EECS 1090 - Test 1
Instructor: Jeff Edmonds

1. (20 marks) Fill out the table with all of the rules.

Implies \rightarrow :	Modus Ponens	Deduction
	Cases	Eval/Build/Simplify \rightarrow
	Equivalence	Contrapositive
	Transitivity	De Morgan's Law

2. (13 marks) Find all possible assignments of the variables that makes the following expression true/satisfied.
Explain all of the steps in your search for the assignment and in proving that this assignment works. Use Purple table reasoning, not a table.
Hint: Start with proof/search by cases with the $p \vee q$, then see how you can force the values of other variables.

$$
[p \vee q] \wedge[p \rightarrow s] \wedge[\neg p \vee \neg s] \wedge[t \rightarrow \neg q] \wedge[u \vee t] \wedge[u \oplus v] \wedge[w \rightarrow \neg w] \wedge[y \rightarrow(x \wedge \neg x)]
$$

How many different satisfying assignments are there?
3. Nicer Father
(a) (8 marks) It is not true that
$[(\alpha \rightarrow \gamma)$ and $(\beta \rightarrow \gamma)]$ iff $[(\alpha$ and $\beta) \rightarrow \gamma]$.
Thinking of \rightarrow as causality, argue in English as you would to someone who does not know logic why this statement is false.
(b) Use the purple table to prove the following two statements. Use deduction. Do NOT convert the \rightarrow into and or or .
i. (13 marks) $[(\alpha \rightarrow \gamma)$ and $(\beta \rightarrow \gamma)] \rightarrow[(\alpha$ or $\beta) \rightarrow \gamma]$.
ii. (13 marks) $[(\alpha \rightarrow \gamma)$ and $(\beta \rightarrow \gamma)] \leftarrow[(\alpha$ or $\beta) \rightarrow \gamma]$.
(c) (7 marks) Jeff told a story about a grumpy father, doing well at school, following rules, and being loved. Change the contract of the father to be $[(\alpha \rightarrow \gamma)$ and $(\beta \rightarrow \gamma)]$. How is this father different than in Jeff's story.
4. (13 marks) The game Ping has two rounds. Player-A goes first. Let m_{1}^{A} denote his first move. PlayerB goes next. Let m_{1}^{B} denote his move. Then player-A goes m_{2}^{A} and player-B goes m_{2}^{B}. The relation $A W \operatorname{ins}\left(m_{1}^{A}, m_{1}^{B}, m_{2}^{A}, m_{2}^{B}\right)$ is true iff player-A wins with these moves.

Use universal and existential quantifiers to express the fact that player-A has a strategy in which she wins no matter what player-B does. Use $m_{1}^{A}, m_{1}^{B}, m_{2}^{A}, m_{2}^{B}$ as variables. Explain.
5. (13 marks) We say that the sequence $f=f(1), f(2), f(3), \ldots$ converges if $\exists c \forall \epsilon>0 \exists n_{0} \forall n \geq n_{0}|f(n)-c| \leq \epsilon$.
Play the Jeff's game in order to prove that the sequence $f=\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$, i.e., $f(i)=\frac{1}{i}$ converges.

