
EECS 1090 – Test 2 (2024)
Instructor: Jeff Edmonds

You know what to do. For each of the following statements, state whether or not it is valid/tautology and
then either prove it or find a universe in which the statement is false. I recommend your proof being a
prover/adversary/oracle proof as done in class, but if you really want you can give a formal proof. Even for
a formal proof, you might want to add a few lines of explanation about what is happening. Either way you
really need to follows the steps lined out in in class. Make your answer as easy to mark as possible, i.e. it
should be clear how each line follows from previous lines. A correct but hard to read proof will not get full
marks.

*** PLEASE. FOR ME. JUST GO THOUGH THE STEPS OF THE GAME! ***

1. (30 marks) [∀x ∃y (A(x) ∧B(y))] → [∃y ∀x (A(x) ∧B(y))].
Hints for the game proof:

- This is like the strange one we did in class except for And instead of Or.
- Recall, the issue is whether or not the value of y that exists depends on the value of x given.
- I give a banana and then I give a bad thing.

• Answer: Valid, i.e. true in every model.
The key thing that makes this surprisingly true is that unlike some statement α(x, y), the state-
ment A(x) ∧B(y) is “separable” into an x and a y part. Which y works is independent of which
x is considered. Both expressions are equivalent to (∀x A(x)) ∧ (∃y B(y)).

The informal proof is as follows.
0) Assume a worst case model given by an adversary, i.e. universe of objects and predicates A

and B.
1) Goal: Prove [∀x ∃y (A(x) ∧B(y))] → [∃y ∀x (A(x) ∧B(y))].
2) By deduction, the oracle assures us of ∀x ∃y (A(x) ∧B(y)).
3) Goal: Prove ∃y ∀x (A(x) ∧B(y))
4) In order to prove ∃y, I need to construct a value y∃ but I don’t know how. Hence, I go straight
to my oracle (2).
5) The oracle (2) assures me ∀x, so I can give her a value, but I don’t have a value to give her.
Hence, I give her x = banana.
6) Given x = banana, oracle (2) assuring me that ∃y, gives me some value y∃ and she assures us
that A(banana) ∧B(y∃)
7) Separating And (6) gives B(y∃y)
8) To prove ∃y ∀x (A(x) ∧B(y)), I set y to y∃ for which B(y∃) is true.
9) To prove ∀x (A(x) ∧B(y∃)), let x∀ be an arbitrary value provided by an adversary.
10) My game is completed if I can prove A(x∀) ∧B(y∃).
11) In order to prove A(x∀), I need to use oracle (2) a second time. I give her x = x∀.
12) Though I don’t actually need it, she gives me some value y′∃ and assures us that A(x∀)∧B(y′∃).
Note we can’t use y′∃ in our proof because I promised our adversary that we would use y∃.
13) Separating And (12) gives A(x∀) which is the part we needed.
14) Building And (7,14) gives A(x∀) ∧B(y∃)
15) By Deduction (2-14), we get goal (1) as needed.

• Answer: Here is the formal proof mirroring the game.

1) Deduction Goal: LHS → RHS

2) ∀x ∃y (A(x) ∧B(y)) Assumption/Premise
3) ∃y (A(banana) ∧B(y)) Not knowing what to give, we remove ∀ with banana
4) A(banana) ∧B(y∃(banana)) Remove ∃ (Depends on banana)
5) B(y∃(banana)) Separating And
6) ∃y (A(xadversary) ∧B(y)) Having xadversary after constructing y∃(banana),

we remove ∀ (2) with xadversary

7) A(xadversary) ∧B(y∃(xadversary)) Remove ∃ (Depends on xadversary).
8) A(xadversary) Separating And
9) A(xadversary) ∧B(y∃(banana)) Build And (5,8)
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10) ∀x (A(x) ∧B(y∃(banana))) Add ∀
11) ∃y ∀x (A(x) ∧B(y)) Add ∃
12) LHS → RHS Conclude deduction.

• Answer: Here is the kluged formal proof like the type set one given in slides.

1) Deduction Goal: LHS → RHS

2) ∀x ∃y (A(x) ∧B(y)) Assumption/Premise
We know that adversary eventually is going to give us an xadversary.
Being a free variable, let’s just use the notation x.

