CSE 3101 Design and Analysis of Algorithms

Meta Steps for Unit 2
Jeff Edmonds

This contains the most important concepts in this unit. You will not be able to pass this course without
knowing and understanding these. The steps provided must be followed on all assignments and tests in this
course. Do not believe that because you know the material, you can answer the questions in your own way.
Though this material is necessary, it does not contain everything that you need. You must read the book,
go to class, review the slides, and ask lots of question.

Chapters 8-12: Recursion & Friends

People do have a hard time getting recursion. But then a light goes off and they get it. I always feel that
it is a matter of them trusting the friends and quite frankly trusting me. (See page 104 of “How to Think
about Algorithms”.)

The Steps: The following are the steps that needs to be considered (but not necessarily written) when
you are designing a recursive algorithm within the friends paradigm. (Be sure that the code that you
produce does not indicate that you missed any of these steps.)

1.

Carefully write the specifications for the problem.

(a) Precondition: Define the set of legal instances (inputs)
To be sure that we solve the problem for every legal instance.
So that we know what we can give to a friend.
(b) Postcondition: Required output
So that we know what is expected of us.
So that we know what we can expect from our friend.

2. Focus on only one step. Do not trace out the entire computation.

3. Consider your input instance

(a) Remember that you know nothing other than what is given to you by the preconditions.
(b) Be sure each path in your code returns what is required by the postcondition.

If your instance is sufficiently small, solve it yourself as a base case.

. Construct one or more subinstances:

(a) It must be an instance to the same problem, i.e. meet the precondition.
(b) It must be smaller according to some definition of size.

6. Assume by magic (strong induction) your friends give you a correct solution for each of these.

7. Use their solutions for their subinstances to help you find a solution to your own instance.

8. Do not worry about who your boss is or how your friends solve their instance. No global variable

10.

or effects (unless I say so)

. If you want more from your friends, change the pre and/or postconditions, but

(a) Be sure to document it.
(b) Be sure you and all of your friends are using the same pre/postconditions.
(¢) Be sure to handle these changes yourself.

The code does not need to be much more complex than the following.
algorithm Alg(a,b,c)
(pre—cond): Here a is a tuple, b an integer, and ¢ a binary tree.
(post—cond): Outputs z, y, and z which are useful objects.
begin
if( (a, b, c) is a sufficiently small instance) return( ([0], 0, emptytree) )
(@sub1; bsub1; Csup1) = a part of (a, b, c)
(Tsubl; Ysubl; Zsubt) = Alg((@sub1; Dsubl; Csub1))
(@sub2, boubz, Coupa) = a different part of (a, b, c)
(Tsub2; Ysub2s Zsubz) = Alg({asub2; bsub2, Csub2))
(z,y,2) = combine (Tsup1, Ysubl, Zsub1) and (Tsub2, Ysub2, Zsub2)
return( (z,y, z) )
end algorithm



11. Give and solve the recurrence relation for the Running Time of this algorithm.

Formal Proof: The following are the formal steps similar to those for an iterative algorithm needed to
prove a recursive program correct.

Precond = Precond: Prove that if your instance meets the preconditions, then each of your subin-
stances also meet the preconditions.

Smaller or Basecase: Prove that if your instance is sufficiently small according to some measure of
your choosing, then it is a base case in which case you do not recurse. Otherwise, the subinstances
that you give to you friends are (according to this same measure) smaller than your instance. Also
your instance has a finite size.

Postcond = Postcond: Prove that if your friend’s solutions meet the postconditions for their subin-
stances, then your solution meets the postcondition for your instance.

Prove that your solution for the base case meets the postconditions.

Running Time using Recurrence Relations: Let a denote the number of friends that you have.
Let b be such that each friend is given an instance of size ¥, where n is the size of your instances.
Let ¢ be such that the time that you personally spend is O(n¢). Solve the recurrence relation

T(n) = aT(}) +O(n°). If llzi‘; > ¢, then the running time is dominated by the bases cases and

log a
is T(n) = O(ntoet). If llzi‘; < ¢, then the time is dominated by the work in the top stack frame

and is T'(n) = O(n°). If 112?; = ¢, then all the levels require about the same amount of time and

the the total time is O(nclogn).
Trees: A common example is recursion on trees.

Subinstances: If your input is a binary tree, then surely you will have two friends, one to which you
give your left subtree and one to which you give your right subtree.

If each node may have many children, then given a tree, a stack frame simply loops over the
children of the root.

Wall Around Subtrees: To save yourself some time, you must trust your two friends. Imagine
building a big wall around your two subtrees. The only information the friends have about the
root or about the other subtree is what you pass them in their subinstances. The only information
that you have is the root and what your two friends pass back to you in their solutions. From this
information, and this alone, you have to be able to solve the given problem for the entire tree. In
addition to your friends solving the given problem for the subtrees, what additional information
might you want them to tell you?

Cases: With binary trees, the base case should be the empty tree. The general code needs to consider
the case in which you have a big left and a big right subtree. Only if absolutely necessary should
you be having an extra case for the tree consisting of a single node or when one of the subtrees is
empty.

If each node may have many children, then no explicit base case is needed because if the root has
no children then its stackframe will not recurse.

In general, avoid cases with if statements. For example use max(a, b, ¢) instead of separate cases
for which is bigger.

Running Time: Compute and add up the work done in each stack in the tree of stack frames. There
is one recursive stack frame for each node in the tree (and one for each empty tree hanging off
the leaves). Generally, each stack frame does a constant amount of work. Hence, the total time
is linear in the number of nodes of the tree. i.e., T(n) = O(n).

If each node may have many children, then each stack frame generally does a constant amount of
work per subtree so the total time is linear in the number of edges of the tree which is one less
than the number of nodes.



Proved another way, let ¢ be the amount of work done in each stack frame. Then the recurrence
relation is T'(n) = T(negt) + T(nright) + ¢. Plugging in the guess T'(n) = ¢ - n, gives ¢-n =
€ Nyest + € Npigne + ¢. Dividing by ¢ gives n = nye st + nrigne + 1, which is correct because this is
the count of the number of nodes.



