
433 Abstract Data Types

Abstract data types (ADTs) provide both a language for talking about and tools for
operating on complex data structures. Each is defined by the types of objects that it
can store and the operations that can be performed. Unlike a function that takes an
input and produces an output, an ADT is more dynamic, periodically receiving infor-
mation and commands to which it must react in a way that reflects its history. In an
object-oriented language, these are implemented with objects, each of which has its
own internal variables and operations. A user of an ADT has no access to its internal
structure except through the operations provided. This is referred to as information
hiding and provides a clean boundary between the user and the ADT. One person
can use the ADT to develop other algorithms without being concerned with how it
is implemented or worrying about accidentally messing up the data structure. An-
other can implement and modify the ADT without knowing how it is used or worry-
ing about unexpected effects on the rest of the code. A general purpose ADT—not just
the code, but also the understanding and the mathematical theory—can be reused in
many applications. Having a limited set of operations guides the implementer to use
techniques that are efficient for these operations yet may be slow for the operations
excluded. Conversely, using an ADT such as a stack in your algorithm automatically
tells someone attempting to understand your algorithm a great deal about the pur-
pose of this data structure. Generally, the running time of an operation is not a part
of the description of an ADT, but is tied to a particular implementation. However, it
is useful for the user to know the relative expense of using operations so that he can
make his own choices about which ADTs and which operations to use.

This chapter will treat the following ADTs: lists, stacks, queues, priority queues,
graphs, trees, and sets. From the user’s perspective, these consist of a data structure
and a set of operations with which to access the data. From the perspective of the
data structure itself, it is a ongoing system that continues to receive a stream of com-
mands to which it must react dynamically. ADTs have a set of invariants or integrity
constraints (both public and hidden) that must be true every time the system is en-
tered or left. Imagining a big loop around the system allows us to regard them as a
kind of loop invariant.

Iterative Algorithms and Loop Invariants

44

3.1 Specifications and Hints at Implementations

The following are examples frequently used ADTs.

Simple Types: Integers, floating point numbers, strings, arrays, and records are ab-
stract data types provided by all programming languages.

The List ADT:

Specification: A list consists of an ordered sequence of elements. Unlike arrays,
they contain no empty positions. Elements can be inserted, deleted, read, modi-
fied, and searched for.

Array Implementations: There are different implementations that have tradeoffs
in the running time, memory requirements, and difficulty of implementing. The
obvious implementation of a list is to put the elements in an array. If the elements
are packed one after the other, then the ith element can be accessed in �(1)
time, but inserting or deleting an element requires �(n) time because all the el-
ements need to be shifted. Alternatively, blank spaces could be left between the
elements. This leaves room to insert or delete elements in �(1) time, but finding
the ith element might now take �(n) time.

Linked List Implementations: A problem with the array implementation is that
the array needs to be allocated some fixed size of memory when initialized. An
alternative implementation, which can be expanded or shrunk in size as needed,
uses a linked list. This implementation has the disadvantage of requiring �(n)
time to access a particular element. See Section 3.2.

Tree Implementations: A nice balance between the advantages of array and the
linked list implementations is data structure called a heap. Heaps can do every
operation in �(log n) time. See Section 10.4. Adelson-Velsky–Landis (AVL) trees
and red–black trees have similar properties.

The Stack ADT:

Specification: A stack ADT is the same as a list ADT, except its operations are
limited. It is analogous to a stack of plates. A push is the operation of adding a
new element to the top of the stack. A pop is the operation of removing the top
element from the stack. The rest of the stack is hidden from view. This order is
referred to as last in, first out (LIFO).

Use: Stacks are the key data structure for recursion and parsing. Having the op-
erations limited means that all operations can implemented easily and be per-
formed in constant time.

Abstract Data Types

45

Array Implementation: The hidden invariants in an array implementation of a
stack are that the elements in the stack are stored in an array starting with the
bottom of the stack and that a variable top indexes the entry of the array contain-
ing the top element. It is not difficult to implement push and pop so that they
maintain these invariants. The stack grows to the right as elements are pushed
and shrinks to the left as elements are popped. For the code, see Exercise 3.1.1.

top

/72 3 4 5 ///861

Linked List Implementation: As with lists, stacks are often implemented using
linked lists. See Section 3.2.

The Queue ADT:

Specification: The queue ADT is also the same as a list ADT, except with a differ-
ent limited set of operations. A queue is analogous to a line-up for movie tickets.
One is able to insert an element at the rear and remove the element that is at the
front. This order is first in first out (FIFO).

