
York University

CSE 2001 – Unit 3.1 DFA Classes

Converting between DFA, NFA, Regular Expressions, and

Extended Regular Expressions
Instructor: Jeff Edmonds

Don’t cheat by looking at these answers prematurely.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why
it is not true.

(a) Every DFA M can be converted into an equivalent NFA M ′ for which L(M) = L(M ′).

• Answer: True. A DFA M is automatically also a NFA.

(b) Every NFA M can be converted into an equivalent DFA M ′ for which L(M) = L(M ′).

• Answer: True. M ′ computing is like having many clones computing on M . The current
state of M ′ is the subset of the states of M that the clones are currently on.

(c) Every DFA M can be converted into an equivalent TM M ′ for which L(M) = L(M ′).

• Answer: True. A TM M ′ can simulate a DFA M simply by not using its tape except for
reading the input in.

(d) Every TM M can be converted into an equivalent DFA M ′ for which L(M) = L(M ′).

• Answer: False. A TM can compute L = {0n1n | n ≥ 0} and a DFA cannot.

(e) Every regular expression R can be converted into an equivalent NFA M for which L(R) = L(M).

• Answer: True. NFA are closed under union, concatenation, and kleene star. Hence, the NFA
M is built up by following these operations within the R.

(f) Every DFA M can be converted into an equivalent regular expression R for which L(M) = L(R).

• Answer: True. This is the complex algorithm in which states of the NFA are removed one
at a time and edges are allowed to be labeled with regular expressions.

(g) Every NFA M can be converted into an equivalent one M ′ that has a single accept state.

• Answer: True. Given M , construct M ′ by adding a new state f that will be the only accept
state of M ′. Add an ǫ transition from each accept state of M to f .

(h) The set of languages computed by DFA is closed under complement.

• Answer: True. Given a DFA M that computes L, construct M ′ by switching the accept and
not accept states of M . L(M ′) = L(M).

(i) The set of languages computed by NFA is closed under complement.

• Answer: True. Given a NFA M that computes L, constructing M ′ for which L(M ′) = L(M)
cant be done directly. Instead, convert the NFA M into a DFA M ′′ as done above and then
construct from the DFA M ′′ the DFA M ′ by switching the accept state, so that L(M ′) =
L(M ′′) = L(M).

2. Closure: Consider the automata from the last assignment.

2 31 0 0

0,1

1

0

1
1 1

0

0

(a) Construct an NFA for the language L1 ∪ L2. Use the technique done in class that combines the
above two machines. Do not simplify the machine produced.

• Answer: 0

0

ε

ε

0,1

00

1
1 1

0

1 2 3

(b) Similarly, construct an NFA for the language L2 ◦ L1.

• Answer:
0

0

0

11

2 31 0 0

0,1

εε
1

(c) Similarly, construct an NFA for the language (L2)
∗.

• Answer:

1
ε

ε

ε
1 1

0

0

0

(d) Suppose you are a DFA. You have an NFA M that accepts L and an input string ω. In your own
words, what are the ideas behind simulating M on ω? What states to you need?

3. Consider the NFA M :

0

2-12-0

3-0

3-1

3-2

0

0

0

0

0

ε

ε

(a) Give the language L(M).

• Answer: L(m) = {w ∈ {0}∗ | |w| = 0 mod 2 or |w| = 0 mod 3}

(b) Convert this NFA into a DFA. Giving the table, the DFA M ′, and the simplified DFA.

• Answer:

2

Q\Σ 0
0 ∅

2− 0 {2− 1}
2− 1 {2− 0}
3− 0 {3− 1}
3− 1 {3− 2}
3− 2 {3− 0}

{2-1,3-1} 0

{6-0} 0 {6-1} 0 {6-2} 0 {6-3} 0 {6-4} 0 {6-5}
0

{2-0,3-2} 0 {2-1,3-0} 0 {2-0,3-1} 0 {2-1,3-2}0{2-0,3-0}
0

{0,2-0,3-0}

Simplified

0

(c) Make a DFA M ′′ for the following language L′′ = {w ∈ {0}∗ | |w| is 0, 2, 3, or 4 mod 6}.

