
CSE100 Lecture03
Machines, Instructions, and Programs
Introduction to Computer Systems

M.A.Hakim Newton

Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka – 1000, Bangladesh

CSE, BUET, 2009



Machine
Programs

Executions

MARIE Machine
MARIE Description
MARIE Instruction Set

MARIE: An Example Machine

MARIE Simulator

◮ A really-inituitive and easy-to-use simulated computer.

◮ It helps quickly understand how computers really work

◮ The architecture has various fundamental features.

MARIE Architecture

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Machine
MARIE Description
MARIE Instruction Set

MARIE Inside Details

MainMemory holds data and program both. MARIE has 12-bit
memory addresses meaning 212 locations. Each
location contains 16-bit data; all data are signed
meaning the range is -32768 to +32767.

InstructionSet contains only 13 instructions. All instructions run in
the memory operand mode. So each instruction has
a 16-bit op-code – 4 bits for the instruction code and
12 bits for the memory address.

IntructionRegister (IR) internally holds the current instruction
op-code being exectued by the computer.

ProgramCounter (PC) internally holds the memory address of the
next instruction to be executed.

MemoryAddressRegister (MAR) internally holds the address of the
memory location to be read from or written into.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Machine
MARIE Description
MARIE Instruction Set

MARIE Inside Details . . .

MemoryBufferRegister (MBR) internally holds the data value to
be written into the memory or the data value read
from the memory.

Accumulator (AC) holds the data value to be operated on. This
register is available to the user during programming.

Input (IN) holds the data value to be read from an input
port/device. This register is available to the user
during programming.

Output (OUT) holds the data value to be written to an
output port/device. This register is available to the
user during programming.

ControlUnit is responsible for sending necessary (read/write)
signals timely to the memory and the registers. The
signals depend on the current instruction in the IR.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Machine
MARIE Description
MARIE Instruction Set

MARIE Instruction Set

Mnemonic Hex Description

Clear A Put all zeros in AC

Add X 3 Add the value of address X to AC

AddI X B Add indirect: Use the value at X as the
address of the data operand to add to AC

Subt X 4 Subtract the value of address X from AC

Input 5 Input a value from the keyboard into AC

Output 6 Output the value in AC to the display

Load X 1 Load the value of address X into AC

Store X 2 Store the value of AC at address X

Halt 7 Terminate program

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Machine
MARIE Description
MARIE Instruction Set

MARIE Instruction Set . . .
Mnemonic Hex Description

Jump X 9 Load the value of X into PC

JumpI X C Use X’s value as the address to jump to

JnS X 0 Store the PC at X and jump to X+1

Skipcond X 8 Skip next instruction on condition.
Bits 10 and 11 of X specify the condition.
If the two bits are 00, this translates to
”skip if the AC is negative”. If the two
bits are 01, this means ”skip if the AC
is equal to 0”. Finally, if the two bits
are 10, this translates to ”skip if
the AC is greater than 0”. For example,
Skipcond 800 if AC > 0,
Skipcond 400 if AC = 0,
and Skipcond 000 if AC < 0

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Assembly Program
MARIE Executable Program
MARIE Programming

MARIE Assembly Program

ORG 100 /Program will start at memory address 100
If, Load X /Load the first value

Subt Y /Subtract the value of Y, store result in AC
Skipcond 400 /If AC=0, skip the next instruction
Jump Else /Jump to Else part if AC is not equal to 0

Then, Load X /Reload X so it can be doubled
Add X /Double X
Store X /Store the new value
Jump Endif /Skip over the false, or else, part to end of if

Else, Load Y /Start the else part by loading Y
Subt X /Subtract X from Y
Store Y /Store Y-X in Y

Endif, Halt /Terminate program (it doesn’t do much!)
X, Dec 12 /Value of the variable X
Y, Dec 20 /Value of the variable Y

END

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Assembly Program
MARIE Executable Program
MARIE Programming

MARIE Object/Executable Program

ORG 100 /Program will start at memory address 100
100 110C If, LOAD X /Load the first value
101 410D SUBT Y /Subtract the value of Y, store result in AC
102 8400 SKIPCOND 400 /If AC=0, skip the next instruction
103 9108 JUMP Else /Jump to Else part if AC is not equal to 0
104 110C Then, LOAD X /Reload X so it can be doubled
105 310C ADD X /Double X
106 210C STORE X /Store the new value
107 910B JUMP Endif /Skip over the false, or else, part to end of if
108 110D Else, LOAD Y /Start the else part by loading Y
109 410C SUBT X /Subtract X from Y
10A 210D STORE Y /Store Y-X in Y
10B 7000 Endif, HALT /Terminate program (it doesn’t do much!)
10C 000C X DEC 12 /Value of the variable X
10D 0014 Y DEC 20 /Value of the variable Y

END

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Assembly Program
MARIE Executable Program
MARIE Programming

Programming for MARIE Machines

How to write programs?

◮ Write the assembly program using the mnemonics.

◮ Translate the assembly program into op-codes (numbers).

How to obtain a translator program?

◮ Initially there is no translator/assembler program..

◮ Your first program should be a small assembler.

◮ Translate the assembler program completely manually.

◮ This time write probably a large assembler program.

◮ Assemble the large assembler using the small assembler.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Assembly Program
MARIE Executable Program
MARIE Programming

High Level Programming for MARIE

A High Level Program

X = 5
Y = 7
Z = X + Y

A Low Level Program

Load X
Add Y
Store Z

X, Dec 5
Y, Dec 7
Z, Dec 0

High Level to Executable Programs

◮ Write a high level program; which is easier than writing an
assembly program. Currently no high level language exists.

◮ Using a compiler program, compile the high level program into
an assembly program. Currently no compiler exists.

◮ Using an assembler program, assemble the assembly program
into an executable program. Currently an assembler exists.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Program Execution
Running vs Tracing

MARIE Program Execution

Program Loading for Execution?

◮ The executable program is copied to the memory at the
memory location specified in the assembly program.

◮ Register PC is set with the first memory address of the
program and the system clock starts running.

How instructions are executed by the Control Unit?

◮ The instruction at the memory location determined by the
current value of the PC is fetched to IR.

◮ The value of the IR is then decoded and the meaning of the
instruction is understood.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Program Execution
Running vs Tracing

MARIE Program Execution . . .

How instructions are executed by the Control Unit? . . .

◮ The value of the PC is incremented so that it now holds the
address where the next instruction will be fetched from.

◮ Depending on the instruction in the IR, other read and write
signals are sent to the registers to have the desired result.

◮ When the current instruction execution is finished, the next
cycle begins which fetch, decode, and execute the next
instruction in the memory.

◮ This continues until the HALT instruction is executed.

Hakim Newton CSE100 Lecture03



Machine
Programs

Executions

MARIE Program Execution
Running vs Tracing

Program Execution: Running vs Tracing

Running vs Tracing a Program

◮ Running means executing all instructions at one time.

◮ Tracing means executing only one instruction at a time.

Tracing or Single Stepping for Debugging)

◮ Assemble can detect only syntactical bugs or mistakes.

◮ For semantical bugs, we need to trace the program.

◮ An example semantical bug is Subt X instead of Add X.

◮ To catch this bug, we need to examine values of the registers
and memory addresses after every instruction.

Hakim Newton CSE100 Lecture03


	Machine
	MARIE Machine
	MARIE Description
	MARIE Instruction Set

	Programs
	MARIE Assembly Program
	MARIE Executable Program
	MARIE Programming

	Executions
	MARIE Program Execution
	Running vs Tracing


