
CSE 3101 Design and Analysis of Algorithms
Meta Steps for Unit 0

Jeff Edmonds

This contains the most important concepts in this unit. You will not be able to pass this course without
knowing and understanding these. The steps provided must be followed on all assignments and tests in this
course. Do not believe that because you know the material, you can answer the questions in your own way.
Though this material is necessary, it does not contain everything that you need. You must read the book,
go to class, review the slides, and ask lots of question.

Chapter 22: Existential and Universal Quantifiers. Proofs.

People are challenged proving things. It certainly helps to have good intuition about what needs to be
proved and the statements that you know are true. It also helps to be able to mechanically and meticulously
to be able to follow the formal proof steps. Do not skip any.

A proof is a sequence of statement in which each is either an axiom known to be true or follows logically
from previous statements. It helps to clearly state your goals, write each statement on a separate line, and
indent for each line how you know it is true.

To be able to understand and prove formal statements, it is important to have intuition, but it is also
important to write down what is true in a formal statement. First order logic is very important and is one
of the things that students consistently get wrong.

• ∀x ∃y x + y = 5 is true. Let x be an arbitrary real value and let y = 5 − x. Then x + y = 5.

• ∃y ∀x x + y = 5 is false. Let y be an arbitrary real value and let x = 6 − y. Then x + y 6= 5.

These are the steps to follow when you prove that such a statement is true or false or when you are writing
such a statement yourself. Be sure to play the correct game as to who is providing what value:

Direction: Move left to right through expression.

Exists: (∃y) means that you the prover get to chose your favorite value for y. In the proof write, “Let y be
the value 5.

Forall: (∀x) means an adversary chooses the worst case object for x. In the proof write, “Let x be an
arbitrary value.”

Truth of Predicate: After an object has been chosen for each variable, check if the predicate is true or
not.

Truth of Statement: If there is a strategy for you to win, no matter how the adversary plays, then the
statement is true. If there is a strategy for the adversary to win, no matter how you play, then the
statement is false.

Proving False: You prove the statement false by proving that the negation of the statement is true. Note
that the exists and the foralls switch and hence roles of prover and the adversary switch.

∀x∃y∀zF (x, y, z): The proof/game that this is true is a follows.
Let x be an arbitrary value given to me by an Adversary.
I construct the value yx as follows . . .. My choice of yx can depend on the adversary’s choice of x.
Let z〈x,yx〉 be an arbitrary value given to me by an Adversary.
I win if F (x, yx, z〈x,yx〉).

Examples: Use these same game ideas to help you construct statement in first order logic.

Define P (I) to be the required output of the computational problem P on inputs instance I and define
A(I) to be the actual output of the algorithm A on inputs instance I. We want to express the statement
“Problem P is computable by some algorithm.”



• ∃A such that A computes P .
This is not a good first order logic statement because the word “computes” is not defined in this
language.

• ∀I, P (I) = A(I).
This correctly expresses the fact that algorithm A gives the correct answer for problem P on every
input instance I. Hence it is a correct expression for saying “A computes P .” However, in the
statement “Problem P is computable by some algorithm,” the variable A is what is known as a
free variable in that it is not bound to a specific object. The statement, therefore, needs either a
∀A or an ∃A. In contrast, the variable P is bound, in that the statement says something about
the problem P and hence P is bound to what ever object the statement is talking about. Hence,
the statement needs neither a ∀P nor an ∃P .

• ∀I, ∃A, P (I) = A(I).
This incorrectly captures the concept because it allows there to be a different algorithm for each
input instance.

• ∃A, ∀I, P (I) = A(I).
This is correct. Here are a few reasons the ∃A needs to come before the ∀I.

– You need one algorithm that works for every instance.

– As a game, you must first provide the algorithm before the discussion about whether it
solved problem P can even begin. Once provide, you prove its correctness by testing it on all
instances.

– Think about the brackets. The statement “Problem P is computable by some algorithm” is
the same as ∃A such that “A computes P .” The statement “A computes P” is expressed as
∀I, P (I) = A(I). Combine these to get the correctly bracketed expression ∃A, (∀I, P (I) =
A(I)).

Implication: The statement A ⇒ B is a logic statement that is either true or false.

• It means that if A is true then B is also true.

• This could be because A causes B.

• An equivalent statement, called the “counter positive,” is ¬B ⇒ ¬A, because if B is not true,
then A can’t be true because otherwise B would be true. Hence, the statement A ⇒ B could be
true because B being false causes A to be false.

• Or maybe C causes both A and B to be true.

• Or maybe cause and effect is not involved at all.