Queue Use: An operating system will have a queue of jobs to run and a network
hub will have a queue of packets to transmit. Again all operations can be imple-
ment easily to run in constant time.

Array Implementation:

Trying Small Steps: If the front element is always stored at index 1 of the
array, then when the current front is removed, all the remaining elements
would need to shift by one to take its place. To save time, once an element is
placed in the array, we do not want to move it until it is removed. The effect
is that the rear moves to the right as elements arrive, and the front moves to
the right as elements are removed. We use two different variables, front and
rear, to index their locations. As the queue migrates to the right, eventually it
will reach the end of the array. To avoid getting stuck, we will treat the array
as a circle, indexing modulo the size of the array. This allows the queue to
migrate around and around as elements arrive and leave.

Hidden Invariants: The elements are stored in order from the entry indexed
by front to that indexed by rear possibly wrapping around the end of the
array.

front

/7 ///8 3 4 5 61 2

rear

Iterative Algorithms and Loop Invariants

46

Extremes: It turns out that the cases of a completely empty and a com-
pletely full queue are indistinguishable, because with both front will be one
to the left of rear. The easiest solution is not to let the queue get completely
full.

Code: See Exercises 3.1.2 and 3.1.3.

Linked List Implementation: Again see Section 3.2.

The Priority Queue ADT:

Specification: A priority queue is still analogous to a line-up for movie tickets.
However, in these queues the more important elements are allowed to move to
the front of the line. When inserting an element, its priority must be specified.
This priority can later be changed. When removing, the element with the highest
priority in the queue is removed and returned. Ties are broken arbitrarily.

Tree Implementations: Heaps, AVL trees, and red–black trees can do each oper-
ation in �(log n) time. See Sections 4.1, 10.2, and 10.4.

The Set ADT:

Specification: A set is basically a bag within which you can put any elements that
you like. It is the same as a list, except that the elements cannot be repeated or
ordered.

Indicator Vector Implementation: If the universe of possible elements is suffi-
ciently small, then a good data structure is to have a Boolean array indexed with
each of these possible elements. An entry being true will indicate that the corre-
sponding element is in the set. All set operations can be done in constant time,
i.e., in a time independent of the number of items in the set.

Hash Table Implementation: Surprisingly, even if the universe of possible ele-
ments is infinite, a similar trick can be done, using a data structure called a hash
table. A pseudorandom function H is chosen that maps possible elements of the
set to the entries [1, N] in the table. It is a deterministic function in that it is easy
to compute and always maps an element to the same entry. It is pseudorandom
in that it appears to map each element into a random place. Hopefully, all the
elements that are in your set happen to be placed into different entries in the ta-
ble. In this case, one can determine whether or not an element is contained in
the set, ask for an arbitrary element from the set, determine the number of ele-
ments in the set, iterate through all the elements, and add and delete elements—
all in constant time, i.e., independently of the number of items in the set. If col-
lisions occur, meaning that two of your set elements get mapped to the same
entry, then there are a number of possible methods to rehash them somewhere
else.

Abstract Data Types

47

The Set System ADT:

Specification: A set system allows you to have a set (or list) of sets. Operations
allow the creation, union, intersection, complementation, and subtraction of sets.
The find operator determines which set a given element is contained in.

List-of-Indicator-Vectors or Hash-Table Implementations: One way to imple-
ment these is to have a list of elements implemented using an array or a linked
list where each of these elements is an implementation of a set. What remains is
to implement operations that operate on multiple sets. Generally, these opera-
tions take �(n) time.

Union–Find Set System Implementation: Another quite surprising result is that
on disjoint sets, the union and find operations can be done on average in a con-
stant amount of time for all practical purposes. See the end of this section.

The Dictionary ADT: A dictionary associates a meaning with each word. Similarly,
a dictionary ADT associates data with each key.

Graphs:

Specification: A graph is set of nodes with edges between them. They can rep-
resent networks of roads between cities or friendships between people. The key
information stored is which pairs of nodes are connected by an edge. Sometimes
data, such as weight, cost, or length, can be associated with each edge or with
each node. Though a drawing implicitly places each node at some location on
the page, a key abstraction of a graph is that the location of a node is not speci-
fied. The basic operations are to determine whether an edge is in a graph, to add
or delete an edge, and to iterate through the neighbors of a node. There is a huge
literature of more complex operations that one might want to do. For example,
one might want to determine which nodes have paths between them or to find
the shortest path between two nodes. See Chapter 14.

u

u v w

v

w

1

1 1

An adjacency list
w

v

u v

u w

An adjacency matrixA graph

u v

w

Adjacency Matrix Implementation: This consists of an n × n matrix with
M(u, v) = 1 if 〈u, v〉 is an edge. It requires �(n2) space (corresponding to the num-
ber of potential edges) and �(1) time to access a given edge, but �(n) time to find
the edges adjacent to a given node, and �(n2) to iterate through all the nodes.
This is only a problem when the graph is large and sparse.

