12. There is no limit to the number of breakpoints that can be set in a
program.

Figure 12: Breakpoint set at 101h and the Breakpoint Menu

When you select the Breakpoints | Run to Breakpoint menu option, the program starts
execution at the current value of the program counter and proceeds until the
breakpoint is encountered. Pressing Breakpoints | Run to Breakpoint once more resumes
execution until the next breakpoint is encountered or the program terminates. If you
select Breakpoints | Run to Breakpoint when the program counter is pointing to a halt
instruction, the simulator performs an automatic restart and executes your program
beginning with the first i nstruction.

You may notice that when your program is in Run to Breakpoint mode, the Stop button
becomes enabled. This allows you to halt your program if you need to do so. The Run
to Breakpoint option is also mindful of the execution delay that you have set in the
program. So if you have set this delay at 500 ms, the simulator will wait approximately
one-half second between each statement.

The Breakpoints | Clear Breakpoints menu option does exactly what you think it would do:
It removes all breakpoints from the program instruction monitor. You can also remove
a breakpoint by clicking on its checkmark.

 12

The Symbol Table

From the discussion in your text, you know that one of the principal data structures
involved in the assembly process is the symbol table. MARIE's assembler is no
different. You will see this table at the end of your assembly listing, whether or not
assembly was successful. The MARIE simulator also makes this table available to you
right in the simulator environment through the Symbol Map button. If you are trying to
debug a large program, or a program that contains a considerable number of symbols,
you may want to refer to this table from the simulator environment. Figure 13 shows a
symbol table di splay frame for the small program loaded in the simulator.

Figure 13: Viewing a Symbol Table

Input and Output Modes

You will notice in the figures that each regi -
ster, as well as the OUTPUT pane, is provided
with a pull-down (combo box) that lets you
select the display mode of the register, either
in hexadecimal, decimal or as an ASCII char-
acter. If you request a register to display its
contents in ASCII character mode, the con-
tents of the register will be displayed in a
standard 7-bit ASCII modulus over the con-
tents of the register. For example, if the re gi-
ster contains a value of 00C1h, the ASCII
character displayed will be a capital A. Fig-
ure 14 illustrates register mode selection .

The mode selection available for the output
regi ster (or output pane) will be useful when
you want to see character output. By default,

Figure 14: Setting a Register's Mode

 13

both the input and output registers are in ASCII mode. So any values that you type in
the input register will be interpreted as ASCII characters. For example, if your program
is asking for input and you enter 29 while the input register is in ASCII mode, only the
first character of your input will be recognized so the value stored in the accumulator will
be 32h, which is the ASCII value for the decimal numeral 2. If you wanted to place a
value of 2 into your program, you must set the register to decimal or hexadecimal mode.

The values you enter must be appropriate to
the register mode, or else you'll get a fatal
error message in the simulator, as you would
on a real system.

You will notice that when you change the
radix mode of the output, all of your output
immediately changes to the mode that you
have selected, just as it does for the other
registers. Figure 15 shows Figure 14 after
the hexadecimal mode has been selected.

Another useful feature of the output pane is
the ability to control how the output will be
placed in the pane. By default, when a value
is output, it is automatically followed by a
linefeed so that the output will be a single
column of characters, similar to how
characters print on an adding machine tape.

If you select the No Linefeeds option, as shown in Figure 16, your output will be placed
horizontally in the output pane, from left to right—with no automatic wrapping. When
the No Linefeeds option is turned on, you will need to programmatically provide your
own linefeeds order to advance the output to the next line.

Implementation note: Although we have tried to make the MARIE Simulator behave as
much like a real machine as possible, in the area of output and input we have deviated
from this ideal. Handling input and output at the machine level is an enormously tedious
task. Your authors feel that it is counterproductive to be wrestling with these issues
when you're first learning assembly language programming. When you're up for a chal-
lenge, try using only hexadecimal values for input and no linefeeds on your output!

Another output control option available to you enables you to clear the contents of the
output pane. Unlike the other six registers,
the contents of the output register (pane) are
retained until you explicitly clear it or load a
different program.