• A ⇒ B formally means ¬(A and ¬B)
“It is not true that both A and not B are true”

• Bring the negation in gives ¬A or B

If A is false, then the statement A ⇒ B follows automatically. Similarly if B is true, then A ⇒ B

again follows.

In the proof of A ⇒ B, one officially needs to consider two cases. In the case that A is false, the
statement A ⇒ B is trivially true. In the case that A is true, one needs to do some work to prove
that B is true. To be simpler, we tend to ignore the first case and simply assume A and prove B.
Generally, a proof consists of a sequence of statements all that follow from the initial assumptions.
When we make the new assumption that A is true, the proof is easier to read if it indents the lines for
the duration of this new assumption. Then after B is proved, this indenting “stack” is popped with
the conclusion that A ⇒ B. It helps to state all of your goals and conclutions in order to give the
reader the heads up.

• Goal is to prove A ⇒ B.

• Assume that A is true.

2



– Goal is to prove B.

– ... proof of B.

– Hence B is true.

• Hence A ⇒ B is true.

Assuming Forall: If you assume that the truth of S1 : ∀x P (x), then at any point in time you know that
P (x′) is true for your favorite value x′.

• Assume S1 : ∀x P (x)

– Construct your favorite x′.

– Because S1 is true for all x it must be true for your x′.

– Hence P (x′) is true.

Assuming Exists: If you assume that the truth of S2 : ∃y Q(y), then at any point in time you can be
given such a value of y.

• Assume S2 : ∃y Q(y).

– Let y′ be the value of y stated to exists by S2.

– Hence Q(y′) is true.

Assuming Forall Exists: If you assume that the truth of S3 : ∀x ∃y R(x, y), then for each x′ you can be
given a yx′ for which R(x′, yx′) is true. In fact, S3 being true gives you a function from values x′ of x

to values yx′ of y.

• Assume S3 : ∀x ∃y R(x, y).

– Construct your favorite x′.

– Because S3 is true for all x it must be true for your x′.

– Hence ∃y R(x′, y) is true.

– Let yx′ be the value of y stated to exists.

– Hence Q(x′, yx′) is true.

Example:

• Our goal is to prove [∃y ∀x R(x, y)] ⇒ [∀x ∃y R(x, y)].

• Assume that S1 : ∃y ∀x R(x, y).

– Our goal is to prove S2 : ∀x ∃y R(x, y).

– Following the first order game, let x′ be an arbitrary value.

– It is then my job to construct a y′.

∗ Let y′ be the value of y stated to exists by S1.

∗ Hence S3 : ∀x R(x, y′) is true.

– To complete the first order game proof of S2, I must prove that R(x′, y′) is true.

∗ Because S3 is true for all x it must be true for our x′.

∗ Hence R(x′, y′) is true.

– Hence by our game S2 : ∀x ∃y R(x, y) is true.

• Hence [∃y ∀x R(x, y)] ⇒ [∀x ∃y R(x, y)] is also true.

Subsets: Prove S1 ⊆ S2 by proving ∀x, [x ∈ S1 ⇒ x ∈ S2].

Chapter 23: Time Complexity

There is one tricky thing about time complexity that people get wrong.

3



algorithm Slow(N)

〈pre−cond〉: N is an integer.

〈post−cond〉: It prints “Hi” N times.

begin
loop i = 1 . . . N

Print “Hi”
end loop

end algorithm

Though it is true that the running time of this algorithm on input instance N is Θ(N), this is not the
time complexity of the algorithm. The time complexity of an algorithm is the running time of the algorithm
as a function of the size of the input. Said another way, it measures how hard the problem is to solve as
a function of how hard it is for me to hand you an instance. Measuring time as N is fine. But the size of
the instance N is the number n = log2 N of bits to represent the input. Hence, the time complexity of this
algorithm is Θ(N) = Θ(2n), which is exponential. If you don’t believe me, note that I could give you a 100
bit (digit) number N is a few seconds and dare you to trace out the algorithm.

Chapter 24: Logarithms and Exponentials

Logarithms log2(n) and exponentials 2n arise often when analyzing algorithms.

Uses: These are some of the places that you will see them.

Divide Logarithmic Number of Times: Many algorithms repeatedly cut the input instance in
half. A classic example is binary search (Section ??). If you take something of size n and you cut
it in half; then you cut one of these halves in half; and one of these in half; and so on. Even for
a very large initial object, it does not take very long until you get a piece of size below 1. This
number is denoted by log2(n). Here the base 2 is because you are cutting them in half. If you
were to cut them into thirds, then the number of times to cut is denoted by log3(n).

