
York University

CSE 2001 – Unit 4.0 Context Free Grammars

and Parsers and Context Sensitive Grammars
Instructor: Jeff Edmonds

Read Jeff’s notes. Read the book. Go to class. Ask lots of question. Study the slides. Work hard on solving
these questions on your own. Talk to your friends about it. Talk to Jeff about it. Only after this should
you read the posted solutions. Study the solutions. Understand the solutions. Memorize the solutions. The
questions on the tests will be different. But the answers will be surprisingly close.

1. Consider the following grammar.

exp ⇒ term
⇒ term + exp
⇒ term - exp

term⇒ fact
⇒ fact * term

fact ⇒ int
⇒ ( exp )

(a) Give a derivation/parsing tree of the following expressions. (You may use the single letters e, t,
and f for exp, term, and fact.

i. s = “9+3*2”.

ii. s = “(9+3)*2”.

iii. s = “9-3-2”.

iv. s = “( ( ( 1 ) * 2 + 3 ) * 5 * 6 + 7 )”.

(b) Syntactics vs Semantics

i. Syntactically, does this grammar generate reasonable expressions?

ii. Semantically (meaning), does it make any mistakes, i.e. if you evaluated the above expressions
using your parsings, would you get the correct answers?

2. Recall that the regular languages are closed under complement, union, and intersection. Clearly context
free languages are closed under union because if L1 is generated with the grammar S1 ⇒ .... and L2

with S2 ⇒ ...., then L = L1 ∪ L2 is generated with the grammar S ⇒ S1 | S2 together with the
other rules. We will now prove that context free languages are NOT closed under intersection or under
complement. Specifically, we define two languages anbnc∗ and a∗bncn that are context free, however,
anbncn = anbnc∗ ∩ a∗bncn is not context free. Similarly, we define language L? that is context free,
however, L? is not context free. At the end, we give a simpler example that was inspired by the fact
that L1 ∩ L2 = L1 ∪ L2 is context free but L1 ∩ L2 is not.

• L=∗ = anbnc∗.
Clearly this is context free.

• L∗= = a∗bncn.
Clearly this is context free.

• L== = anbncn.
In class we argued that this language cannot be done by a context free grammar.

• We will prove that L== = L=∗ ∩ L∗=.
This proves that context free languages are NOT closed under intersection.

• L= = {w1#w2 | w1, w2 ∈ {0, 1}∗ and w1 = w2}.
In class we argued that this language cannot be done by a context free grammar.
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• L 6= = {w1#w2 | w1, w2 ∈ {0, 1}∗ and w1 6= w2}.
This question here will develop a context free grammar for this.

• L## = {w ∈ {0, 1,#}∗| the number of # in w is not one }.
Clearly this is context free.

• L? = L 6= ∪ L##.
Clearly this is context free.

• Note the full universe {0, 1,#}∗ is the disjoint union of L=, L 6=, and L##.
Hence, L= = L 6= ∪ L## = L? and L? = L=.
Note L? is context free and L? = L= is not.
This proves that context free languages are NOT closed under intersection.

We now fill in the details.

(a) How did we argue in class that anbncn cannot be done by a context free grammar.

(b) Argue that anbncn = anbnc∗ ∩ a∗bncn.

(c) The build a grammar for {0, 1}∗.

• Answer 1:
S ⇒ CS | ǫ
C ⇒ 0 | 1

• Answer 2: I will now give the same grammar again but with different names for the non-
terminals. In order to generate the languages L{0,1}∗ = {0, 1}∗ and L{0,1} = {0, 1}, I will
name the start non-terminal with S{0,1}∗ and S{0,1}.
S{0,1}∗ ⇒ S{0,1} S{0,1}∗ | ǫ
S{0,1} ⇒ 0 | 1

(d) Give a grammar for L=∗ = anbnc∗ starting with non-terminal S=∗.

(e) How did we argue in class that
L= = {w1#w2 | w1, w2 ∈ {0, 1}∗ and w1 = w2}.

cannot be done by a context free grammar.

(f) The build a grammar for L∗ = {w1#w2 | w1, w2 ∈ {0, 1}∗} starting with the non-terminal S∗.

(g) We will now develop a context free grammar for
L 6= = {w1#w2 | w1, w2 ∈ {0, 1}∗ and w1 6= w2}.

Note that if two strings w1 and w2 are different, then either these strings have different lengths
or there is some n ≥ 0 such that the n+1st bit of w1 is different than that of w2. Note we use this
strange indexing because there are n bits before the n+1st bit. For example, 101#1011 ∈ L 6=,
because the strings 101 and 1011 have different lengths. On the other hand, 101#111 ∈ L 6=,
because the strings 101 and 111 are different in the 2nd bit, i.e. the n+1st bit when n = 1.

With this motivation, define the following four languages.

• Ln>m = {w1#w2 | w1, w2 ∈ {0, 1}∗ and |w1| > |w2|}.

