
COSC3101.03 Fall 1997-98
Solutions to Mid-Term Test

1

a. True. f (n) ≤ cg(n) implies lgf (n) ≤ lgc + lgg(n) ≤ (lgc + 1)lgg(n), since lgg(n) ≥ 1.

b. False. For example, 2n + 2 = O(n + 2), but 22n+2 = Θ(4n) ≠O(2n+2).

c. True. n5 lg n = O(n6 / lg n).

d. True. Compare the logarithm of each term. The largest term is 2n lg n = nn.

e. True. Both are Θ(1). See chapter 3 of [CLR].

f. True. For a similar recurrence, see pages 59-61 of [CLR].

g. False. It is Θ(n2).

h. True. See your lecture notes or section 10.2 of [CLR].

i. False. It is n − 1.

j. False. It is Θ(n lg n). See your lecture notes or section 35.4 of [CLR].

2

(a) Here the recurrence is of the form T (n) = aT (n/b) + Θ(nd). Apply the Master Theorem: since
logb a = log4 8 = 3/2 > d = 1/2, the solution is T (n) = Θ(nlogb a) = Θ(n√ n).

(b) Similar to part (a), but now logb a = d = 3/2. Thus, T (n) = Θ(nd lg n) = Θ(n√ n lg n).

(c) f (n) is not a polynomial, so we cannot apply the Master Theorem. Instead, we start with the
general solution formula:

T (n) = Θ(nlogb a [1 +
k

i=1
Σ f (bi)/ai]) , where k = logb n = Θ(lg n)

= Θ(n√ n [1 +
k

i=1
Σ 8i/lg4i

8i
]) = Θ(n√ n [1 +

k

i=1
Σ 1/2i])

= Θ(n√ n[1 + Hk /2]) = Θ(n√ n lg k)

= Θ(n√ n lg lg n) .

3 This question concerns max-heaps.

(a) See the procedure on page 150 of [CLR]. The figure below giv es the illustration:
(1) record max ← 15 from the root; move the key of the last node, 7, to the root; and decrement
heap-size by 1.
(2) Heapify(A, 1). This will push 7 down the largest-child path as highlighted.
(3) return the deleted maximum key 15.

-2-

1

15

12

0

5

4 6 2 7

8

913

112

0

5

4 6 2

8

913

7

1

0

5

4 6 2

8

9

7

12

13

(1) (2) (3)

(b) Here is the algorithm performed on a max-heap A:

procedure Heap-Increase-Key (A, i, k)
if A[i] ≥ k then return

while i > 1 and A[i/2] < k do A[i] ← A[i/2]; i ← i/2 end
A[i] ← k

end

This is essentially Up-Heap as explained in class, and it takes O(lg n) time on a heap of size n.

4 (See also Exercise 10.3-8, page 192 of [CLR].)

Observation: The median (i.e., 5th smallest) of the 10 elements is:
(i) ai, if and only if b5−i < ai < b6−i ,
(ii) bi, if and only if a5−i < bi < a6−i .

(We assumed the notation a0 = b0= − ∞ and a6=b6= + ∞.) The proof is left to the reader. Check
these conditions by looking at each leaf of the decision tree and comparisons made at its ancestors.

The decision tree below iteratively compares the two medians of the sorted a-list and the b-list in
constant time and discards half of the irrelevant elements. For instance, the first comparison is
between a3 and b3. If, say, a3 < b3, then a1 and a2 are smaller than 5th smallest (and hence can be
eliminated), since they are less than at least the 6 elements a3 through a5 and b3 through b5. With a
similar reasoning we see that the 3 elements b3 through b5 are larger than the 5th smallest. So, we
eliminate 5 elements, and the 5th smallest overall is the 3rd smallest among the remaining 5 elements.
Repeat the same idea.

Since any one of the 10 elements could possibly be the final outcome, any such binary decision tree

must have at least 10 leaves. Therefore, it will have height h ≥ lg 10 = 4. Thus, the decision tree
below which makes at most 4 comparisons, is worst-case optimal.

a3:b3

a4:b1

a5:b1 a3:b2

a4:b2

a1:b4

a2:b3 a1:b5

a5 b1

a4 b2

a3 b3

a2 b4

a1 b5a2:b4

< >

<

<
<

<

<

<

<

<

>

> >

>

>

>

>

>