3) ∃y (A(x) ∧B(y)) Remove ∀ with the free variable x

4) A(x) ∧B(y∃(x)) Remove ∃ (Depends on x)
5) A(x) Separating And (This is our adversary’s value)
6) B(y∃(x)) Separating And

We need to change the y∃(x) into y∃ in order make it clear
that which y works is independent of which x is considered.
Most marks will go to the lines 7 & 8

7) ∃y B(y) Add ∃ because it is true for some term.
Possible because term does not depend on x bounded with ∀x.

8) B(y∃) Remove ∃. Note now there is no free variable x

9) A(x) ∧B(y∃) Build And (5,8)
10) ∀x (A(x) ∧B(y∃)) Add ∀
11) ∃y ∀x (A(x) ∧B(y)) Add ∃
12) LHS → RHS Conclude deduction.

2. (30 marks)

If (α ∨ β) is valid/tautology, then so is α or β.
[∀x (α(x) ∨ β(x))] → [(∀y α(y)) ∨ (∀z β(z))]

Hint: Being an Or, there is no consistency.
One day she may give you this and the next day that.

• Answer: Like when I ask ChatGPT to prove things, people’s biggest struggle with the material
seems to not be the PROVING but determining whether the statement is true or not. I thought
my hints were clear, but I guess not. We have spent a lot of time looking at what a good proof
looks like. We have spent less time understanding what a bad proof looks like. I will add some of
that here.

• Answer: Not Valid, i.e. false in some model.
1) Construct a counter example model by having only two objects and setting α(0) and β(1) both
to be true and α(1) and β(0) both to be false.
2) By Building Or, (α(0) ∨ β(0)) and (α(1) ∨ β(1)) are both true, but on different predicates.
3) Because there only two objects, we get that ∀x (α(x) ∨ β(x)) is true.
4) Because α(1) is false, (∀y α(y)) is false
5) Because β(0) is false, (∀z β(z)) is false
6) By Building Or [(∀y α(y)) ∨ (∀z β(z))] is false.
7) By (3) the LHS is true and by (6) the RHS is false. Hence, LHS → RHS is false.
8) Hence, the statement is not

• Answer: Jeff’s hint was “Hint: Being an Or, there is no consistency. One day she may give you
this and the next day that.”
“She” is the oracle. This speaks of why she might not be useful. Jeff was trying to hint that this
is not a tautology.
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It is not.
But let’s suppose we think it is an try to prove it using the game.
You should get partial marks based on how much you do get right. Let me try.
It is not going to go well.
We assume and let an oracle assure us of ∀x (α(x) ∨ β(x)).
We then must prove (∀y α(y)) ∨ (∀z β(z)).
Build the parse tree for this. The root/last/top operation is not ∀. It is the OR!.
In other words, write this as OR[(∀y α(y)), (∀z β(z))] and read the expression left to right.
We have to prove one of these statement, but we don’t know which. (This causes us a little
worry).
The oracle is assuring us of ∀x. So we need to give her a value x. We normally get such values
from the adversary.
The game says that we can ask the adversary for an arbitrary value when the root/last/top
operation is ∀ which it is not. Asking when there is the OR is not really fair to the adversary. He
does not know if he is trying to give you a y for which α(y) is not true or a z for which β(z) is
not true.
Being a nice guy he gives you some arbitrary value x despite it not being his job.
You give the value x to the oracle, who assures you of α(x) ∨ β(x).
Great so the OR is true. But you don’t know which is true: α(x) OR β(x).
So you try cases. By way of cases assume α(x).
Now can you conclude ∀y α(y)? I say no. Why? Because we were not really fair to the adversary.
The adversary could have given you x′ instead. And then maybe β(x′) might be true. That is
what the hint was getting at. “Being an Or, there is no consistency. One day she may give you
this and the next day that.”
We know that for each x, either α(x) OR β(x). But for different x it could be a different one.
We are never going to get that for each x the same one is true. This is why the statement is not
a tautology.

• Answer: Here is the faulty formal proof mirroring the faulty game.