A Logarithmic Number of Digits: Logarithms are also useful because writing down a given integer
value n requires ⌈log10(n + 1)⌉ decimal digits. For example, suppose that n = 1, 000, 000 = 106.
You would have to divide this number by 10 six times to get to 1. Hence, by our previous definition,
log10(n) = 6. This, however, is the number of zeros, not the number of digits. We forgot the
leading digit 1. The formula ⌈log10(n + 1)⌉ = 7 does the trick. For the value n = 6, 372, 845, the
number of digits is given by log10(6, 372, 846) = 6.804333, rounded up is 7. Being in computer
science, we store our values using bits. Similar arguments give that ⌈log2(n + 1)⌉ is the number
of bits needed.

Height and Size of Binary Tree: A complete balanced binary tree of height h has 2h leaves and
n = 2h+1 − 1 nodes. Conversely, if it has n nodes then its height is h ≈ log2 n.

Exponential Search: Suppose a solution to your problem is represented by n digits. There are 10n

such strings of n digits. Doing a blind search through them all would take too much time.

Rules: There are lots of rules about logs and exponentials that one might learn. Personally, I like to
minimize it to the following.

bn = (

n

z }| {

b × b × b × . . . × b): This is the definition of exponentiation. bn is n b’s multiplied together.

bn × bm = bn+m: This is simply by counting the number of b’s being multiplied.

(

n

z }| {

b× b× b× . . .× b)× (

m

z }| {

b× b× b× . . .× b) =

n+m

z }| {

b× b× b× . . .× b .

b0 = 1: One might guess that zero b’s multiplied together is zero, but it needs to be one. One argument
for this is as follows. bn = b0+n = b0 × bn. For this to be true, b0 must be one.

4



b
1

2 =
√

n: By definition,
√

n is the positive number which when multiplied by itself gives n. b
1
2 meets

this definition because b
1
2 × b

1
2 = b

1
2+ 1

2 = b1 == b.

b−n = 1
bn : The fact that this needs to be true can be argued in a similar way. 1 = bn+(−n) = bn×b−n.

For this to be true, b−n must be 1
bn .

(bn)
m

= bn×m: Again we count the number of b’s.
m

z }| {

(

n

z }| {

b× b× b× . . .× b)× (

n

z }| {

b× b× b× . . .× b)× . . .× (

n

z }| {

b× b× b× . . .× b) =

n×m

z }| {

b× b× b× . . .× b .

If x = logb(n) then n = bx: This is the definition of logarithms.

logb(1) = 0: This follows from b0 = 1.

logb(b
x) = x and blog

b
(n) = n: Substituting n = bx into x = logb(n) gives the first and substituting

x = logb(n) into n = bx gives the second.

logb(n × m) = logb(n) + logb(m): The number of digits to write down the product of two integers
is the number to write down each of them separately (modulo rounding errors). We prove it by
applying the definition of logarithms and the above rules. blogb(n×m) = n×m = blogb(n)×blogb(m) =
blogb(n)+logb(m). It follows that logb(n × m) = logb(n) + logb(m).

logb(n
d) = d × logb(n): This is an extension of the above rule.

logb(n) − logb(m) = logb(n) + logb(
1
m

) = logb(
n

m
): This is another extension of the above rule.

dc log
2
(n) = nc log

2
(d): This rule states that you can move things between the base to the exponent

as long as you add or remove a log. The proof is as follows. dc log2(n) =
(

2log2(d)
)c log2(n)

=

2log2(d)×c log2(n) = 2log2(n)×c log2(d) =
(

2log2(n)
)c log2(d)

= nc log2(d).

log2(n) = 3.32.. × log10(n): The number of bits needed to express the integer n is 3.32.. times the
number of decimal digits needed. This can be seen as follows. Suppose x = log2 n. Then n = 2x,
giving log10 n = log10(2

x) = x · log10 2. Finally, x = 1
log10 2 log10(n) = 3.32.. log10 n.

Which Base: We will write Θ(log(n)) with out giving an explicit base. A high school student might use
base 10 as the default, a scientist base e = 2.718.., and computer scientists base 2. My philosophy is
that I exclude the base when it does not matter. As seen above, log10(n), log2(n), and loge(n), differ
only by a multiplicative constant. In general, we ignore multiplicative constants, and hence the base
used is irrelevant. I only include the base when the base matters. For example, 2n and 10n differ by
much more than a multiplicative constant.

The Ratio log a

log b
: When computing the ratio between two logarithms, the base used does not matter because

changing the base will introduce the same constant both on the top and the bottom, which will cancel.
Hence, when computing such a ratio, you can choose whichever base makes the calculation the easiest.
For example, to compute log 16

log 8 , the obvious base to use is 2, because log2 16
log2 8 = 4

3 . On the other hand,

to compute log 9
log 27 , the obvious base to use is 3, because log3 9

log3 27 = 2
3 .