You can also print the contents of the output
register, but you may simply want to copy its
contents into a text-handling program. On
most systems, you can copy the contents of
the output area into your system clipboard.
The text can then be pasted into any program
that recognizes the clipboard.

 Figure 16: Setting Linefeeds

Figure 15: Reformatted Output

 14

A Few Words About the MARIE Assembler

Your book discusses each of MARIE's instructions i n detail, so we will not restate them
here. There are, however, a few things particular to the assembler that you'll need to
know before you begin writing your first program.

Assembler Directives

There are four directives that the MARIE assembler recognizes. The first of these is the
origination directive, ORG. As stated in Chapter 4, the ORG directive controls the
starting address of your program. If you do not include an ORG directive in your code,
the first address of your program is automatically 000h. (Note: On a real machine, you
could not count on this, which is why origination directives are used.) If you want the
first address of your program to be 010h, you would place the directive, ORG 010 at the
beginning of your program. The ORG directive must be the first statement of your
program, otherwise, the assembler will give you an error.

The other three directives enable you to put constants in your program as decimal
(DEC), octal (OCT), and hexadecimal (HEX) numbers. These constants must be valid for
the radix stated in the directive. For example, the statement, OCT 0900, will give you an
error.

Recall that MARIE's word size is 16 bits, and all constants are assumed to be signed
numbers. Therefore, the valid range of decimal constants is decimal –32,768 to 32,767
(8000h to 7FFFh).

Operands

As you learned in Chapter 4, all MARIE operands are addresses. If you use address
literals in your program, the valid values are 000h through FFFh, since MARIE has
4096 memory locations. These addresses must be given in hexadecimal, preceded by a
zero. So, if you wish to add the value at address F00 to the accumulator, you would
use the instruction, ADD 0F00. If you instead use the instruction, ADD F00, the
assembler will expect to find the label F00 somewhere in your program. Unless you
have such an address in your program, the assembler will give you an error.

You may prefer to use a symbolic labels instead of address literals. MARIE's labels are
case sensitive and can be of virtually any length (up to the limits placed on string
variables by the Java language). Be advised, however, that only the first 24 characters
of the symbol will print on the assembly listing and only the first 7 characters will be
visible in MARIESim's program monitor panel.

Code Construction

Assembly language source code files can be of any size, but you can have only as many
program statements as will fit in the MARIE memory. The program statement count
does not include comments or blank lines. We encourage you to use comments and
blank lines to make your code understandable to humans as well as the machine.

The only other restriction on your code is that it can begin with only the following types
of statements:

1. A comment followed by an origination directive and at least one imperative
statement

2. An origination directive and at least one imperative statement, or

 15

3. At least one imperative statement.

In other words, your program cannot begin with a DEC, OCT or HEX directive. If it
does, neither the assembler nor the simulator will care, but the literal values defined by
those directives will be interpreted as instructions by the machine, giving you results
that you may not have expected.

A similar problem will arise if you fail to include a HALT statement in your program, or
your HALT statement does not execute, and the program counter ends up pointing to
data. (How will the machine react if it tries to execute the statement HEX 0000? What
about HEX 0700?)

A Summary of File Types

Throughout this guide, we have mentioned the various file types that MarieSim uses for
various functions. For your reference, we have included a summary of these file types
in the table below.

File
extension Description Type Created by Used by

.mas Assembly code
source plain text MarieEditor, or

any plain text editor
MarieEditor and
Assembler

.lst Assembly listing
file plain text Assembler MarieEditor

(TextFileViewer)

.map Symbol table plain text Assembler MarieSim
(TextFileViewer)

.mex Executable code serialized Java
object Assembler MarieSim

.dmp Core dump plain text MarieSim MarieSim
(TextFileViewer)

Comments, Bugs, and Suggestions

The authors of your text and this simulator invite you to send us comments and
suggestions. We would also like to correct any bugs that you find. You may send your
findings and observations to: ECOA@jbpub.com

If you are reporting a bug, please supply as much information as you can with regard to
what the simulator was doing when the problem occurred. Also, attach the .mas file, if
the error occurred during program execution. Your comments will enable us to improve
this simulator so that all students can have a positive learning experience.

