
York University

CSE 2011 Summer 2015 – Midterm
Instructor: Jeff Edmonds

0 Art therapy question: When half done the exam, draw a picture of how you are feeling.

1. (71% in 2015)
Consider a stack implemented using a singling linked list with a variable top pointing at the first node.

(a) Imagine constructing a new stack and then pushing 1, 2, and then 3 onto it. Draw a picture
of what the stack then looks like. Show where pointers are pointing both with arrows AND by
giving actual values to the variables and showing in the drawing what these values represent.

• Answer:
top
 0 0

top
3 104

element next element next element next

373

373 12

Address in physical memory
104 723

723

(b) Give code for the constructor stack() which sets up an empty stack.

• Answer:
top = null;
% Note this variable is not allocated here. This is done at the beginning of the class.
% Java would probably automatically give top the value null when the variable was allocated.
But I am doing here just to be safe and clear.

(c) Give code for stack.push(int x) which pushes the value x onto this stack.

• Answer: See Invariants slide pg 230.
Node temp = new Node();
temp.info = x;
temp.next = top;
top = temp;

(d) Give code for int stack.pop() which pops the value x off this stack.

• Answer: See Invariants slide pg 234.
int x = top.info;
top = top.next;
return(x);
Note Java automatically garbage collects the node when nobody is pointing at it.

(e) What special code is needed to handle the case when the element is being pushed onto an empty
stack?

• Answer: No special code is needed. (In the slides extra code was needed to maintain the
invariant for the last pointer.)

(f) Give the bigO (or Theta) of the running time of this push operation as a function of the number
n of nodes in the stack. Why?

• Answer: Θ(1), because the number of operations is bounded by the constant 4, independent
of the number of nodes n.

(g) Draw (in (a)) a picture of the stack after you have popped all three of these items. Again show
both arrows and actual values.

• Answer: See above.
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(h) Seeing the code, x = 5; y = x; z = y;, I can trace the history of the value 5. It was first assigned
to the variable x. Then it was copied from x to y and then from y to z.

After you have popped the last item off the stack, what value is stored in the variable top?

Trace the history of this value backwards in time. In your above code, indicate where this value
first came from and which lines of code copied it from one variable to the next until finally got to
top as it is now.

• Answer: The value is the null pointer, which is actually the integer zero. When the stack
was constructed, its precondition dictates that the stack initially be empty. In this case the
variable top should contain the null pointer. Java automatically initializes variables to zero,
but but my line top = null; did it to be safe. When the first item was pushed, the code
temp.next = top; moves this null pointer to the next field of the last node in the linked list.
There it stays until this last item is popped. At this point, the code top = top.next; returns
it to top.

(i) Given the linked list as described above, give code int stack.last() that returns the value in the
last node in the stack, i.e. furthest from top.
(Note an official stack would not have such an operation.)

• Answer:
Node walk = top;
while( walk.next != null ) walk = walk.next;
return(walk.info);

(j) Give the big-Oh (or Theta) of the running time of this program as a function of the number n of
nodes in the stack. Why?

• Answer: Θ(n), because the code must walk down the length of the linked list visiting each
of the n nodes.

2. (68% in 2015) Invariants:

(a) What is loop invariant?

• Answer: A picture of what must be true at the top of the loop

(b) Loop Invariant Steps: Your goal is to prove that no matter what the input is, as long as it
meets the precondition, and no matter how many times your iterative algorithm iterates, as long
as eventually the exit condition is met, then the post condition is guarantee to be achieved.
According to Jeff’s steps, what are three most important things to prove in order to accomplish
this. Explain each in your own words. Also state each as an A ⇒ B statement.

• Answer:

i. Establish the Loop Invariant:
Our computation has just begun and all we know is that we have an input instance that
meets the Pre Condition.
Being lazy, we want to do the minimum amount of work.
And to prove that it follows that the Loop Invariant is then true.
〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉

ii. Maintain the Loop Invariant:
We arrived at the top of the loop knowing only that the Loop Invariant is true and the
Exit Condition is not.
We must take one step (iteration) (making some kind of progress).
And then prove that the Loop Invariant will be true when we arrive back at the top of
the loop.
〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒ 〈loop−invariant′′〉
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iii. Obtain the Post Condition:
We know the Loop Invariant is true because we have maintained it.
We know the Exit Condition is true because we exited.
We do a little extra work.
And then prove that it follows that the Post Condition is true.
〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒ 〈post−cond〉

(c) How is a system invariant same and different?

