
York University
COSC 3101 Fall 2004 – Midterm (Nov 4)

Instructor: Jeff Edmonds

1. 2 × 9 = 18 marks: Compute the solution and tell which rules that you use.

(a)
∑n

i=0 3i × i8 = Θ(
Type of sum:

• Answer: Θ(3n × n8), Geometric.

(b)
∑n

i=0 300i2 log9 i + 7 i3

log2 i
+ 16 = Θ(

Type of sum:

• Answer: Θ(n4

log2 n
), Arithmetic.

(c)
∑n

i=0

∑n
j=0 i2j3 = Θ(

• Answer:
∑n

i=1

∑n
j=0 i2j3 =

∑n
i=1 i2[

∑n
j=0 j3] =

∑n
i=1 i2Θ(n4) = Θ(n4)[

∑n
i=1 i2] =

Θ(n4)Θ(n3) = Θ(n7)

(d) 7 · 23·n5

= 3Θ(n5) True False

• Answer: True

(e) What is the formal definition of f(n) = nΘ(1)?

• Answer: ∃c1 > 0, c2 > 0, n0, ∀n ≥ n0, nc1 ≤ f(n) ≤ nc2 .

(f) n2 − 100n ∈ o(n2) True False

• Answer: False

(g) If T (n) = 8T (n
4) + Θ(n). Then T (n) = Θ(

• Answer: Because log a
log b = log 8

log 4 = log2 8
log2 4 = 3

2 = 1.5 > 1 = c, the technique concludes that time

is dominated by the base cases and T (n) = Θ(n
log a

log b) = Θ(n1.5)

(h) The solution of the recurrence T (n) = 5T (n√
5
) + n2 log(n) is

T (n) = Θ(

• Answer: Because log a
log b =

log√
5
5

log√
5

√
5

= 2
1 = 2 = 2 = c, the technique concludes that time is

dominated by the base cases and T (n) = Θ(f(n) log n) = Θ(n2 log2 n).

(i) If T (n) = 8T (n− 5). Then T (n) = Θ(

• Answer: T (n) = 8T (n− 5) = 82T (n− 2 × 5) = 83T (n − 3 × 5) = 8iT (n− i × 5) = Θ(8i/5).

2. 4 marks: Consider the following priority queue implemented as a heap. Consider a reasonable algorithm
that changes the prioity of a node. (Its input includes a pointer to the node). Give the resulting heap
after changing the priority 7 node to have priority 48 and and the priority 45 node to 3.

0

18

45

22

24

10

40

35

3223

20

7

2

16

1512 8

51

41

1

• Answer: Question cut from midterm: “In three or four sentences, describe the algorithm for
changing the priority of a node.” Ans: If the priority is increased, bubble it up by repeatedly
comparing it to its parent and swapping if bigger. If the priority is decreased, bubble it down by
repeatedly comparing it to both its children and swapping if smaller with the bigger of the two.

• Answer:

0

18

10

35

3223

2

16

1512 8

51

41

48

40

20

24

22

3

3. 6 marks: Considering Programs.

algorithm Eg1(n)

〈pre−cond〉: n is an integer.

〈post−cond〉: Prints “Hi”s.

begin
i = 0
put “Hi”; put “Hi”; put “Hi”; put “Hi”
loop i = 1 . . . n

put “Hi”; put “Hi”; put “Hi”
loop j = 1 . . . n

put “Hi”; put “Hi”
end loop

end loop
end algorithm

algorithm Eg2(n)

〈pre−cond〉: n is an integer.

〈post−cond〉: Prints T (n) “Hi”s.

begin
if(n ≤ 1) then

put “Hi”
else

put “Hi”; put “Hi”; put “Hi”
Eg2(n

4
)

Eg2(n − 5)
end if

end algorithm

(a) Give the exact time complexity (running time) of Eg1.

• Answer: Size = log n = s. n = 2s. T ime = 2n2 + 3n + 4 = 2 · 22s + 3 · 2s + 4.

(b) Give a recurrence relation for the running time of Eg2. Do not solve it.

• Answer: T (1) = 1; T (n) = T (n
4) + T (n− 5) + 3.

4. 8 marks: Briefly describe and contrast the difference between a “More of the Input” loop invariant and
a “More of the Output” loop invariant. Give an example of each along with a picture.