• Ln<m = {w1#w2 | w1, w2 ∈ {0, 1}∗ and |w1| < |w2|}.

• L0 6=1 = {w1#w2 | w1, w2 ∈ {0, 1}∗, some n+1st bit of w1 is 0, and of w2 is 1 }.

• L1 6=0 = {w1#w2 | w1, w2 ∈ {0, 1}∗, some n+1st bit of w1 is 1, and of w2 is 0 }.

Suppose you already have grammars for each of these languages starting with the non-terminal
named Sn>m, Sn<m, S0 6=1, and S1 6=0. Give a grammar for L 6= starting with the non-terminal S 6=.

(h) Recall that a grammar is ambiguous if there are more than one parsings for the same string.
Argue whether or not this grammar for L 6= is ambiguous.

(i) Give grammars for the following languages:
Ln=m = {0, 1}n#{0, 1}n = {w1#w2 | w1, w2 ∈ {0, 1}∗ and |w1| = |w2|} starting with Sn=m.

(j) Ln>m = {{0, 1}n#{0, 1}m | n > m} = {w1#w2 | w1, w2 ∈ {0, 1}∗ and |w1| > |w2|} starting with
Sn>m.
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(k) Argue that the following two languages are the same.
L0 6=1 = {w1#w2 | w1, w2 ∈ {0, 1}∗, some n+1st bit of w1 is 0, and of w2 is 1 }
and {0, 1}n0{0, 1}∗#{0, 1}n1{0, 1}∗.

(l) L0 6=1 = {0, 1}n0{0, 1}∗#{0, 1}n1{0, 1}∗ starting with S0 6=1.
Hint: Which blocks need to be linked and hence must get spewed together?

(m) This completes the grammar for L 6=. I find it surprising that this language has a grammar.

(n) L## = {w ∈ {0, 1,#}∗| the number of # in w is not one } starting with S##.

(o) L? = L 6= ∪ L## starting from S?.

(p) Here is a second example of a language L? that is context free, however, L? is not context free.
This example was inspired by the fact that L1 ∩ L2 is not context free but L1 ∩ L2 = L1 ∪ L2 is.

• L== = {0ℓ#0m#0n | ℓ = m and m = n} = 0n#0n#0n.
In class we argued that this language cannot be done by a context free grammar.

• L 6= 6= = {0ℓ#0m#0n | ℓ 6= m or m 6= n}.
Note that the complement of (ℓ = m and m = n) is (m or m 6= n). It is not too hard to see
that this is context free.

• L### = {w ∈ {0,#}∗| the number of # in w is not two }.
Clearly this is context free.

• L? = L 6= ∪ L##.
Clearly this is context free.

• Note the full universe {0,#}∗ is the disjoint union of L==, L 6= 6=, and L###.
Hence, L== = L 6= 6= ∪ L### = L? and L? = L==.
Note L? is context free and L? = L== is not.
This proves that context free languages are NOT closed under intersection.

Fill in the details.

3. Parsing

Look Ahead One: A grammar is said to be look ahead one if, given any two rules for the same
non-terminal, the first place that the rules differ is a difference in a terminal. (Equivalently the
rules can be views as paths down a tree.) This feature allows our parsing algorithm to look only
at the next token in order to decide what to do next. Thus the algorithm runs in linear time. An
example of a good set of rules would be:

A ⇒ B ’u’ C ’w’ E
A ⇒ B ’u’ C ’x’ F
A ⇒ B ’u’ C
A ⇒ B ’v’ G H

(Actually, even this grammar could also be problematic if when s = bbbucccweee, B could either
be parsed as bbb or as bbbu. Having B eat the ′u′ would be a problem.)
An example of a bad set of rules would be:

A ⇒ B C
A ⇒ D E

With such a grammar, you would not know whether to start parsing the string as a B or a D. If
you made the wrong choice, you would have to back up and repeat the process.

Consider a grammar G which includes the four look ahead rules for A given above. Give the code for
GetA (s, i) that is similar to that for GetExp (s, i). We can assume that it can be parsed, so do not
bother with error detection. HINT: The code should contain NO loops.
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4. Context Sensitive Grammar: There are no context free grammars for generating the language α#α

where α ∈ {0, 1}∗. (The proof is an ugly pumping lemma thing, which you don’t have to do.) Give a
context sensitive grammar for generating this language.

A loop invariant stating what string that grammar now has is REQUIRED. Give meaning and expla-
nation to your non-terminals.

The following are hints about two different ways to do it. Think about both, but only hand in one.

(a) Start with S → S′<

S′ → 0S′0 | 1S′1 | #>Q

This produces the string α#>QαR<

Then move the head Q back and forth to reverse the order of αR giving α.

(b) Start with S → S′<

S′ → 0S′C0 | 1S′C1 | #
This produces the string α#β<

where β = αR, except 0 is replaced by C0 and 1 by C1.
Then have the C0 and the C1 move on their own and convert when in place to 0 and 1.
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