• Answer: See above fig.

(d) Is there a connection between M ′ and M ′′? Why? (If you are in the mood, see references for the
Chinese Remainder Theorem of number theory.)

• Answer: They compute the same language. The Chinese Remainder Theorem tells you for
example that if x = 1 mod 2 and x = 2 mod 3 then x = 5 mod 6.

4. Construct an NFA for the following language (bb ∪ aba)∗(aa ∪ ba)∗.

• Answer:

bb b b

a baba a ba b a

aa a a

a b a

b b

bb U aba
ε

ε
b a

a a

aa U ba
ε

ε

a b a

b b

ε

ε
b a

a a
ε

ε

ε

ε

ε ε

ε

ε(bb U aba)* (aa U ba)*
ε

ε

a b a

b b

ε

ε
(bb U aba)* b a

a a
ε

ε
(aa U ba)*

ε

ε

ε ε

ε

ε

5. Use the Bumping Lemma to prove that the following is not regular.
L = {anbamban+m | n,m ≥ 0}

• Answer: This L is not regular because it distinguishes between the infinite number of prefixes in
the set S = a∗. The prefixes α = ai and β = aj are distinguished by L as follows. Let =̧babai+1,
then α=̧aibabai+1 is in L and β=̧ajbabai+1 is not.

6. Algorithms: Describe in a few sentences the outline of an algorithm to solve each of the following
computational problems involving DFA and NFA.

(a) Given an NFA M , does it accept any string or is it the case that L(M) = ∅.

• Answer: An NFA M accepts the string α iff there exists a path from the start state to an
accept state labeled α. There is some string that M accepts iff there exists a path from the
start state to an accept state. To check this, we consider each accept state one at a time and
ask whether there exists a path from the start state to this accept state.
When the NFA M is viewed as a directed graph, this question can be rephrased as the
following classic graph theory problem. The input consists of a directed graph and two nodes
s and t. The output states whether or not there is a path in the graph from s to t. There are
standard algorithms for this problem.

3

(b) The symmetric difference of two languages is defined to be L1 ⊕ L2 = (L1 ∩ L2) ∪ (L2 ∩ L1). It
consists of those strings for which these languages give different answers.

Given two DFA M1 = 〈Q1,Σ, δ1, s1, F1〉 and M2 = 〈Q2,Σ, δ2, s2, F2〉, construct a DFA M =
〈Q,Σ, δ, s, F 〉. Then formally prove as done in class that L(M) = L(M1) ⊕ L(M2), i.e. that for
every string α, α ∈ L(M) if and only if α ∈ L(M1)⊕ L(M2).

• Answer: Define M = 〈Q1 ×Q2,Σ, δ, 〈s1, s2〉 , F 〉, where δ (〈q1, q2〉 , a) = 〈δ1 (q1, a) , δ2 (q2, a)〉
and F = {〈q1, q2〉 | (q1 ∈ F1 and q2 6∈ F2) or (q1 6∈ F1 and q2 ∈ F2)}. We prove L(M) =
L(M1)⊕ L(M2) as follows. w ∈ L(M) iff M computing on w halt in some state 〈q1, q2〉 ∈ F

iff M1 and M2 computing on w halts in states such that one is accepting and the other is not
iff w ∈ L(M1)⊕ L(M2).

(c) Given two NFA M1 and M2, determine whether L(M1) = L(M2).

• Answer: Observe that L1 = L2 if and only if L1 ⊕ L2 = ∅. We test this as follows. First
covert each NFA into equivalent DFAs using 2Q clone method. Then uses algorithm from (b)
to construct a DFA M for the symmetric difference of their languages. Finally, use algorithm
from (a) to test whether M accepts any strings.

(d) Given an NFA M , determine whether L(M) = {ω | ω contains 0101 as a substring }.

• Answer: Let M2 be the NFA given in the notes accepting the language {ω | ω contains 0101
as a substring }. Use algorithm from (c) to test whether L(M) = L(M2).

(e) Given an NFA M , determine whether L(M) = {0n1n | n ≥ 0}.