Iterative Algorithms and Loop Invariants

48

cheetahdad gamekeeper

bearcat

gamekeeper

animal

invertebratevertebrate

bird reptile

snake

polarpandablack

human

lizard

mammal

caninehomosapien

+

y 7

x

*

f

(a) (b)

Figure 3.1: Classification tree of animals and a tree representing the expression f = x × (y + 7).

Adjacency List Implementation: It lists for each node the nodes adjacent to it.
It requires �(E) space (corresponding to the number of actual edges) and can
iterate quickly through the edges adjacent to a give node, but requires time pro-
portional to the degree of a node to access a specific edge.

Trees:

Specification: Data is often organized into a hierarchy. A person has children,
who have children of their own. The boss has people under her, who have people
under them. The abstract data type for organizing this data is a tree.

Uses: There is a surprisingly large list of applications for trees. For two examples
see Figure 3.1 and Section 10.5.

Pointer Implementation: Trees are generally implemented by having each node
point to each of its children:

x

7y

+

f

*

Orders: Imposing rules on how the nodes can be ordered speeds up certain op-
erations.

Binary Search Tree: A binary search tree is a data structure used to store keys
along with associated data. The nodes are ordered so that for each node, all
the keys in its left subtree are smaller than its key, and all those in the right
subtree are larger. Elements can be found in such a tree, using binary search,
in O(height) instead of O(n) time. See Sections 4.1 and 10.2.

Abstract Data Types

49

Heaps: A heap requires that the key of each node be bigger than those of
both its children. This allows one to find the maximum key in O(1) time. All
updates can be done in O(log n) time. Heaps are useful for a sorting algo-
rithm known as heap sort and for the implementation of priority queues.
See Section 10.4.

Balanced Trees: If a binary tree is balanced, it takes less time to traverse down it,
because it has height at most log2 n. It is too much work to maintain a perfectly
balanced tree as nodes are added and deleted. There are, however, a number of
data structures that are able to add and delete in O(log2 n) time while ensuring
that the tree remains almost balanced. Here are two.

AVL Trees: Every node has a balance factor of −1, 0, or 1, defined as the dif-
ference between the heights of its left and right subtrees. As nodes are added
or deleted, this invariant is maintained using rotations like the following (see
Exercise 3.1.5):

[5,10]

10

5

Rotate

5

10

..,5]

[10,..

[5,10]

..,5]

[10,..

Red–Black Trees: Every node is either red or black. If a node is red, then both
its children are black. Every path from the root to a leaf contains the same
number of black nodes. See Exercise 3.1.6.

Balanced Binary Search Tree: By storing the elements in a balanced binary
search tree, insertions, deletions, and searches can be done in �(log n) time.

Union–Find Set System: This data structure maintains a number of disjoint sets of
elements.

Operations: (1) Makeset(v), which creates a new set containing the specified el-
ement v; (2) Find(v), which determines the name of the set containing a speci-
fied element (each set is given a distinct but arbitrary name); and (3) Union(u, v),
which merges the sets containing the specified elements u and v.

Iterative Algorithms and Loop Invariants

50

Use: One application of this is in the minimum-spanning-tree algorithm in
Section 16.2.3.

Running Time: On average, for all practical purposes, each of these operations
can be completed in a constant amount of time. More formally, the total time
to do m of these operations on n elements is �(mα(n)), where α is the inverse
Ackermann’s function. This function is so slow growing that even if n equals the
number of atoms in the universe, then α(n) ≤ 4. See Section 9.3.

Implementation: The data structure used is a rooted tree for each set, containing
a node for each element in the set. The difference is that each node points to
its parent instead of to its children. The name of the set is the contents of the
root node. Find(w) is accomplished by tracing up the tree from w to the root u.
Union(u, v) is accomplished by having node u point to node v. From then on,
Find(w) for a node w in u’s tree will trace up and find v instead. What makes
this fast on average is that whenever a Find operation is done, all nodes that are
encountered during the find are changed to point directly to the root of the tree,
collapsing the tree into a shorter tree.

f

w

g

e

d

c

a

v

w

u

b

u

find(w) returns v Union(u,v)
v

a u

w

a b

d

e f

g

c

c

g

fe

d

b

v

EXERCISE 3.1.1 Implement the push and pop operations on a stack using an array as
described in Section 3.1.