1) Deduction Goal: LHS → RHS

2) ∀x (α(x) ∨ β(x)) Assumption/Premise
3) α(x) ∨ β(x) Remove ∀ with free variable x

4) Goal (∀y α(y)) ∨ (∀z β(z)) by cases (3)
5) α(x) Assumption by cases
6) ∀x α(x) Add ∀
7) ∀y α(y) Same
8) (∀y α(y)) ∨ (∀z β(z)) Build OR
5) β(x) Assumption by cases
6) ∀x β(x) Add ∀
7) ∀z β(z) Same
8) (∀y α(y)) ∨ (∀z β(z)) Build OR
9) (∀y α(y)) ∨ (∀z β(z)) Proof by cases (3,8,8)
12) LHS → RHS Conclude deduction.

What is wrong with this proof?
Oh no!!! We spent very little time on it.

5) α(x→) Assumption by cases
6) NO ∀x α(x) Can’t add ∀

Here x→ is not a free variable but arbitrary thing that is constant within the assumption.
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3. (40 marks) Prove that if sequence f = f(0), f(1), f(2), f(3), . . . converges to cf
and sequence g = g(0), g(1), g(2), g(3), . . . converges to cg,
then sequence f+g = [f+g](0), [f+g](1), [f+g](2), [f+g](3), . . . converges to c〈f+g〉 = cf+cg.
Note that [f+g](i) = f(i) + g(i).
Hint:
Assume that oracle f assures you that

∃cf ∀ǫf >0 ∃n〈0,f〉 ∀nf ≥n〈0,f〉 |f(nf )−cf |≤ǫf .
Assume that oracle g assures you that

∃cg ∀ǫg>0 ∃n〈0,g〉 ∀ng≥n〈0,g〉 |g(ng)−cg|≤ǫg.
Then by playing Jeff’s prover/adversary game, you prove

∃c〈f+g〉 ∀ǫ〈f+g〉>0 ∃n〈0,f+g〉 ∀n〈f+g〉≥n〈0,f+g〉 |[f+g](n〈f+g〉)−c〈f+g〉|≤ǫ〈f+g〉.
Hints for the game proof:

- Be clear who is giving whom which values.
- All the subscripts x∃ and y∀ can be dropped if you want.
- n〈0,f+g〉 is just the name of a variable.
- Adding values, cutting them in half, taking their max, and keeping them unchanged are fun.

• Answer: The proof here is the minimal needed for the marks. The longer one below adds more
explanation for people trying to understand.

We are working over the reals. Assume a worst functions f and g given by an adversary.

To prove F ∧G → RHS, assume we have an oracle f to assure us of F and another g to assure
us of G. Our goal is to prove the RHS.

I get from oracle f the value cf and from oracle g the value cg and from these I construct
c〈f+g〉 = cf+cg.

Let ǫ〈f+g〉 be an arbitrary value (given to me by my adversary). I give both oracles the value
1

2
ǫ〈f+g〉.

I get from oracle f the value n〈0,f〉 and from oracle g the value n〈0,g〉 and from these I construct
n〈0,f+g〉 = Max(n〈0,f〉, n〈0,g〉).

Let n〈f+g〉≥n〈0,f+g〉 be an arbitrary value (given to me by my adversary). Being bigger than both
n〈0,f〉 and n〈0,g〉, I can give this value to both oracles.

The oracles assure me that |f(nf )−cf |≤ǫf and that |g(ng)−cg|≤ǫg.

I conclude with |[f+g](n〈f+g〉)−c〈f+g〉| = |[f(nf )+g(ng)]−[cf+cg]| = |[f(nf )−cf ]+[g(ng)−cg]|
≤ |f(nf )−cf |+|g(ng)−cg| ≤ ǫf+ǫg = ǫ〈f+g〉.

Done.

• Answer: The proof here adds more explanation for people trying to understand.

We are working over the reals. Assume a worst functions f and g given by an adversary.

To prove F ∧G → RHS, assume we have an oracle f to assure us of F and another g to assure
us of G. Our goal is to prove the RHS.

In order to prove ∃c〈f+g〉 for which something is true, I have to construct a value for which it is
true. To do this I get help.

Oracle f , who assures me that ∃cf , gives me such a value cf . Oracle g gives me cg.

I construct c〈f+g〉 = cf+cg.

To prove ∀ǫ〈f+g〉>0, I let ǫ〈f+g〉>0 be an arbitrary value given to me by the adversary.

Oracle f assures me that ∀ǫf > 0 something is true. Hence, I am able to give her the value
ǫf = 1

2
ǫ〈f+g〉 and she assures me that it is true for this value. Similarly, I give ǫg = 1

2
ǫ〈f+g〉 to

oracle g.

