
EECS 4111/5111/6111 Computability
Jeff Edmonds

Assignment 6: NP & Reductions
Due: One week after shown in slides

First Person: Second Person:
Family Name: Family Name:
Given Name: Given Name:
Student #: Student #:
Email: Email:

Guidelines:

• You are strongly encouraged to work in groups of two. Do not get solutions from other pairs. Though
you are to teach & learn from your partner, you are responsible to do and learn the work yourself.
Write it up together. Proofread it.

• Please make your answers clear and succinct. helpful hints.

• Relevant Readings:

– NP-Slides

– NP from “Thinking About Algorithms Abstractly”

• This page should be the cover of your assignment.

Problem Name
Max
Mark

1 Software Packages 10

2 NP-Complete Cards 10

3 NP-Complete Vertex Cover 10

4 NP-Complete Bounded Witness 10

5 Purpose of steps 10

EECS 4111/5111/6111 Computability
Jeff Edmonds

Assignment 6: NP & Reductions
Due: One week after shown in slides

1. (a) There is a collection of software packages S1, . . . , Sn which you are considering buying. These
are partitioned into two groups. For those i ∈ N ⊆ [n], the costs of buying it out ways the
benefits and hence it effectively costs you a given amount bi ≥ 0 to buy it. For those j ∈ P ⊆ [n],
the benefits out way the costs of buying it and hence it effectively costs you a given amount
bj ≥ 0 to not buy it. Some of these packages rely on each other; if Si relies on Sj , then you will
incur an additional cost of a〈i,j〉 ≥ 0 if you buy Si but not Sj . Provide a polytime algorithm
to decide the subset S ⊆ [n] of S2, . . . , Sn that you should buy. The cost of your solution is
cost(S) =

∑

i∈S∩N bi+
∑

j∈S∩P
bi+

∑

i∈S,j∈S
a〈i,j〉. Hint: Do not design a new algorithm but do

a reduction to max flow - min cut similar to that done for matching the boys and girls.

(b) In the old version, for each i, you will gain an overall benefit of bi if you acquire package Si.
Possibly bi is negative. How does this effect the reduction (beyond taking the absolute value).

2. NP-Completeness

(a) Is Clique ≤poly 3-Clique true? Is 3-Clique ≤poly Clique true? Give one sentence for each about
how you know.

(b) Consider the following puzzle.
The input consists of a collection of cards as indicated in the
figure and a box to place them in. The box and each card
has r rows and two columns of positions in the same places.
The box contains an Xs for each row of the left column. In
each card at each of these positions (left and right), there is
either a hole punched out or there is not. Each card must
be placed in the box either face up or flipped over left to
right. It has a notch at its top which must be at the top of
the box.

X

X

X

X

X

X

X

X

X

First of many cards
The other sideOne side

Second of many cards
One side The other sideBox

Consider some row in some card. Suppose its left position has a hole but its right position does
not. Putting the card in face up does not cover the X in the box of this row, because the X is on
the left and the hole does not cover it. Putting the card in flipped over, however, does cover the
X. The goal is to cover each and every X in the box. A solution specifies for each card whether
to flip the card or not. A solution is valid if it covers all the Xs. Recall, that all the cards are
stacked in the box. So saying that each X is covered amounts to saying that for each X, there is
at least one of the cards that is flipped in a way that will cover the X.

Prove that Card is NP-Complete by reducing it to/from Clause-SAT. Be sure to think about each
of the 12 steps. You are to write up steps 0, 5, 6, and 7. For each of these have a clear paragraph
with pictures.

The problem Clause-SAT is given a set of clauses where each clause is the OR of a set of literals
and each literal is either a variable or its negation. The goal is know whether you can set each
variable to true or false so that each clause is satisfied.

0) Pcard ∈ NP:

5) InstanceMap:

6) SolutionMap: Map a potential solution Scard of the card problem to a potential solution
SClause−SAT of Clause-Sat.

7) Valid to Valid: Assume that Scard is a valid solution, i.e. every rows r has some card c′ that
covers the left X in that row. Our goal is to prove that SClause−SAT is a valid solution, i.e.
every clause c has some variable x that satisfies it.

∀r ∃c′ covers(r, c′) ⇒ ∀c ∃x satisfies(c, x)

Such a proof is reminiscent of that in Assignment 0 Quantifiers Question 2c.

2

(c) Repeat the last question except for the following change.

The box now has Xs in both the left and the right columns and the cards must cover all of
these Xs. Hint: Remember that you are able to create the set of cards and you can choose
to create one extra card. What is that card that you create? What changes do you have
to made to steps 6 and 7 above?

X X

XX

X X

XX

X X

X X

XX

X X

XX

Box

3. NP-Completeness: The problem Vertex Cover is given an instance IV C = 〈G, k〉 where G is an undi-
rected graph and k is integer k. A solution SV C is a subset of the nodes of G. It is valid if every edge
has at least one of it’s nodes is in SV C and |SV C | ≤ k. Prove that V C is NP-Complete by reducing it
to/from 3-SAT. Be sure to think about each of the 12 steps. You are to write up steps 0, 5, 6, and 7.
For each of these have a clear paragraph with pictures.

0) PV C ∈ NP:

5) InstanceMap:

6) SolutionMap: Map a potential solution SV C of the card problem to a potential solution S3−SAT

of Clause-Sat.

7) Valid to Valid:

Hint: Given the clauses (a or ¬b or c) and (¬a or ¬b or ¬c) consider the following graph.

4. Both NP-complete and acceptable-complete problems have a witness that a fairy godmother could
provide so that you could verify in poly-time that a given instance is a yes instance. The difference
is that for the NP-complete problem, this witness can’t be more than polynomially bigger than the
instance itself, while the witness for the acceptable-complete (uncomputable) problem can be arbitrarily
big. Suppose now that you took an acceptable-complete problem and changed it so that an instance
I is a yes instance iff it has a polynomial sized witness. The intuition is that the resulting problem
would automatically become NP-complete. This problem examines this idea.