EXERCISE 3.1.2 Implement the insert and remove operations on a queue using an
array as described in Section 3.1.

EXERCISE 3.1.3 When working with arrays, as in Section 3.1, what is the difference
between “rear = (rear + 1) mod MAX” and “rear = (rear mod MAX) + 1,” and when
should each be used?

Figure: The top row shows three famous
graphs: the complete graph on four nodes, the
cube, and the Peterson graph. The bottom row
shows the same three graphs with their nodes
laid out differently.

Abstract Data Types

51

EXERCISE 3.1.4 For each of the three pairs of graphs, number the nodes in such the
way that 〈i, j 〉 is an edge in one if and only if it is an edge in the other.

EXERCISE 3.1.5 (See solution in Part Five.) Prove that the height of an AVL tree with n
nodes is �(log n).

EXERCISE 3.1.6 Prove that the height of a red–black tree with n nodes is �(log n).

3.2 Link List Implementation

As said, a problem with the array implementation of the list ADT is that the array
needs to be allocated some fixed size of memory when it is initialized. A solution to
this is to implement these operations using a linked list, which can be expanded in
size as needed. This implementation is particularly efficient when the operations are
restricted to those of a stack or a queue.

List ADT Specification: A list consists of an ordered sequence of elements. Unlike
arrays, it has no empty positions. Elements can be inserted, deleted, read, modified,
and searched for. There are tradeoffs in the running time. Arrays can access the ith
element in �(1) time, but require �(n) time to insert an element. A linked list is an
alternative implementation in which the memory allocated can grow and shrink dy-
namically with the needs of the program. Linked lists allow insertions in �(1) time,
but require �(n) time to access the ith element. Heaps can do both in �(log n) time.

info link info link

first

linkinfo info link

Hidden Invariants: In a linked list, each node contains the information for one el-
ement and a pointer to the next. The variable first points to the first node, and last
to the last. The last node has its pointer variable contain the value nil. When the list
contains no nodes, first and last also point to nil.

Notation: A pointer, such as first, is a variable that is used to store the address
of a block of memory. The information stored in the info field of such a block is
denoted by first.info in Java and first−> info in C. We will adopt the first nota-
tion. Similarly, first.link denotes the pointer field of the node. Being a pointer itself,
first.link.info denotes the information stored in the second node of the linked list,
and first.link.link.info in the third.

Adding a Node to the Front: Given a list ADT and new Info to store in an element,
this operation is to insert an element with this information into the front the list.

Iterative Algorithms and Loop Invariants

52

killNode

first

last

first

last

first

last

item

item

itemitem

item

item

first

last

killNode killNode

last

first

killNode

last

first

last

killNodekillNode

first

last

first first

last

first

itemtemp

last

itemtemp

first

last

first

last

first

last

last

first

last

first

last

first

last

first

temp item

itemtemp

temp item

item

last

first

temp

itemtemp

Figure 3.2: Adding and removing a node from the front of a linked list.

General Case: We need the following steps (with pseudocode given to the right)
for a large and general linked list. See Figure 3.2.

� Allocate space for the new node. New temp
� Store the information for the new element. temp.info = Info
� Point the new node at the rest of the list. temp.link = first
� Point first at the new node. first = temp

Special Case: The main special case is an empty list. Sometimes we are lucky and
the code written for the general case also works for such special cases. Inserting
a node starting with both first and last pointing to nil, everything works except
for last. Add the following to the bottom of the code.

� Point last to the new and only node. if(last = nil) then
last = temp

end if

Whenever adding code to handle a special case, be sure to check that the previ-
ously handled cases still are handled correctly.

Removing Node from Front: Given a list ADT, this operation is to remove the ele-
ment in the front the list and to return the information Info stored within it.

General Case:
� Point a temporary variable kill Node to

point to the node to be removed.
kill Node = first

� Move first to point to the second node. first = first.link
� Save the value to be returned. Info = kill Node.info
� Deallocate the memory for the first node. free kill Node
� Return the value. return(item)

Abstract Data Types

53

Special Cases: If the list is already empty, a node cannot be removed. The only
other special case occurs when there is one node pointed to by both first and
last. At the end of the code, first points to nil, which is correct for an empty list.
However, last still points to the node that has been deleted. This can be solved by
adding the following to the bottom of the code:

� The list becomes empty. if(first = nil) then
last = nil

end if

Note that the value of first and last change. If the routine Pop passes these pa-
rameters in by value, the routine needs to be written to allow this to happen.