• Answer: No NFA accepts this language. Hence, when we are given an NFA, we can simply
say NO without even looking at it.

7. Let L be a language of strings from {0, 1}∗.
We say that the strings α and β are distinguished by L if there exists a γ such that L(αγ) 6= L(βγ).
Don’t try to prove it, but what did we say in class that this says about any DFA computing L?

Give a first order logic statement that states that the strings α and β are not distinguished by L.
Don’t try to prove it, but what did we say in class that this says about any DFA computing L?

Our L happens distinguish between every pair of strings in the set S = {0100, 1001, 0010}. On the
other hand, L does not distinguish between the strings ǫ, 0100, 01000, 10011, 00100. Neither does it
distinguish between 1001, 01001. Neither does it distinguish between 0010, 10010, 00101. The string
11111 happens to be accepted in L, but strings 00000 and 10010 are rejected.

Surprisingly enough, this is enough information about the language L to completely determine what
answer it gives for every binary string. More over, this specified language is regular and has a very
simple DFA. With a small change, this is proved in Eric’s email to me in my 2001 course notes. You
do not need to read or understand this proof unless you want.

All you need to do is to use the above information to figure out what this DFA must look like.

• Answer: We proved in class that if L distinguishes between two strings then these two strings
need to go to the different states in any DFA that computes L. Because L distinguishes between
the three strings in S, they must go to three different states. Lets call these states q0100, q1001,
and q0010.

We say that the strings α and β are not are distinguished by L if ∀γ, L(αγ) = L(βγ). Given a
“past” of α or of β, all futures γ lead to the same result. A DFA computing L does not need to
have these strings go to the same state, but if they might as well because if they went to different
states these two states could be collapsed into the same state. We might as well assume that the
strings ǫ, 0100, 01000, 10011, 00100 all go to state q0100. Also 1001, 01001 go to state q1001. Finally
0010, 10010, 00101 go to q0010. See the states in the figure below.

Suppose the DFA is in state q0100. As far as the future is concerned we might as well assume that
the prefix read so far is 0100. If the DFA then reads the character 0 then it has effectively read

4

the prefix 01000. We know that 01000 goes to state q0100. This gives us that δ(q0100, 0) = q0100.
Similarly, the other transitions are obtained as follows.

Current state next character assumed prefix next prefix next state
q0100 0 0100 01000 q0100
q0100 1 0100 01001 q1001
q1001 0 1001 10010 q0010
q1001 1 1001 10011 q0100
q0010 0 0010 00100 q0100
q0010 1 0010 00101 q0010

01001
1001

00101
10010
0010

 ε

00100
10011
01000
0100

1

1

0

1

0

0

Note this chart is enough to close the DFA, meaning each of its states has an edge labeled 0 and
one labeled 1. Unlike Eric’s proof, we did not say S was maximal so there could have been more
strings indistinguishable from each of these three and hence more states. But because the DFA
is closed, this can’t be.

Because ǫ is indistinguishable from 0100, it must go to state q0100. Hence this must be the start
state.

We were told that the string 11111 happens to be in L. If we run our DFA on this string, it goes
to state q1001. Hence this state must be an accept state. Similarly we are told that 00000 and
10010 are rejected by L. They go to the other two states and hence these states must be reject
states.

8. The operation of shuffle is important in the theory of concurrent systems. If x, y ∈ Σ∗, we write x ‖ y

for the set of all strings that can be obtained by shuffling strings x and y together like a deck of cards;
for example

ab ‖ cd = {abcd, acbd, acdb, cabd, cadb, cdab}.

The set x ‖ y can be defined by induction:

ǫ ‖ y = {y},

x ‖ ǫ = {x},

xa ‖ yb = (x ‖ yb){a} ∪ (xa ‖ y){b}.

The shuffle L1 ‖ L2 of two languages L1 and L2 is the set of all strings obtained by shuffling a string
from L1 with a string from L2:

L1 ‖ L2 = ∪x∈L1,y∈L2
x ‖ y

For example,

{ab} ‖ {cd, e} = {abe, aeb, eab, abcd, acbd, acdb, cabd, cadb, cdab}.

