
York University

CSE 4111 Fall 2009
Instructor: Jeff Edmonds

Steps Reductions-Halting

1. Let P = {〈“M”, I〉 | TM M prints “Hi” on input I at some point in its computation },
i.e. computational problem P says “yes” on inputs 〈“M”, I〉 in this set and says “no” on inputs not in
this set.
We will prove that P is undecidable by proving: Halting ≤compute P .
Suppose I have an oracle that decides P .
Here is an algorithm that will decide the Halting Problem.
Given an input 〈“M”, I〉,
I construct another TM MM .
This TM has M hard wired into it.
MM on input I does the following.

Run M on I suppressing any out.
Print (“Hi”)

I give 〈“M”, I〉 to my oracle and if the oracle says “yes”, then I say “yes” and if it says “no”, then I
say “no”.
I prove that my algorithm works as follows.
Suppose M halts on I.
Then MM then completes its simulation of M on I

and goes on to print “Hi”.
Then the oracle says “yes”.
Then I say “yes”.
Hence I gave the correct answer.
Suppose M runs forever on I.
Then MM runs forever in its simulation of M on I and as such never prints “Hi”.
Then the oracle says “no”.
Then I say “no”.
Again I gave the correct answer.
This proves that if P is decidable, then the Halting Problem is decidable.
However, the Halting Problem is not decidable and hence P is not decidable.
Note that you cannot directly use Rice’s Theorem to prove this, because membership of “M” in P

does not depend on the language M accepts but on whether M outputs “Hi”.

2. Let P = {“M” | The language L(M) accepted by M is regular },
i.e. There exists a FSA A such that for all inputs M(I) = A(I)
and there is a regular expression like 0∗1∗ that accepts this language L(M).
We will prove that P is undecidable by proving: Halting ≤compute P .
Suppose I have an oracle that decides P .
Here is an algorithm that will decide the Halting Problem.
Given an input 〈“M”, I〉,
I construct another TM M〈M,I〉.
This TM has M and I hard wired into it.
M〈M,I〉 on input I ′ does the following.

If I ′ has the form 0n1n, then M〈M,I〉 halts and accepts.
else M〈M,I〉 simulates M on I and halts and accept if M halts.

I give “M〈M,I〉” to my oracle and if the oracle says “yes”, then I say “yes” and if it says “no”, then I
say “no”.
I prove that my algorithm works as follows.
Suppose M halts on I.
Then M〈M,I〉 halts and accepts every input I ′.
Then the language L(M) accepted by M contains every string.

1



This language is regular as demonstrated by the regular expression {0, 1}∗.
Then the oracle says “yes”.
Then I say “yes”.
Hence I gave the correct answer.
Suppose M runs forever on I.
Then M〈M,I〉 halts and accepts strings I ′ of form 0n1n, but runs forever on all other strings.
This language L(M) = 0n1n is known not to be regular.
Hence, the oracle says “no”.
Then I say “no”.
Again I gave the correct answer.
This proves that if P is decidable, then the Halting Problem is decidable.
However, the Halting Problem is not decidable and hence P is not decidable.
Alternatively, you could directly use Rice’s Theorem to prove.
For every pair of TMs, if L(M1) = L(M2) then P (M1) = P (M2).
There are TM for which P (M) is yes and there are TM for which P (M) is no.

2