To prove ∃n〈0,f+g〉, I have to construct such a value. To do this I get help.

Oracle f , who assures me that ∃n〈0,f〉, gives me such a value n〈0,f〉. Oracle g gives me ng.

I construct n〈0,f+g〉 = Max(n〈0,f〉, n〈0,g〉).

To prove ∀n〈f+g〉≥n〈0,f+g〉, I let n〈f+g〉≥n〈0,f+g〉 be an arbitrary value given to me by the adversary.
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Oracle f assures me that ∀nf ≥n〈0,f〉 something is true. Hence, I am able to give her this same
value nf = n〈f+g〉 and she assures me it is true for this value. Note that as needed for my contract
with her we have that n〈f+g〉≥n〈0,f+g〉 = Max(n〈0,f〉, n〈0,g〉)≥n〈0,f〉. Similarly, I give ng = n〈f+g〉

to oracle g.

To complete the game, I must prove |[f+g](n〈f+g〉)−c〈f+g〉|≤ǫ〈f+g〉. Again, I ask the oracles.
Oracle f assures me that |f(nf )−cf |≤ǫf as does oracle g.
We conclude as follows.

I conclude with |[f+g](n〈f+g〉)−c〈f+g〉| = |[f(nf )+g(ng)]−[cf+cg]| = |[f(nf )−cf ]+[g(ng)−cg]|
≤ |f(nf )−cf |+|g(ng)−cg| ≤ ǫf+ǫg = ǫ〈f+g〉.

This completes the proof.

• Answer: Here is the formal proof.

1) Deduction Goal: [F ∧G] → RHS

2) F ∧ G Assumption/Premise
3) ∃cf ∀ǫf >0 ∃n〈0,f〉 ∀nf ≥n〈0,f〉 |f(nf )−cf |≤ǫf Separating And
4) ∀ǫf >0 ∃n〈0,f〉 ∀nf ≥n〈0,f〉 |f(nf )−c〈f,∃〉|≤ǫf Remove ∃
5) ∃n〈0,f〉 ∀nf ≥n〈0,f〉 |f(nf )−c〈f,∃〉|≤

1

2
ǫ Remove ∀ with value 1

2
ǫ

6) ∀nf ≥n〈0,f,∃〉(ǫ) |f(nf )−c〈f,∃〉|≤
1

2
ǫ Remove ∃ (depends on ǫ)

7) |f(n)−c〈f,∃〉|≤
1

2
ǫ Remove ∀ with value n

8) |g(n)−c〈g,∃〉|≤
1

2
ǫ Repeat lines 3-7 but for g

9) Let c〈f+g,∃〉 = c〈f,∃〉 + c〈g,∃〉
10) |[f+g](n)−c〈f+g,∃〉| = |[f(n)+g(n)]−[c〈f,∃〉+c〈g,∃〉]|

= |[f(n)−c〈f,∃〉]+[g(n)−c〈g,∃〉]| ≤ |f(n)−c〈f,∃〉|+|g(n)−c〈g,∃〉| ≤
1

2
ǫ+ 1

2
ǫ = ǫ

11) Note that n ≥ n〈0,f,∃〉(ǫ) and n ≥ n〈0,g,∃〉(ǫ)
and hence n ≥ n〈0,f+g,∃〉(ǫ) = Max(n〈0,f,∃〉(ǫ), n〈0,g,∃〉(ǫ))

12) ∀n≥n〈0,f+g,∃〉(ǫ) |[f+g](n)−c〈f+g,∃〉|≤ǫ Add ∀ (10)
13) ∃n〈0,f+g〉 ∀n≥n〈0,f+g〉 |[f+g](n)−c〈f+g,∃〉|≤ǫ Add ∃
14) ∀ǫ>0 ∃n〈0,f+g〉 ∀n≥n〈0,f+g〉 |[f+g](n)−c〈f+g,∃〉|≤ǫ Add ∀
15) ∃c〈f+g,∃〉 ∀ǫ>0 ∃n〈0,f+g〉 ∀n≥n〈0,f+g〉 |[f+g](n)−c〈f+g,∃〉|≤ǫ Add ∃
16) [F ∧G] → RHS Conclude deduction.

5