5

Show that if L1 and L2 are regular languages then so is L1 ‖ L2. Do this by describing a general
method of constructing an NFA M‖ for L1 ‖ L2 out of DFA M1 for L1 and M2 for L2.

Hint: Given a string γ, we must decide whether or not it is a shuffle of a string α from L1 and one β

from L2. Given we are building an NFA, we do have a Fairy Godmother to help us. She can tell us
for each letter of γ whether it is in α or in β. Then knowing α and β, we can use M1 and M2 to see
whether or not α is from L1 and β is from L2. We accept γ if this the case. On the other hand, we have
to run M1 and M2 in parallel just as we did when we computed L1 ∩ L2. Towards this goal, imagine
putting a pebble on a state of M1 and another on one of M2. Guess nondeterministically which pebble
to move. Accept if in the end both pebbles occupy accept states.

(a) Now assume M1 and M2 are arbitrary DFA. Describe how you would construct the NFA M‖.

• Answer: For every state u in M1 and state v in M2, our new NFA M‖ will have a state 〈u, v〉.
The loop invariant and/or interpreted meaning of such a state 〈u, v〉 is as follows. The NFA
M‖ has so far read some part of the input string γ. The Fairy Godmother has specified which
of these characters are a part of α from L1 and which are a part of β from L2. If one would
follow this specified α part in the machine M1, then the resulting state would be u. Similarly,
if one would follow this specified β part in the machine M2, then the resulting state would
be v.
When the next character of γ is read, the Fairy Godmother tells us whether this letter is the
next in α or in β. We then either follow the edge labeled with this character in M1 or in M2.
This is done more formally as follow. Consider any state 〈u, v〉 of the new NFA M‖ and
any character c ∈ Σ. Let u′ denote the state of M1 reached when traveling from state u

and reading this character c, i.e. using transition rule δ1(u, c) = u′. Similarly let v′ denote
the state of M2 reached when traveling from state v and reading c, i.e. using transition rule
δ2(v, c) = v′. M‖ will have transition rule δ‖(〈u, v〉 , c) = {〈u′, v〉 , 〈u, v′〉}. This states that
when in state 〈u, v〉 and reading c, the machine nondeterministically might be told by the
Fairy Godmother that this c is in α and hence the state changes in M1 but not in M2, which
changes the M‖ state to 〈u′, v〉. Or the machine might be told that this c is in β and hence
the state changes in M2 but not in M1, which changes the state to 〈u, v′〉. The M‖ start state
is 〈u0, v0〉, where u0 is the start state of M1 and v0 is that of M2. The accept states of M‖

are 〈u∗, v∗〉, where u∗ is an accept state of M1 and v∗ is that of M2.

(b) Let M1 be the DFA along the left and M2 be that along the top. The NFA M‖ for L1 ‖ L2 will
have the matrix of states as shown. Indicate the start state and the accept states and add all the
transition edges.

0 11

Even

Odd

0

0,1
0,1

leng 2
0,1

leng 1
0,1

leng 0 leng >2

• Answer:

0 11

Even

Odd

0

0 11

0

0 11

0

0 11

0

0 11

0
0,10,10,1

0,10,10,1

0,1

0,1

0,1

0,1
leng 2

0,1
leng 1

0,1
leng 0 leng >2

6

9. Let L be a regular languages over an alphabet Σ. Consider the language

MIDTHIRDS(L) = {y ∈ Σ∗ | ∃x, z ∈ Σ∗, |x| = |y| = |z| and xyz ∈ L}

Like 0n1n, one likely would first guess that a DFA for this language would have to count the length
and x, y, and z and hence this language would not be regular. But note that only y is a part of the
input. Your task is to prove that MIDTHIRDS(L) is also regular.

Hint: Let M be a DFA that computes L. We construct an NFA M ′ for MIDTHIRDS(L) as follows.
Imagine M ′ having five fingers on states of M . This will give M ′ states

〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

where each of these q are states of M . Assuming y is a yes instance, these fingers together trace out
the path pxyz that the computation on M follows given input xyz.
A common phenomena of nondeterminism is that the Fairy Godmother provides you with some crucial
information that alone you could not obtain and then your job at the end is to verify that what she
said is actually true.