Testing Whether Empty: A routine that returns whether the list is empty returns
true if first = nil and false otherwise. It does not look like this routine does much, but
it serves two purposes. It hides these implementation details from the user, and by
calling this routine instead of doing the test directly, the user’s code becomes more
readable. See Exercise 3.2.1.

Adding Node to End: See Exercise 3.2.2.

Removing Node from End: It is easy to access the last node and delete it, because
last is pointing at it. However, in order to maintain this invariant, last must be pointed
at the node that had been the second-to-last node. It takes �(n) time to walk down
the list from the first node to find this second-to-last node. Luckily, neither stacks nor
queues need this operation. For a faster implementation see Exercise 3.2.3.

Walking Down the Linked List: Now suppose that the elements in the linked lists
are sorted by the field info. When given an info value new Element , our task is to point
the pointer next at the first element in the list with that value. The pointer prev is
to point to the previous element in the list. This needs to be saved, because if it is
needed, there is no back pointer to back up to it. If such an element does not exist,
then prev and next are to sandwich the location where this element would go. For
example, if new Element had either the value 6 or the value 8, the result of the search
would be

= 6 or 8prev next

last

first 9843

newElement

� Walk down the list loop
� maintaining the two pointers 〈loop-inv 〉: prev and next point to

consecutive nodes before or at
our desired location.

Iterative Algorithms and Loop Invariants

54

� until the desired location is found exit when next = nil
or next .info ≥ new Element

� pointing prev where next is pointing prev = next
� and pointing next to the next node. next = next.link

end loop

Running Time: This can require O(n) time, where n is the length of the list.

Initialize the Walk: To initially establish the loop invariant, prev and next must
sandwich the location before the first node. We do this as follows:

last

first 9843

prev next

� Sandwich the location before the first
node.

prev = nil
next = first

Adding a Node:

Into the Middle: The general case to consider first is adding the node into the
middle of the list.

3 4 8 9first

last

nextprev

3 4 8 9first

last

nextprev 6

� Allocate space for the new node. new temp
� Store the information for the new element. temp.info = item
� Point the previous node to the new node. prev.link = temp
� Point the new node to the next node. temp.link = next

At the Beginning: If the new node belongs at the beginning of the list (say
value 2), then prev.link = temp would not work, because prev is not pointing at a
node. We will replace this line with the following:

Abstract Data Types

55

last

first 9843

prev next

� If the new node is to be the first node, if prev = nil then
� point first at the new node first = temp
� else else
� point the previous node to the new node. prev.link = temp

end if

At the End: Now what if the new node is to be added on the end (e.g. value 12)?
The variable last will no longer point at the last node. Adding the following code
to the bottom will solve the problem:

3 4 8 9first

last

nextprev

� If the new node will be the last node, if prev = last then
� point last at the new node. last = temp

end if

To an Empty List: Another case to consider is when the initial list is empty. In this
case, all the variables, first, last, prev, and next, will be nil. The new code works in
this case as is.

Compete Code for Adding a Node: One needs to put all of these pieces together
into one insert routine. See Exercise 3.2.5.

Deleting a Node:

From the Middle: Again the general case to consider first is deleting the node
from the middle of the list. We must maintain the linked list before destroying
the node. Otherwise, we will drop the list.

3 4 8 9first

last

nextprev

3 4 9first

last

prev next

Iterative Algorithms and Loop Invariants

56

� Bypass the node being deleted. prev.link = next .link
� Deallocate the memory pointed to by

next.
free next

From the Beginning or the End: As before, you need to consider all the potential
special cases. See Exercise 3.2.6.

prev nextnextprev

3 4 8 9first

last

nextprev

last

first 9843

prev next

(c) (d)

(b)(a)

3 4 8 9first

lastlast

first 9843

EXERCISE 3.2.1 Implement testing whether a linked list is empty.

EXERCISE 3.2.2 Implement adding a node to the end of a linked list.

EXERCISE 3.2.3 Double pointers: Describe how this operation can be done in �(1)
time if there are pointers in each node to both the previous and the next node.

EXERCISE 3.2.4 (See solution in Part Five.) In the code for walking down the linked
list, what effect, if any, would it have if the order of the exit conditions were switched
to “exit when next .info ≥ new Element or next = nil”?