• Answer:

– Same:

∗ The importance of invariants is the same.

∗ Both have invariants that must be maintained.

– Differences:

∗ An algorithm must terminate with an answer,while systems and data structures may
run forever.

∗ An algorithm gets its full input at the beginning, while data structures gets a continuous
stream of instructions from the user.

(d) Give three or four sentences to explain how the system invariant is defined for the previous Stack
question and how invariant steps are accomplished.

• Answer:

i. The picture in question (a) will act as the system invariant for this stack implementation.

ii. The constructor code in (b) needs to establish this invariant.

iii. The push and pop code in (c,d) needs to maintain this invariant.

iv. There is no to terminate the system invariant or any post condition to obtain.

3. (60% in 2015) Consider the following Binary Search Tree.

(a) Starting from 11 label the nodes 10, 9, 8, . . . in the order that they would be visited if you repeatedly
called previous as coded in assignment 2 and 12, 13, 14, . . . if you repeatedly called next.

• Answer:

6

7

8

9

10

11

12

13

14

15

(b) How do you know that value at node 11 is at most the value at node 12?

• Answer: Because 11 is in the left subtree of the node 12. In a Binary Search Tree, EACH
node v has a value that is greater or equal to the values at each of the nodes in its left subtree
and less than or equal to the values at each of the nodes in its right subtree.

(c) Part of the instructions for the next routine was the following.

If your current node does not have a right child, travel up and left as far as you can
and then up and right. (Going “up and left” means testing of you are the right child of
your parent and if so going to your parent.) Said another way follow the path up parent
parent parent. Stop the first time that the node you came from is the left node of where
you currently are.
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For example, this should get you from node 11 to node 12.

Give the code for just this part of the assignment. No error correcting needed.

• Answer:

if(super.rightChild(position)!= null)
...

else
while( super.parent(position)!=null &&

super.rightChild(super.parent(position))==position )
position = super.parent(position);

position = super.parent(position);

or (enough for full marks)

while( position.parent.right == position ) position = position.parent;
position = position.parent;

4. (74% in 2015)
Read the string 4 3 2 + 5 *. When you see a number push it on the stack. When you see an operator,
pop two numbers and perform the operation on them, and push the result. What is on the stack at
the end?

• Answer: 4, (3+2)*5=25

5. (83% in 2015)
Write a recursive program that takes as input a binary tree and prints out its nodes in the order shown
in the following figure. What is the name of this order?

6

54

3

21

7

• Answer:

algorithm PostF ixOrder(tree)

〈pre−cond〉: tree is binary tree.

〈post−cond〉: Its nodes are printed in post fix order

begin
if( tree! = null )

PostF ixOrder(tree.left)
PostF ixOrder(tree.right)
Print(tree.info)

}
end algorithm

6. (46% in 2015)
Jeff feels that a major cause of students through to grad school not understanding computer science
material is because they don’t understand first order logic. Example:

∀x, ∃y, x+ y = 0.
This states that every number x has an additive inverse y = −x.

Jeff uses the following game to prove a first order logic statement. Read the expression left to right. If
a variable is quantified with an exists (∃), then the prover produces an object for that variable. If it
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quantified with a forall (∀), then the adversary does. The prover wins the game, if the inner statement
is true. The statement is true, if the prover can always win. The proof of our example is as follows.

Proof of ∀x, ∃y, x+ y = 0:
Let x be an arbitrary real number.
Let y be −x.
Note that x+ y = x+ (−x) = 0.

A computational problem is a function P from inputs I to required output P (I).
An algorithm is a function A from inputs I to actual output A(I).

A(I) = P (I) and T ime(A, I) ≤ 3|I|2

states that algorithm A solves problem P on instance I in at most 3n2 time.

For each of the following statements, check the first order logic statement that expresses the statement.
Hint: Consider (but do not write) the game played to prove that the statement is true.

(a) Problem P is computable.

i. ∀I ∃A A(I) = P (I).

ii. ∀A ∃I A(I) = P (I).

iii. ∃I ∀A A(I) = P (I).

iv. ∃A ∀I A(I) = P (I).

