York University
CSE 2001 — Unit 3.0 DFA Machines
and Simple loop Java programs, NFA, Regular Expressions, and

Extended Regular Expressions
Instructor: Jeff Edmonds

Don’t cheat by looking at these answers prematurely.

1. Suppose that the CPU of a DFA is required to remember the current value of x and of y where x is a
100 digit number and y € {1,2,3,4,5}. How many states does this DFA require?

e Answer: 10'° x 5
2. Give an NFA for the language L1 = {w € {0,1}* | w ends in 00}. Also give a regular expression for it.

e Answer:

0,1

o

S
@

{0,1}%00

3. Consider the following DFA

(a) If the number of 0’s in the input string is 28 and the number of 1’s is 10, does this DFA: Definitely-
Accept Definitely-Reject Depends-on-the-order-of-the-characters

e Answer: A 0 makes the DFA cycle forward around the circle and a 1 makes it cycle backwards.
Hence, we move 28-10=18=0 mod 3. We are definitely back at node the first node. So we
reject.

(b) Denote the language accepted by the above machine with Ls. Describe this language.
o Answer: {w | # of Os - # of 1s # 0 mod 3 } or {w | # of 1s - # of 0s # 0 mod 3 }.

4. Let L = {a € {a,b}* | a ends in a block of a’s and this block has odd length }. For example
a = aabaabaaa is accepted because the last block of a’s has length three which is odd. However
«a = aabaab does not end in a block of a’s and if you wanted to say that it does then this hypothetical
block would have length zero which is even. Either way, this string is rejected. Build a DFA for this.

e Answer:

b
b@
ab

(a) A DFA is defined as M = (Q, %, 9, ¢start, F'). For your DFA | what are each of these: @, X, ¢,
Gstart, and F'?

Q - {Qevevu(IOdd}v Y o= {avb}7 Gstart = {even, F o= {%}, and § =

e Answer:
[0 [o [B
Jeven Godd Geven
Godd Geven Geven

(b) For each state, what does the the CPU “knows” about the input string read in so far.

o Answer:

(¢) Give a regular expression of L.

e Answer: a(aa)* U{a,b}*ba(aa)*

Whenever an a is read, the machine toggles between the two states, geyen Which
says that the end block of a’s has even length and g,qq that its length is odd. Whenever a b
is read, the length of the end block of a’s goes to zero, and hence the state is reset to geyen -

5. Consider a new kind of finite automaton called an all-paths-NFA. An all-paths-NFA M is a 5-tuple
(Q,%,0,q0, F) that recognizes x € ¥* if every possible computation of M on z ends in a state from F.
Note, in contrast, that an ordinary NFA accepts a string if some computation ends in an accept state.

(a) Consider the following two machines. What language is accepted if these machines are viewed as
all-paths-NFA?

e Answer:

0,1

0,1

Q 9
{Do®1 @0@1@

Ce=C
e

i. L(M) = (. Every string has a computation path that is not accepted, namely the one

that stays in the first state.

ii. L(m) ={w € {0}* | lw| =0 mod 2 and |w| =0 mod 3} = {w € {0}* | |w| = 0 mod 6}.
Each string has two computation paths. One ends in a 2—7 state and the other that ends
in a 3—7 state. For both of these to end in an accept state, the number of zeros must be
0 mod 6.

(b) Prove that all-paths-NFA recognize the same class of languages as regular NFA. L.LE. Given an
all-paths-NFA M, covert it into a regular NFA M’ such that L(M) = L(M’). Similarly, given a
regular NFA M’, covert it into an all-paths-NFA M such that Lall—paths—NFA (M) = L(M').

e Answer:

First Proof: An all-paths-NFA M can be covert into a DFA directly using the clone method
given in class, with only one change. Recall the locations of the clones indicate where all
the computation paths end. Instead of accepting the string if there is a clone on at least
one accept state, accept if all the clones are on accept states. More formally, instead of
defining the accepting states of the DFA to be Fpra = {S | S contains an accepting state
of M}, define it to be Fpra = {5 | S contains only accepting states of M}.

Second Proof:
=: [all-paths-NFA M accepts string w]
iff [all computation paths through M on input w lead to an accept state]
iff [all computation paths through M on input w lead to a reject state, where M is the
same as M with accept and reject states switched, ie F' = Q — F]
iff [regular NFA M rejects string w]

iff [DFA M’ rejects string w, where M’ is the DFA constructed from NFA M using the
clone method given in class] o

iff [DFA M’ accepts string w, where M’ is the same as M’ with accept and reject states
switched, ie F/ = Q' — F’|

In conclusion Lall—paths—NFA(M) = L(M").

<«: Similar to above.

6. One proves (L7 U L3) = (L1 U L2)* by letting L; and Lo be arbitrary yet unspecified languages
and letting w be an arbitrary yet unspecified string. Then you argue that if w € (L} U L3), then
w € (L1 U Ly)*. Conversely you prove that if w € (L1 U Lg)*, then w € (L} U L}).
One disproves (L7 UL3) = (L1 U Ls)* by providing concrete languages Ly and Ly and a concrete string
w and either proving that (w € (L7 U L3) and w ¢ (L1 U La)*) or proving that (w € (L; U Lg)* and
w ¢ (L7 U L%)). Your example should be as simple as possible.

Prove or disprove the following.
(a) (LTUL3) = (L1 U La)"

e Answer: This is not true. Let Ly = {a} and Ly = {b}. (L] U L%) contains strings that either
only contain a’s or only contain b’s. On the other hand, (L; U Ly)* contains strings that
contains only a’s and b’s. Let w = ab. It is in the second and but not the first. Everything in
the first is in the second.

(b) (Ll o Lz)* = (Ll U LQ)*.

e Answer: This is not true. Let Ly = {a} and L; = {b}. (L1 o Ly)* contains strings whose
characters are paired, one being an a and the other being a b, like ab-ab-ab-ba. On the other
hand, (L; UL3)* can order the a’s and b’s in any order and have an odd length. Let w = aaa.
It is in the second and but not the first.

(C) (Ll @] Lg) o L3 = (Ll o L3) U (L2 o L3)
e Answer: This is true. Let L1, L1, and w be arbitrary.
(RS (LlULg)OLg
iff w=af, where o € (L; ULsy) and 8 € L3
iff w= «af, where (o« € Ly or o € Ly) and 8 € L3
iff w = af, where (0 € Ly and 8 € L3) or (o € Ly and 8 € Ls)

iff (we (L1oL3))or (we (LyoLs))
iff we (LyoL3)U(Lyo L3)

7. Every subset of a regular language is regular.

e Answer: False. 0"1" is a subset of {0,1}*, but the second is regular and the first is not.