EXERCISE 3.2.5 Implement the complete code insert that, when given an info value
new Element, inserts a new element where it belongs into a sorted linked list. This in-
volves only putting together the pieces just provided.

EXERCISE 3.2.6 Implement the complete code Delete that, when given an info value
new Element, finds and deletes the first element with this value, if it exists. This in-
volves also considering the four special cases listed for deleting a node from the begin-
ning or the end of a linked list.

3.3 Merging with a Queue

Merging consists of combining two sorted lists, A and B, into one completely sorted
list, C . Here A , B, and C are each implemented as queues. The loop invariant main-
tained is that the k smallest of the elements are sorted in C . (This is a classic more-
of-the-output loop invariant. It is identical to that for selection sort.) The larger ele-
ments are still in their original lists A and B. The next smallest element will be either

Abstract Data Types

57

first element in A or the first element in B. Progress is made by removing the smaller
of these two first elements and adding it to the back of C . In this way, the algorithm
proceeds like two lanes of traffic merging into one. At each iteration, the first car from
one of the incoming lanes is chosen to move into the merged lane. This increases k
by one. Initially, with k = 0, we simply have the given two lists. We stop when k = n.
At this point, all the elements will be sorted in C . Merging is a key step in the merge
sort algorithm presented in Section 9.1.

algorithm Merge(list : A , B)

〈 pre-cond〉: A and B are two sorted lists.

〈 post-cond〉: C is the sorted list containing the elements of the other two.

begin
loop

〈loop-invariant〉: The k smallest of the elements are sorted in C .
The larger elements are still in their original lists A and B.

exit when A and B are both empty
if(the first in A is smaller than the first in B or B is empty) then

next Element = Remove first from A
else

next Element = Remove first from B
end if
Add next Element to C

end loop
return(C)

end algorithm

3.4 Parsing with a Stack

One important use of stack is for parsing.

Specifications:

Preconditions: An input instance consists of a string of brackets.

Postconditions: The output indicates whether the brackets match. Moreover,
each left bracket is allocated an integer 1, 2, 3, . . . , and each right bracket is al-
located the integer from its matching left bracket.

Example:

Input: ([{ } ()] () { () })
Output: 1 2 3 3 4 4 2 5 5 6 7 7 6 1

Iterative Algorithms and Loop Invariants

58

The Loop Invariant: Some prefix of the input instance has been read, and the cor-
rect integer allocated to each of these brackets. (Thus, it is a more-of-the-input loop
invariant.) The left brackets that have been read and not matched are stored along
with their integers in left-to-right order in a stack, with the rightmost on top. The
variable c indicates the next integer to be allocated to a left bracket.

Maintaining the Loop Invariant: If the next bracket read is a left bracket, then it
is allocated the integer c. Not being matched, it is pushed onto the stack. c is incre-
mented. If the next bracket read is a right bracket, then it must match the rightmost
left bracket that has been read in. This will be on the top of the stack. The top bracket
on the stack is popped. If it matches the right bracket, i.e., we have (), {}, or [], then the
right bracket is allocated the integer for this left bracket. If not, then an error message
is printed.

Initial Conditions: Initially, nothing has been read and the stack is empty.

Ending: If the stack is empty after the last bracket has been read, then the string has
been parsed.

Code:

algorithm Par sing (s)

〈 pre-cond〉: s is a string of brackets.
〈 post-cond〉: Prints out a string of integers that indicate how the brackets

match.

begin
i = 0, c = 1
loop

〈loop-invariant〉: Prefix s[1, i] has been allocated integers, and
its left brackets are on the stack.

exit when i = n
if(s[i + 1] is a left bracket) then

print(c)
push(〈s[i + 1], c〉)
c = c + 1

elseif(s[i + 1] = right bracket) then
if(stackempty()) return(“Cannot parse”)
〈left, d〉 = pop()
if(left matches s[i + 1]) then print(d)
else return(“Cannot parse”)

Abstract Data Types

59

else
return(“Invalid input character”)

end if
i = i + 1

end loop
if(stackempty()) return(“Parsed”) else return(“Cannot parse”)

end algorithm

Parsing only “()”: If you only need to parse one type of brackets and you only want
to know whether or not the brackets match, then you do not need the stack in the
above algorithm, only an integer storing the number of left brackets in the stack.

Parsing with Context-Free Grammars: To parse more complex sentences see
Chapter 12 and Section 19.8.