Informally, describe what each of the five fingers does as M ′ reads its input y.
What is the start state of M ′?
Describe the edges of M ′, i.e. from some state

〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

when reading character

cy, the Fairy Godmother can choose to transition to state
〈

q′〈start,y〉, q
′
〈start,z〉, q

′
x, q

′
y, q

′
z

〉

.

What are the accept states of M ′.
How many states does M ′ have?
There is no need to prove your construction correct.

• Answer: Given a yes instance y, there exists strings x and z such that |x| = |y| = |z| and xyz ∈
L}. Let pxyz = pxpypz denote the path (a sequence of states) that the computation on M follows
given input xyz. Let px, py, and pz denote the portions of this path followed when reading the
parts x, y, and z respectively. After t time steps in the computation of M ′ on this string y, M ′

will be in a state
〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

. Here q〈start,y〉 is the first state in the sequence of
states py and q〈start,z〉 is the first in pz, because at the end of the computation we will need to

have remembered them. Here qx is the tth state in px, qy the tth in py, and qz the tth in pz. In this
way, the fingers at M states qx, qy, and qz will simultaneously trace out these respective paths.
Doing so will verify that these three paths have the same length, verifying that |x| = |y| = |z|.
Doing so will also verify that xyz ∈ L.

The start state of M ′ immediately has ǫ transitions so that the Fairy God mother can nondeter-
ministically set the initial states

〈

q〈start,y〉, q〈start,z〉, qy, qx, qz
〉

. Here q〈start,y〉 and q〈start,z〉 are
set to be beginning of py and pz respectively. The initial value of qx will be the start state of M .
The initial value of qy will be q〈start,y〉. The initial value of qz will be q〈start,z〉.

The computation proceeds as follows. When M ′ reads the next character cy of y,
it transitions along the edge from its current state

〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

to state
〈

q〈start,y〉, q〈start,z〉, q
′
x, q

′
y, q

′
z

〉

as follows. The finger qy transitions deterministically according
to δM (qy, cy) = q′y. The Fairy God mother nondeterministically needs to tell M ′ the next char-
acters cx and cz of x and of z. This then allows M ′ move the fingers qx and qz according to
δM (qx, cx) = q′x and δM (qz, cz) = q′z. The fingers at q〈start,y〉 and q〈start,z〉 do not move.

When M ′’s input y ends, we know that x and z also end, being the same length. M ′ accepts if
the paths px, py, and pz connect. This requires qx to be at state q〈start,y〉, py to be at qstart,z,
and pz to be at an accept state of M .

A given y is a yes instance iff ∃x, z ∈ Σ∗, |x| = |y| = |z| and xyz ∈ L iff the computation on M

given input xyz can be broken into three pieces pxyz = pxpypz iff the three paths traced by px,
py, and pz in M ′ match up and end at an accept state if M iff M ′ accepts y.

Note that if the number of states of M is |M |, then the number of states of our NFA M ′ will have
|M |5 states.

10. For each integer r, consider the NFA Mr depicted below.

7

a,b a,ba,ba a,b
a,b

... ...
a,b a,ba,b

q
0

q
*

q
1

q
2

q
3

q
r R

(a) Let the input string be of the form α = xay, where x, y ∈ {a, b}∗ are strings and the specified
character a is read as the computation follows this edge from q∗ to q0. What are the requirements
on the substrings x and y for this α to be accepted. Namely, the language computed by Mr is
Lr = {xay ∈ {a, b} | where ?? something about x and y ?? }.

• Answer: Lr = {xay ∈ {a, b} | where |y| = r}.

(b) Lets index the input characters backwards, namely α = αnαn−1 . . . α2α1α0. Here αn is the first
character read by the NFA and α0 is the last. What are the requirements on the characters αi

for this α to be accepted. Namely, the language computed by Mr is
Lr = {α ∈ {a, b} | where ?? something about αi ?? }.

• Answer: Lr = {α ∈ {a, b} | αr = a}.

(c) Using the concepts from that previous two question, explain accepting computations on this NFA
Mr.