Exercise 0.1 (See solution in Section ??) Simplify the following exponentials: a3 × a5, 3a × 5a, 3a + 5a,

26log4n+7, n
3

log2n .

Chapter 25: Asymptotic Growth

Classes of Growth Rates: It is important to be able to classify functions f(n) = c · ban ·nd · loge(n) based
on how quickly they grow.

5



c ba d e Class Θ Examples

> 0 > 1 any any Exponentials: 2Θ(n) 2n, 30.001n

n100

= 1 > 0 any Polynomial: nΘ(1) n4, 5n0.0001

log100(n)

= 2 any - Quadratics: Θ(n2) 5n2, 2n2 + 7n + 8
= 1 = 1 - Sorting Time: Θ(n log n) 5n log n + 3n
= 1 = 0 - Linear: Θ(n) 5n + 3

= 0 > 0 Poly-Logs: logΘ(1)(n) 5 log3(n)
= 1 - Logarithms: Θ(log(n)) 5 log(n)
= 0 Constants: Θ(1) 5, 5 + sin(n)

< 0 any Poly-Decr: 1
nΘ(1)

1
n4 , 5 log100(n)

n0.0001

< 1 any any Exp-Decr: 1
2Θ(1)

1
2n , n100

30.001n

Asymptotic Notation: When we want to bound the growth of a function while ignoring multiplicative
constants, we use the following notation.
Greek Letter Standard Notation My Notation Meaning

Theta f(n) = Θ(g(n)) f(n) ∈ Θ(g(n)) f(n) ≈ c · g(n)
BigOh f(n) = O(g(n)) f(n) ≤ O(g(n)) f(n) ≤ c · g(n)
Omega f(n) = Ω(g(n)) f(n) ≥ Ω(g(n)) f(n) ≥ c · g(n)

Bounded Between: A function like f(n) = 8+sin(n), continually changes between 7 and 9 and f(n) = 8+ 1
n

continually changes approaching 8. However, if we don’t care whether it is 7, 9, or 8.829, why should
we care if it is changing between them? Hence, both of these functions are included in Θ(1). On the
other hand, the function f(n) = 1

n
is not included, because the only constant that it is bounded below

by is zero and the zero function is not included.

Chapter 26: Adding-Made-Easy Approximations

Consider f(n) = Θ(ban · nd · loge n):

ba d e Type of Sum
∑n

i=1 f(i) Examples

> 1 any any Geometric Inc.: Θ(f(n))
∑n

i=0 22i ≈ 1 · 22n

- Dominated by
∑n

i=0 bi = Θ(bn)
last term

∑n

i=0 2i = Θ(2n)
= 1 > −1 any Arithmetic Like: Θ(n · f(n))

∑n

i=1 id = Θ(n · nd) = Θ(nd+1)
- Half of Terms

∑n

i=1 i2 = Θ(n · n2) = Θ(n3)
approximately

∑n

i=1 i = Θ(n · n) = Θ(n2)
equal

∑n

i=1 1 = Θ(n · 1) = Θ(n)
∑n

i=1
1

i0.99 = Θ(n · 1
n0.99 ) = Θ(n0.01)

−1 =0 Harmonic: Θ(ln n)
∑n

i=1
1
i

= loge(n) + Θ(1)
< −1 any Bounded Tail: Θ(1)

∑n

i=1
1

i1.001 = Θ(1)
- Dominated by

∑n

i=1
1
i2

= Θ(1)
< 1 any any first term

∑n

i=1(
1
2 )i = Θ(1)

∑n

i=0 b−i = Θ(1)

Chapter 27: Recurrence Relations

Consider T (n) = a · T
(

n
b

)

+ f(n), where f(n) = Θ(nc)
log a

log b
vs c Dominated By T (n) Example

(

log3 9
log3 3 = 2

)

Solution

< Top Level Θ(f(n)) T (n) = 9 · T
(

n
3

)

+ n4 Θ(n4)

= All Levels Θ(f(n) log n) T (n) = 9 · T
(

n
3

)

+ n2 Θ(n2 log n)

> Base Cases Θ
(

n
log a

log b

)

T (n) = 9 · T
(

n
3

)

Θ(n2)

6



Consider T (n) = a · T (n−b) + f(n), where f(n) = Θ(nc).
a f(n) Dominated By T (n) Example Solution

> 1 any Base Cases Θ(a
n
b ) T (n) = 9 · T (n−3) + n4 Θ(9

n
3 )

= 1 ≥ 1 All Levels Θ(n · f(n)) T (n) = T (n−3) + n4 Θ(n5)
= 0 Base Cases Θ(1) T (n) = T (n−3) Θ(1)

7