• Answer: A loop invariant of the first type says “I currently have a solution for the first i objects.”
An example is insertion sort, whose loop invariant is that the first i values from the input are
sorted.

A loop invariant of the first type says “I have constructed i correct pieces of the output so far.”
An example is selection sort, whose loop invariant is that the first i values from the output (i.e.
the smallest) are in place.

5. 20 marks: Iterative Algorithms: You are now the professor. Which of the steps to develop an iterative
algorithm did the student fail to do correctly in Eg3? How?

2

algorithm Eg3(I)

〈pre−cond〉: I is an integer.

〈post−cond〉: Outputs
∑

I

j=1
j.

begin
s = 0
i = 1
while(i ≤ I)

〈loop−invariant〉: Each iteration adds the next

term giving that s =
∑

i

j=1
j.

s = s + i
i = i + 1

end loop
return(s)
end algorithm

• Answer: 2 × 10 marks: There are a number of problems.

(a) A loop invariant is to be a picture of the current state and NOT say what the iteration does.

(b) The loop invariant is not established correctly. With i = 1, the loop invariant requires

s =
∑1

j=1 j = 1 not s = 0. s = 0 and i = 0 would be better.

(c) The loop invariant is not maintained correctly. Let s′ and i′ be the values of s and i when
at the top of the loop. Let s′′ and i′′ be the values after going around again. The LI gives

that s′ =
∑i′

j=1 j. The code gives that s′′ = s′ + i′ and i′′ = i′ + 1. Together this gives that

s′′ = (
∑i′

j=1 j) + i′. This is not
∑i′+1

j=1 j as required because i′ is being added in twice. i′ + 1
should be added in order to maintain the LI.

(d) The exit condition is not very well stated. An equivalent and easier to see exit condition
would be “exit when i > I”.

(e) The exit condition, i > I, and the LI, s =
∑i

j=1 j, together do not give the post condition.

Instead, they give that s =
∑I+1

j=1 j is returned.

• Answer: Deleted Question: Does the program for Eg3 work? Ans: It happens to work. But the
loop invariant is wrong.

6. 10 marks: Consider my solution to Q3 in Assignment 2, which finds for each pair of nodes u, v ∈ V
of a graph a path from u to v with the smallest total weight from amongst those paths that contains
exactly k edges.

(a) 4 marks: What are the steps for maintaining the loop invariant.

• Answer: wu,v,i+j = minb(wu,b,i + wb,v,i).

(b) 4 marks: What needs to be changed so that instead of the path having EXACTLY k edges, it has
k or fewer edges?

• Answer: The loop invariant is changed so that wu,v,i is the weight of the smallest weighted
path from u to v containing i or fewer edges. Similarly j.
It turns out that the steps to maintain the loop invariant do not need to change at all. Any
path from u to v with i + j or fewer edges (and at least 2 edge) consists of a path from u to
some b with i or fewer edges and then from b to v with j or fewer edges. The path might also
contain only one edge. But then if we let b = u, then the path from u to v is a path of length
zero (≤ i) from u to u = b followed by a path of one (≤ j) edge from u = b to v. If u = v,
then the path to lenght of zero (≤ i + j) is a path of length zero (≤ i) from u to u = b plus a
path of length zero (≤ j) from u = b to u = v. It all works.
The only difference is when we exablish the loop invariant with i = 1, we need to consider
paths of lenght zero from u to u. This can be done by assuming that each node has a self
loop with weight wu,u = 0.

3

(c) 2 marks: What needs to be changed so that for every u and v it outputs the shortest over all
path. (Assume the weights are all positive.)

• Answer: When all the weights are positive, no smallest weighted path will contain a loop
and hence none will be longer than n−1 edges. Hence, the above problem is solved by setting
k = n − 1 (or even better a power of 2 bigger at least n − 1.

7. 21 marks: Recursion:

(a) 4 marks: With Iterative algorithms, Jeff is obsessed with Loop Invariants. Describe in full the
scenario that he is obsessed with regarding Recursion. (How is Recursion abstracted?)

