
Cryptography 

By Jeff’s son Joshua Zachariah for grade 11 

Email, the internet, online banking, online documents, and the like allow lots of confidential 

information to be transferred. To this end encryption has been invented. The two main uses of 

encryption are identifying oneself and sending messages. Instead of looking at many applications 

of cryptography, this report will outline the basic math used in the most common encryption 

method, RSA.  Before doing this, we will have to learn about finite fields and before learning 

about finite fields, we will have to consider the extended GCD algorithm. 

The goal of Cryptography is the following. I choose a private key that I keep secret and a public 

key I share with the world. Someone wanting to send a message to me uses the public key to 

encode his message.  I am able to decode the message because I know the private key. Anyone 

intercepting the massage, but not knowing this private key is unable to learn anything useful. In 

the case of identification I can prove who I am by decoding a message encoded with the public 

key by using the private key. Your password is effectively this private key. 

All encryption methods are based on what is known as one-way-functions, that is functions 

y=f(x) such that computing y from x is easy but learning x from y is computationally very hard. 

RSA, for example is based on the fact that multiplying two primes p and q together to give N is 

easy, but factoring n to retrieve p and q is very hard. Of course not impossible because one could 

simply check whether 2, 3, 4, 5,… sqrt(N) divides into N. However,  if N is a 100 digit number 

than multiplying p and q would only take 100log(100) = 700 operations while factoring would 

take about sqrt(10
100

) which is more than the number of atoms in the universe.. 

Extended GCD Algorithm  

The standard GCD algorithm finds the greatest common factor of two numbers. For example 

GCD(6,4)=2. The algorithm uses the fact that GCD(a,b) = GCD(b,a%b). Hence, replacing a with 

b and b with a%b makes our numbers smaller while maintaining the fact that GCD(a,b) is the 

answer we want. The base case  is that if b=0 then the GCD(a,b)=a. For example, GCD(76,64) = 

GCD(64,12) = GCD(12,4) = GCD(4,0) = 0. In the extended, GCD algorithm we get input (a,b) 

and get output (s,t,g) so that sa+tb=g.  

Finite Fields 

A field is like another Universe where the laws of math work slightly different. For example in a 

universe adding could work like this: 𝑎 + 𝑏 ≡  𝑎 + 𝑏 %𝑝. The rules of a field are not arbitrary 

though and fall under certain restrictions. 

Key rules for a field: A universe of objects U and operations +,-,*, and / defined on them. 

 There is a zero such that a+zero = a and a*zero = zero 

 There is a one such that a*one = a 

 Given a, there is an additive inverse b such that a+b = zero. We write b = -a. 

 Given a, there is a multiplicative inverse b such that a*b=1. We write b = a
-1

.  



 Communicative: a+b=b+a 

 Associative: a+(b+c) = (a+b)+c 

 Distributive: a*(b+c) = a*b + a*c 

A Finite Field is what its name implies, it’s a field that has a set size and we can’t go beyond 

that.Our Finite “Universe” will be  U= {0, 1, 2, … p-1} where p is a prime number. The 

advantages to such a system is that because this is a finite set, you can represent a number 

accurately unlike reals. Finite Fields also don’t “overflow” (they don’t get to big). And finally a 

finite field can divide unlike an integer without the possibility of reals. In our Universe we need 

to define +, -, ×, ÷ and to this we use Mod. In our Universe 𝑎 + 𝑏 ≡ 𝑎 + 𝑏 % 𝑝 and 𝑎 × 𝑏 ≡ 𝑎 ×
𝑏  % 𝑝.  

One issue that can be thought about is how to compute 𝑎𝑏 ≡ 𝑎𝑏  % 𝑝 quickly when 𝑎𝑏  is too big 

to fit into our computer. . How we go about this is we have an algorithm that says  

Power (a, b) { 

 If (b = 0) 

  Return 1 

 Else  

  r = power (a, b/2) 

  If (b is even) 

   Return (𝑟2 % p) 

  Else  

   Return (𝑟2 × 𝑎 % p) 

} 

 

How this works is that is that we know that 𝑎𝑏 = 𝑎𝑏/2𝑎𝑏/2 = r
2
. This doesn’t work though if b is 

odd because we don’t want to use reals. So what we do is we round b/2 down and by doing this 

loose an accuracy of one. To remedy, this we say 𝑎𝑏 = 𝑎𝑏/2𝑎𝑏/2𝑎 so that we gain back the one 

we lost. Therefore if b is odd we return (𝑟2 × 𝑎).  

