

MARIE has a very simple, yet powerful, instruction set. The instruction set

architecture (ISA) of a machine specifies the instructions that the computer can
perform and the format for each instruction. The ISA is essentially an interface
between the software and the hardware.

We mentioned previously that each instruction for MARIE consists of 16 bits:

� The most significant 4 bits, bits 12–15, make up the opcode that specifies
the instruction to be executed (which allows for a total of 16
instructions).

� The least significant 12 bits, bits 0–11, form an address, which allows for
a maximum memory size of 2-1. The instruction format for MARIE is
shown in Figure 2.2.

Most ISAs consist of instructions for:

� Processing data.
� Moving data.
� Controlling the execution sequence of the program.

MARIE’s instruction set consists of the instructions shown in Table 2.2.

Table 2.1: MARIE’s Instruction Set

2.2 THE MARIE Instruction Set Architecture

Figure 2.2: MARIE’s Instruction Format

2.2.1 Instruction set illustration

2.2.1.1The Load instruction

� Allows us to move data from memory into the CPU (via the MBR and the

AC).
� All data (which includes anything that is not an instruction) from

memory must move first into the MBR and then into either the AC or the
ALU; there are no other options in this architecture.

Notice that
� The Load instruction does not have to name the AC as the final destination;

this register is implicit in the instruction. Other instructions reference the AC
register in a similar fashion.

� A transfer from one register to another always involves a transfer onto the
bus from the source register, and then a transfer off the bus into the
destination register. However, for the sake of clarity, we do not include these
bus transfers, assuming that you understand that the bus must be used for
data transfer.

2.2.1.2 The Store instruction

�Allows us to move data from the CPU back to memory.

2.2.1.3 The Add and Subt instructions

● Add and subtract, respectively, the data value found at address X to or from
the value in the AC. The data located at address X is copied into the MBR where
it is held until the arithmetic operation is executed.

2.2.1.4 Input and Output

� Allow MARIE to communicate with the outside world.
� Input and output are complicated operations. In modern computers, input

and output are done using ASCII bytes. This means that if you type in the
number 32 on the keyboard as input, it is actually read in as the ASCII
character “3” followed by “2.” These two characters must be converted to
the numeric value 32 before they are stored in the AC.

●We are glossing over a very important concept:
How does the computer know whether an input/output value is to be treated as
numeric or ASCII, if everything that is input or output is actually ASCII? The
answer is that the computer knows through the context of how the value is used.

In MARIE, we assume numeric input and output only. We also allow values to be
input as decimal and assume there is a “magic conversion” to the actual binary
values that are stored.

2.2.1.5 The Halt command

● causes the current program execution to terminate.

2.2.1.6 The Skipcond instruction

� Allows us to perform conditional branching (as is done with “while” loops

or “if” statements).
� When the Skipcond instruction is executed, the value stored in the AC

must be inspected. Two of the address bits (let’s assume we always use
the two address bits closest to the opcode field, bits 10 and 11) specify
the condition to be tested.

Table 2.3

Bit 11 Bit 10 condition
0 0 Skip if the AC is negative
0 1 Skip if the AC is equal to 0
1 0 Skip if the AC is greater

than 0
1 1 Nothing

� By “skip” we simply mean jump over the next instruction. This is

accomplished by incrementing the PC by 1, essentially ignoring the
following instruction, which is never fetched. The Jump instruction, an
unconditional branch, also affects the PC.

� This instruction causes the contents of the PC to be replaced with the
value of X, which is the address of the next instruction to fetch.

� We wish to keep the architecture and the instruction set as simple as
possible. Once you gain familiarity with how the machine works, we will
extend the instruction set to make programming easier.

Let’s examine the instruction format used in MARIE.

o Suppose we have the following 16-bit instruction:

 Load address 3

o The leftmost 4 bits indicate the opcode, or the instruction to be
executed.

o 0001 is binary for 1, which represents the Load instruction.
o The remaining 12 bits indicate the address of the value we are loading,

which is address 3 in main memory.
o This instruction causes the data value found in main memory, address

3, to be copied into the AC.

 Consider another instruction:

ADD address 13

o The leftmost four bits, 0011, are equal to 3, which is the Add instruction.
o The address bits indicate address 00D in hex (or 13 decimal). We go to

main memory, get the data value at address 00D, and add this value to
the AC.

o The value in the AC would then change to reflect this sum.

 One more example follows:

SKIP if AC >=o

o The opcode for this instruction represents the Skipcond instruction.
o Bits ten and eleven (read left to right, or bit eleven followed by bit ten)

are 10, indicating a value of 2. This implies a “skip if AC greater than or
equal to 0.” If the value in the AC is less than zero, this instruction is
ignored and we simply go on to the next instruction. If the value in the AC
is greater than or equal to zero, this instruction causes the PC to be
incremented by 1, thus causing the instruction immediately following this
instruction in the program to be ignored (keep this in mind as you read
the following section on the instruction cycle).

 We will be writing programs using this limited instruction set. Would you

rather write a program using the commands Load, Add, and Halt, or their
binary equivalents 0001, 0011, and 0111? Most people would rather use the

instruction name, or mnemonic, for the instruction, instead of the binary value
for the instruction. Our binary instructions are called machine instructions. The
corresponding mnemonic instructions are what we refer to as assembly language
instructions. There is a one-to-one correspondence between assembly language
and machine instructions. When we type in an assembly language program (i.e.,
using the instructions listed in Table 2.2),
we need an assembler to convert it to its binary equivalent. We discuss
assemblers in next sections.