• Answer: Friends & Strong Induction: The easiest method is to focus separately on one step
at a time. Suppose that someone gives you an instance of the computational problem. You
solve it as follows. If it is sufficiently small, solve it yourself. Otherwise, you have a number
of friends to help you. You construct for each friend an instance of the same computational
problem that is smaller then your own. We refer to these as subinstances. Your friends
magically provide you with the solutions to these. You then combine these subsolutions into
a solution for your original instance. I refer to this as the friends level of abstraction. If you
prefer, you can call it the strong induction level of abstraction and use the word “recurse”
instead of “friend.” Either way, the key is that you concern yourself only about your stack
frame. Do not worry about how your friends solve the subinstances that you assigned them.
Similarly, do not worry about whomever gave you your instance and what he does with your
answer. Leave these things up to them.

(b) 3 marks: Which are the general shapes of trees that you should check your program on. (Binary
trees)

• Answer:

i. General tree with big left and right subtrees.

ii. General tree with big left subtree and empty right.

iii. General tree with empty left subtree and big right.

iv. Empty tree.

(c)

9 marks: Finding the kth Smallest Element: Write a re-
cursive program, which given a binary search tree and an
integer k returns the kth smallest element from the tree.
(Code is fine.)

D 15

k=3

B 4

A 8

C 10

kth smallest = 10

• Answer:

algorithm Smallest(tree, k)

〈pre−cond〉: tree is a binary search tree and k > 0 is an integer.

〈post−cond〉: Outputs the kth smallest element s and the number of elements n.

begin
if(tree = emptyT ree) then

result(〈NotPossible, 0〉)
else

〈sl, nl〉 = Smallest(leftSub(tree), k)
% There are nl + 1 nodes before the right subtree
〈sr, nr〉 = Smallest(rightSub(tree), k − (nl + 1))
n = nl + 1 + nr

if(k ∈ [1..nl])then
s = sl

elseif(k = nl + 1)then
s = root(tree)

4

elseif(k ∈ [nl + 2..n])then
s = sr

else then
s = OutOfRange

endif
result(〈s, n〉)

end if
end algorithm

(d) 2 marks: Give the recurrence relation and the running time for your program when the input tree
is completely balanced.

• Answer: T (n) = 2T (n/2) + 1 = Θ(n).

(e) 3 marks: Prove that no program can solve the problem by more than a constant factor faster.

• Answer: If Θ(n) nodes are in the left subtree and the answer is in the right, then the nodes
in the left need to be counted and this will take at least time Θ(n).

8. 13 marks: Dijkstra’s Algorithm:

(a) 4 marks: Give the full loop invariant for Dijkstra’s Algorithm. Include the definition of any terms
you use.

• Answer:

The Loop Invariant:

LI1: For each handled node v, the values of d(v) and π(v) give the shortest length and
a shortest path from s (and this path contain only handled nodes).

LI2: For each of the unhandled nodes v, the values of d(v) and π(v) give the shortest
length and path from among those paths that have been handled.

Definition of A Handled Path: We say that a path has been handled if it contains only
handled edges. Such paths start at s, visit as any number of handled nodes, and then
follow one last edge to a node that may or may not be handled.

(b) 2 marks: What is the exit condition for Dijkstra’s Algorithm?

• Answer: All the nodes have been handled

(c) 2 marks: Prove that the post condition is obtained.

• Answer: When the loop exits, both the exit condition and the LI are true. The exit condition
gives that all nodes are handled. The LI gives that we have the correct answer for all handled
nodes. It follows that we have the correct answer for all nodes.

(d) 3 marks: Consider a computation of Dijkstra’s algorithm on the following graph when the circled
nodes have been handled. The start node is a. On the left, give the current values of d.

d=

d=

d=

d=

d=

d=

a

b

c

d

e

h

24

18

2

7

8

8

4

13

3

Handled

d=

d=

d=

d=

d=

d=

Handled

3

13

4

8

8

7

2

18

24

h

e

d

c

b

a

(e) 2 marks: On the right, change the figure to take one step in Dijkstra’s algorithm. Include as well
any πs that change.

5

• Answer:

d=20

d=13

d=34

d=16

d=0

d=

Handled

3

13

4

8

8

7

2

18

24

h

e

d

c

b

a

π = e= eπ

d=0

d=16
d=13

d=20
d=28 d=27

a

b

c

d

e

h

24

18

2

7

8

8

4

13

3

Handled

6