• Answer: The NFA first reads and ignores the input characters x = αnαn−1 . . . αr+2αr+1

while staying in the start state q∗. Then when the character αr is read, the fairy god mother
(nondeterministically) specifies that the computation should leave state q∗ and transition to
state q0. To follow this edge, this character αr needs to be an a. After reading i characters
from y, i.e. i of the characters after αr, the computation will be in state qi. In our input,
there are r more characters after αr, namely those in y. Hence, the string will end at state
qr, which is the only accept state.

(d) Give a regular expression Rr representing this language Lr.

• Answer: The regular expression is {a, b}∗a{a, b}r.

(e) Now focus on the NFA MR where the accept state is qR. Let M ′
R denote the DFA obtained by

converting this NFA MR into a DFA as described in class. But recall the process of converting.
After reading a string α, we put a clone on each state of MR that the computation could be in,
depending on which nondeterministic steps the computation took. Let Q ⊆ [q0, q1, . . . , qR] be an
arbitrary subset of these states. Describe a string denoted αQ such that after reading it there is
a clone on state q0 and one each of the states specified in Q, but on no other states.

• Answer: We explained above how a clone can end up in state qr if and only if αr = a. Hence,
define αQ ∈ {a, b}∗ to be the string such that αr = a if and only if qr ∈ Q. It follows that on
this αQ, Q defines which states a clone can be on. Of course a clone can always also be on
the start state q∗.

(f) How many states do you think the resulting DFA M ′
R would have?

• Answer: It seems that the DFA will have a different state qQ for every set Q ⊆ [q0, q1, . . . , qR].
There are 2R+1 such states.

(g) Let qQ denote the state that the resulting DFA M ′
R is in when in the NFA MR there is a clone

on state q∗ and one each of the states specified in Q, but on no other states. After reading the
character b, which state will M ′

R be in? And after reading an a? Use Q = {5, 18, 21} as an
example.
Hint: Let Q+1 denote the set where each state in Q is incremented by one, i.e. Q+1 = {6, 19, 22}.

• Answer: After one time step, each clone on a state in Q will move ahead one step in the long
path in MR, i.e. this will put them in set of states denoted Q+1. When reading a b, the clone
on state q∗ will stay where it is. Hence the resulting state in M ′

R will be qQ+1 = q{6,19,22}.
When reading an a, the clone on state q∗ will clone itself. The first clone stay where it is.
The second clone will transition over to state q0. Hence the resulting state in M ′

R will be
q{q0}∪(Q+1) = q{0,6,19,22}.

8

(h) Now forget about the machines MR and M ′
R and let us focus on the language LR. We will now

set up the Bumping Lemma for this language. Let S = {αQ | Q ⊆ [0, 1, . . . , R]} be a set of
distinguished first names. Here string αQ is the string you defined in an earlier question. Recall
the adversary chooses two different strings αQ and αQ′ ∈ S. Your task is to find a ζ ∈ {a, b}∗

such that LR(αQζ) 6= LR(αQ′ζ).

• Answer: Because the sets Q 6= Q′ are different, there is some index r that is in Q but not in
Q∗ (or visa versa). The language LR accepts a string if the character that has R characters
after it is an a. The number of characters after character αr in αQ is r. Let ζ = bR−r so that
the number of characters after character αr in αQζ is r + (R − r) = R. Hence, the value of
αr determines whether αQζ is in the language or not. Because, r ∈ Q, the character αr in
αQ is an a and hence LR(αQζ) is true. Similarly, because, r 6∈ Q′, the character αr in αQ′ is
not an a and hence LR(αQ′ζ) is false.

(i) What does this distinguished set S and the Bumping lemma tell us about the number of states
in any DFA that solves LR.

• Answer: The bumping lemma says that if S is a distinguished set for LR then no DFA can
solve LR with fewer than |S| states. Here |S| = 2R+1.

(j) Can you make any conclusions from this?

• Answer: The NFA MR has R+2 states and any DFA solving LR requires 2R+1 states. This
proves that there can be an exponential gap between these two.
Also the DFA M ′

R built from the NFA MR has the optimal number of states.

9