A non-deterministic Turing machine is the same as a deterministic one, except that its moves are
not deterministic. In a deterministic TM, the transition function δ(qi, c) = 〈qj , c

′, right〉 states that if
the TM is in state qi and sees the character c under its head, then it changes to state qj , writes the
character c′, and moves the head right. In a non-determinist TM, this transition function is changed
to a transition relation δ. If both tuples 〈qi, c; qj , c

′, right〉 and 〈qi, c; qk, c
′′, left〉 are in the relation δ,

then when the TM is in state qi and sees the character c under its head, then it has a choice whether
to change to state qj , write the character c′ and move the head right or to change to state qk, write
the character c′′ and move the head left. A non-deterministic TM M on input I is said to accept its
input if there exists an accepting computation.

Note that just as the problem Det-Accept = {〈M, I〉 | the deterministic TM M accepts the input I} is
acceptable but uncomputable, so is the problem NDet-Accept = {〈M, I〉 | the non-deterministic TM
M accepts the input I}.

3

(a) Give a non-deterministic TM MSAT that takes an and/or/not circuit C as input and accepts it
iff it has a satisfying assignment 〈x1, . . . , xn〉. If C has n input wires xi and N gates, what is the
running time of your TM?

(b) Prove that the problem NDet-Accept’ = {〈M, I〉 | the non-deterministic TM M accepts the input
I in at most n3 time } is NP-complete. Reduce this problem to SAT . Do the key steps.

(c) Recall the Post correspondence problem, PCP, defined in the slides. The input is a finite col-
lection of dominoes P = {

(

b
ca

)

,
(

a
ab

)

,
(

ca
a

)

,
(

abc
c

)

}. A solution is a finite sequence of the domi-
noes with repeats so that the combined string on the top and on the bottom are the same,
S =

(

a
ab

)(

b
ca

)(

ca
a

)(

a
ab

)(

abc
c

)

}. The slides prove that this problem is undecidable by reducing it to
the problem Det-Accept {〈M, I〉 | the deterministic TM M accepts the input I}. What would
change if the reduction was to non-deterministic TM instead of deterministic TMs?

(d) Change the PCP problem as stated to PCP’ in which the dominoes in the input set can be
repeated as many times as the user likes but unlike before, the solutions can use each domino as
most once. Prove that this new version is NP-complete. Reduce PCP’ to NDet-Accept’.

5. Reductions: The purpose of this question is to learn to appreciate why there are so many steps when
doing a reduction.

0) Poracle ∈ NP: Prove that problem Poracle is in NP.

5) InstanceMap: Define a polynomial time mapping Ioracle = InstanceMap(Ialg).

6) SolutionMap: Define a polynomial time algorithm mapping each potential solution Soracle for
Ioracle to a potential solution Salg = SolutionMap(Soracle) for Ialg.

7) Valid to Valid: Prove that if Soracle is a valid solution for Ioracle, then Salg =
SolutionMap(Soracle) is a valid solution for Ialg.

8) ReverseSolutionMap: Define a polynomial time algorithm mapping each potential solution S′
alg

for Ialg to a potential solution S′
oracle = ReverseSolutionMap(S′

alg) for Ioracle.

9) Reverse Valid to Valid: Prove that if S′
alg is a valid solution for Ialg, then S′

oracle =
ReverseSolutionMap(S′

alg) is a valid solution for Ioracle.

Consider the problem Block whose instance 〈s, k〉 is a 01-string s and an integer k. Such an instance
is a yes instance if it has a solution consisting of a block si, si+1, . . . sj of all ones whose length is k.

(a) (2 marks) Is this Block problem in NP? If so, what would this mean?

(b) (2 marks) Is this Block problem is NP-Complete? What would it mean?

(c) (2 marks) Your home work is to prove that Block is NP-complete by proving that 3-SAT ≤ploy

Block. You are to work in pairs. Your partner took on step 5 as follows. Palg is 3-SAT. As
an example, I3-SAT = (x or y or z) AND . . . AND (u or v or w) is an instance of 3-SAT. Given
such an instance, he maps it to an instance IBlock = 〈s, k〉 where s = 000 . . . 0 is the string
consisting of n zeros and k is 5. Besides a few hints which he ignored, he noted that he did in
fact meet the formal requirements of step 5. Being a bit of a know it all, your partner thought
steps 8 and 9 are silly and hence decided to skip them. He left you the task of doing steps 6 and
7. Carefully, review what these steps are and complete them if you can. Careful.

(d) Because your previous partner dropped out of school, you got a new one. Having learned, he took
a new approach. He decided to map an instance I3-SAT of 3-SAT to an instance IBlock = 〈s, k〉
where s = 111 . . . 1 is the string consisting of n ≥ 5 ones and k is 5. He went on to do steps 6
and 7 as follows. Given a solution si, si+1, . . . sj to IBlock, he instructed how to construct a valid
solution to I3-SAT as follows. For each of the m clauses (x or y or z) of I3-SAT choose one of
the variables. If, like x, it is not negated in the clause then set the variable to true. If, like y,
it is negated, then set it to false. Either way the clause is satisfied. Doing this for each clause,
satisfies each clause. Hence, the assignment obtained is a valid assignment of the variables. This
new partner learned (from the guy who dropped out) the importance of doing steps 8 and 9 so
he left them for you to do.

4

i. (2 marks) Carefully, review what these steps are and complete them if you can. Careful.

ii. (2 marks) Are you happy with your new partner? Did he follow steps 5, 6, and 7 correctly?
Explain.

5