 

Another thing to think about how to find the inverse 𝑎−1 of a given element: 𝑎. Dividing 1/𝑎 

will not work because we want to stay away from reals. We require that, 𝑎−1 ≡ 𝑠 such that 

𝑎 × 𝑠 ≡ 1 % 𝑝. For example 2 × 𝑠 ≡ 1 % 7 where s=4.  To find s, we use the extended GCD 

algorithm (see above) which states that when given (a,p) it will return (s,q,g) such that 𝑎𝑠 +
𝑝𝑞 = 𝑔 = GCD(a,p). In our case p is prime so the g=GCD(a,p)=1 (unless 𝑎 ≡ 0 % 𝑝). Because 

𝑎𝑠 plus some integer number of p’s equals one, it follows that 𝑎 × 𝑠 ≡ 1 % 𝑝 as required.   

 

In conclusion, the integers mod p forms a finite field. In contrast, the integers mod n is not a field 

if n=pq. The easiest way to see this is that p is not zero and q is not zero but 𝑝 × 𝑞 ≡ 0 % 𝑛. 

These are called zero divisors and cause havoc on our math universe. This means that every 

number does not have an inverse mod n. But some of them do. Suppose GCD(a,n) = 1. It may be 

that neither a nor n are prime, but with respect to each other they are what we call co-prime. In 

this case, we can still find  𝑎−1 ≡ 𝑠 such that 𝑎 × 𝑠 ≡ 1 % 𝑛.  Again the extended GCD 

algorithm  returns (s,q,g) such that 𝑎𝑠 + 𝑝𝑛 = 𝑔 = GCD(a,p) 1. Because 𝑎𝑠 plus some integer 

number of n’s equals one, it follows that 𝑎 × 𝑠 ≡ 1 % 𝑛 as required.   

 



 

 

Fermat’s little theorem 
 

m
(p-1)

 = 1 mod p 

if p is a prime 

 

The intuition is that if one starts with 1 and keeps multiplying by m, you get different numbers  

1, m, 𝑚2, 𝑚3 … All of these need to be in our universe (excluding zero) {1,2,3, …, p-1}. There 

are only p-1 of these so you must repeat. After p-1 of them you get back to 1, giving (as 

required) that m
p-1

 = 1 mod p. A stranger version that we will need for RSA is that m
(p-1)(q-1)

 = 1 

mod pq. 

 

RSA 
RSA is based on the fact that prime factoring is very hard to compute. The standard players are 

called Alice, Bob, and Eve. Alice chooses two prime numbers p and q. From these she computes 

n=pq, e (for encode) and d for (decode). The public key <n,e> she tells the world. The private 

key <n,d> she keeps secret. When Bob wants to send a message m to Alice but he doesn’t want 

the message to be seen so he encodes the message Code=Encode (m, <n,e>)  using Alice’s 

public key. Alice, can use her private key to decode it, m=Decode (Code, <n,d>). Eve 

(eavesdropper) knows the public key <n,e> and learns the code by eavesdropping. However, the 

belief is that she can’t learn anything useful about Bob’s message m without effectively factoring 

n=pq which requires far too much computation time than she has. 

 

Let us now do the math in more detail. Alice can find to 100 digit primes p and q randomly 

choosing integers and testing to see if they are prime. Then she computes n=pq and   = (p −
1)(q − 1). She chooses some e for which GCD(e,) = 1. Recall that GCD e, = 1 allows 

Alice to use the Extended GCD algorithm (above) to find d such that de = 1- t ≡ 1 %.  As 

said, she makes <n,e> public and she keeps <n,d> private. Bob encodes the message (m) with 

c=Encode (m, <n,e>) =𝑚𝑒% 𝑛 and sends her c. When Alice decodes the message with 

m=Decode (Code, <n,d>) = 𝑐𝑑%𝑛. What is required now is proving that Alice does in fact 

accurately recover the message m. 

 

What she decodes is  

m’ = c
d
 = (m

d
)
e
  = m

de
      (because de≡1% and de=1+t) 

= 𝑚1+𝑡%𝑛 

= 𝑚 × (𝑚𝑡)𝑡%𝑛       (Recall Fermat’s little theorem (see above) m
(p-1)(q-1)

≡1 mod pq.  

                                Also recall that   =(p-1)(q-1)  and n=pq) 

 = 𝑚 × 1𝑡%𝑛   =  m%𝑛   

 



The third and final part of this story is that if Eve knows n,e, and c and can find m then through 

some algorithm (I don’t know what it is) she can find p and q. but because of contra positive if 

she can’t find p and q (which we believe she can’t) she can’t find m.      

 

Conclusion 
The computer age has brought lots of freedoms but more freedoms means leaving us open  to 

more security breaks. Luckily computers are able to quickly do the mathematics we need so that 

we can secure this given freedom without being quick enough to allow Eve to break this security. 