(b) Problem P is uncomputable.

i. ∀I ∃A A(I) 6= P (I).

ii. ∀A ∃I A(I) 6= P (I).

iii. ∃I ∀A A(I) 6= P (I).

iv. ∃A ∀I A(I) 6= P (I).

(c) Algorithm A’s running time is O(1). (Ignore the n0 part.)

i. ∀I ∃c T ime(A, I) ≤ c.

ii. ∀c ∃I T ime(A, I) ≤ c.

iii. ∃I ∀c T ime(A, I) ≤ c.

iv. ∃c ∀I T ime(A, I) ≤ c.

• Answer: iv,ii,iv

7. (47% in 2015)
Consider the function f(n) = 9n3 log100(n) + 5 · n5.5 log2(n)(sin(n2) + 5).
What is Θ(f(n))? Why?

Is it one of the following: Θ(1), 2Θ(n), logΘ(1)(n), or nΘ(1). Why? What is this class called?

• Answer: f(n) = Θ(n5.5 log2(n)). Theoretically at least the log100(n) will get dominated by the
n5.5. The log2(n) can’t be dropped because it is not a constant, but (sin(n2) + 5) can because it
is bounded by 6.
For big n, this is bounded between n5.5 and n5.6. Hence, f(n) ∈ nΘ(1). This is a polynomial
function.

8. (44% in 2015)
Running Time: Give the Theta (bigO) of time complexity (running time) of each of these programs.
Explain your work.
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algorithm Ex0(〈x1, x2, . . . , xn〉)

〈pre−cond〉: x is an array of n integers.

〈post−cond〉: Some number of “Hi”s are printed

begin
loop i = 1 . . . n {

m = n
while( m > 1 ) {

Print(“Hi”)
Print(“Hi”)
m = m/2

}
Print(“Hi”)

}
end algorithm

algorithm Ex1(〈x1, x2, . . . , xn〉)

〈pre−cond〉: x is an array of n integers.

〈post−cond〉: Some number of “Hi”s are printed

begin
m = n
while( m > 1 ) {

loop i = 1 . . .m {
Print(“Hi”)
Print(“Hi”)

}
Print(“Hi”)

m = m/2
}

end algorithm

algorithm Ex2(N)

〈pre−cond〉: N is an integers.

〈post−cond〉: Some number of “Hi”s are printed

begin
loop i = 1 . . . N {

loop i = 1 . . . N {
Print(“Hi”)
Print(“Hi”)

}
}

end algorithm

algorithm Ex3(〈x1, x2, . . . , xn〉)

〈pre−cond〉: x is an array of n integers.

〈post−cond〉: Some number of “Hi”s are printed

begin
if( n ≤ 1 )

Print(“Hi”)
else

loop i = 1 . . . n3

Print(“Hi”)
end loop

Ex3(
〈

1× x1, x2, . . . , xn/2

〉

Ex3(
〈

2× x1, x2, . . . , xn/2

〉

Ex3(
〈

3× x1, x2, . . . , xn/2

〉

Ex3(
〈

4× x1, x2, . . . , xn/2

〉

Ex3(
〈

5× x1, x2, . . . , xn/2

〉

Ex3(
〈

6× x1, x2, . . . , xn/2

〉

Ex3(
〈

7× x1, x2, . . . , xn/2

〉

Ex3(
〈

8× x1, x2, . . . , xn/2

〉

end if
end algorithm

• Answer:

Ex0: The outer loop iterates n times. The inner loop needs to divide by two log n times to
get m from n down to 1. The number of “Hi”s printed just just changes the constant.
T ime(n) = Θ(n log n).

Ex1: On the ith iteration of the outer loop m has the value n
2i and hence the inner loop iterates

this number of times. This is a geometric sum which is dominated by the biggest term.
T ime(n) =

∑logn

i=0 Θ( n
2i ) = Θ(n).

Ex2: N is a value. The size of this input is n = log2(N). This gives N = 2n. T ime(n) =

Θ(N2) = Θ((2n)
2
) = Θ(22n). Any answer 2Θ(n) is fine.

Ex3: The work the top level does is n3 giving c = 3. The number of friends is a = 8. The size
of their input is n

2 and hence b = 2. This gives the recurrence relation T (n) = 8T (n/2) + n3.
log(a)
log(b) = log(8)

log(2) = 3 = c. Hence the work is the same at all levels giving T ime(n) = Θ(n3 log n).
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