York University
 COSC 3101 Fall 2004 - Midterm (Nov 4)
 Instructor: Jeff Edmonds

Family Name: \qquad Given Name: \qquad
Student \#: \qquad Email:
Section to which to return the midterm (circle one): A: TR 17:30, C: TR 11:30

Problem 1: (18 marks)	
Problem 2: (4 marks)	
Problem 3: (6 marks)	
Problem 4: (8 marks)	
Problem 5: (20 marks)	
Problem 6: (10 marks)	
Problem 7: (21 marks)	
Problem 8: (13 marks)	
Total (100 marks)	

This test is closed book and lasts 90 minutes. 0.9 minutes per mark. You may not use any electronic/mechanical computation devices.

There are 7 pages including the cover page.
Keep your answers short and clear.

1. $2 \times 9=18$ marks: Compute the solution and tell which rules that you use.
(a) $\sum_{i=0}^{n} 3^{i} \times i^{8}=\Theta($

Type of sum:
(b) $\sum_{i=0}^{n} 300 i^{2} \log ^{9} i+7 \frac{i^{3}}{\log ^{2} i}+16=\Theta($

Type of sum:
(c) $\sum_{i=0}^{n} \sum_{j=0}^{n} i^{2} j^{3}=\Theta($
(d) $7 \cdot 2^{3 \cdot n^{5}}=3^{\Theta\left(n^{5}\right)} \quad$ True \quad False
(e) What is the formal definition of $f(n)=n^{\Theta(1)}$?
(f) $n^{2}-100 n \in o\left(n^{2}\right)$ True False
(g) If $T(n)=8 T\left(\frac{n}{4}\right)+\Theta(n)$. Then $T(n)=\Theta($
(h) The solution of the recurrence $T(n)=5 T\left(\frac{n}{\sqrt{5}}\right)+n^{2} \log (n)$ is $T(n)=\Theta($
(i) If $T(n)=8 T(n-5)$. Then $T(n)=\Theta($
2. 4 marks: Consider the following priority queue implemented as a heap. Consider a reasonable algorithm that changes the prioity of a node. (Its input includes a pointer to the node). Give the resulting heap after changing the priority 7 node to have priority 48 and and the priority 45 node to 3 .

3. 6 marks: Considering Programs.

```
algorithm Eg1 (n)
\langlepre-cond\rangle: n is an integer.
<post-cond\rangle: Prints "Hi"s.
begin
    i=0
    put "Hi"; put "Hi"; put "Hi"; put "Hi"
    loop }i=1\ldots
        put "Hi"; put"Hi"; put "Hi"
        loop j=1\ldotsn
                put "Hi"; put "Hi"
        end loop
    end loop
end algorithm
```

algorithm $E g_{2}(n)$
$\langle\boldsymbol{p r e}-\boldsymbol{c o n d}\rangle$: n is an integer.
$\langle\boldsymbol{p o s t}-\boldsymbol{c o n d}\rangle$: Prints $T(n)$ "Hi"s.
begin
if $(n \leq 1)$ then
else
put "Hi"; put "Hi"; put "Hi"
$E g_{2}\left(\frac{n}{4}\right)$ $E g_{2}(n-5)$
end if
end algorithm
(a) Give the exact time complexity (running time) of $E g_{1}$.
(b) Give a recurrence relation for the running time of $E g_{2}$. Do not solve it.
4. 8 marks: Briefly describe and contrast the difference between a "More of the Input" loop invariant and a "More of the Output" loop invariant. Give an example of each along with a picture.
5. 20 marks: Iterative Algorithms: You are now the professor. Which of the steps to develop an iterative algorithm did the student fail to do correctly in $E g_{3}$? How?

```
algorithm \(E g_{3}(I)\)
\(\langle p r e-c o n d\rangle: I\) is an integer.
\(\langle\boldsymbol{p o s t}-\boldsymbol{c o n d}\rangle\) : Outputs \(\sum_{j=1}^{I} j\).
begin
    \(s=0\)
    while \((\langle\boldsymbol{l}<\mathbf{I}\) I \()\) invariant \(\rangle\) : Each iteration adds the next
                term giving that \(s=\sum_{j=1}^{i} j\).
        \(s=s+i\)
\(i=i+1\)
    end loop
return \((s)\)
end algorithm
```

6. 10 marks: Consider my solution to Q3 in Assignment 2, which finds for each pair of nodes $u, v \in V$ of a graph a path from u to v with the smallest total weight from amongst those paths that contains exactly k edges.
(a) 4 marks: What are the steps for maintaining the loop invariant.
(b) 4 marks: What needs to be changed so that instead of the path having EXACTLY k edges, it has k or fewer edges?
(c) 2 marks: What needs to be changed so that for every u and v it outputs the shortest over all path. (Assume the weights are all positive.)
7. 21 marks: Recursion:
(a) 4 marks: With Iterative algorithms, Jeff is obsessed with Loop Invariants. Describe in full the scenario that he is obsessed with regarding Recursion. (How is Recursion abstracted?)
(b) 3 marks: Which are the general shapes of trees that you should check your program on. (Binary trees)

9 marks: Finding the $\boldsymbol{k}^{\boldsymbol{t h}}$ Smallest Element: Write a re(c) cursive program, which given a binary search tree and an integer \boldsymbol{k} returns the $\boldsymbol{k}^{\boldsymbol{t h}}$ smallest element from the tree. (Code is fine.)

(d) 2 marks: Give the recurrence relation and the running time for your program when the input tree is completely balanced.
(e) 3 marks: Prove that no program can solve the problem by more than a constant factor faster.
8. 13 marks: Dijkstra's Algorithm:
(a) 4 marks: Give the full loop invariant for Dijkstra's Algorithm. Include the definition of any terms you use.
(b) 2 marks: What is the exit condition for Dijkstra's Algorithm?
(c) 2 marks: Prove that the post condition is obtained.
(d) 3 marks: Consider a computation of Dijkstra's algorithm on the following graph when the circled nodes have been handled. The start node is a. On the left, give the current values of d.

(e) 2 marks: On the right, change the figure to take one step in Dijkstra's algorithm. Include as well any $\pi \mathrm{s}$ that change.

