$\mathrm{EECS} \ 1090 - \mathrm{Test} \ 1 \ (2025)$ Instructor: Jeff Edmonds

1. (10 marks) Find all possible assignments of the variables that makes the following expression true/satisfied. How many are there? Explain all of the steps in your search for the assignment and in proving that this assignment works. Use Purple table reasoning, not a table.

 $[w \to \neg w] \land [(x \lor \neg x) \to w].$

• Answer: The AND between the clauses means that each of them needs to be true.

Clause $w \to \neg w$: Let's do proof by cases.

If w = T, then $w \to \neg w$ gives that w = F. This is a contradiction.

If w = F, then $w \to \neg w$ is automatically true.

Hence, w is forced to be false.

Another technique is to translate $\alpha \to \beta$ into $\neg \alpha \lor \beta$ and $w \to \neg w$ into $\neg w \lor \neg w$. This forces w = F.

Clause $(x \lor \neg x) \to w$: $x \lor \neg x$ is true by exclusive middle no matter what x is. Modus ponens forces w = T.

Contradiction: Above w was forced both to false and to true.

In conclusion, x = ?, and $w = F \wedge T$, makes each clause true. Because the values of x is not forced, but there is a contradiction with the value of w, there are $2 \times 0 = 0$ satisfying assignments.

- 2. (10+10=20 marks) Models
 - (a) Suppose I give you the statement $\forall x \ 1+x = x+1 > x$ but purposely I do not specify which model/universe we are using. Who then chooses the model and what is the entire list of things that he gets to choose?
 - Answer: The adversary chooses the model by specifying:
 - (a) The universe of objects that variables x represent;
 - (b) What do +, 1, and > mean?

(c) He does not get to change the definition of =. In our logic, this always means that the two objects are the same.

- (b) What is the difference between a statement being true and being valid/tautology? Are the following true and/or a valid/tautology? What is the difference? Give a counter example.
 - $\neg \forall x \ \alpha(x) \to \exists x \ \alpha(x)$
 - $\forall x \ x+1 > x$
 - Answer: A statement is only true or false once a model has been specified. It is valid/tautology if it is true under every model/universe.

The first statement is valid, because it is true no matter what the objects x are or how α is defined.

The second statement is NOT true if we define + to mean marriage, 1 to mean the devil, and > to mean better, because it is not better for x to be married to the devil than to be alone.

- 3. (10+10+15=35 marks) For each of the following, either use the purple table to prove it valid or prove it is not.
 - (a) From $A \vee B$, $A \to C$, and $B \to D$, conclude $C \wedge D$.
 - Answer: This is not always true. For a counter example, set A to be true and B false. Then by modus ponens, C needs to be true but D does not. As such, $C \wedge D$ is false.
 - (b) From $A \vee B$, $A \to C$, and $B \to D$, conclude $C \vee D$.
 - Answer: This is valid.

1) $A \lor B$	Axiom
2) $A \to C$	Axiom

3) $B \to D$	Axiom
4) Cases Goal $C \vee D$	Cases A and B
5) Case A	Assumption
6) C	Modus Ponens $(5\&2)$
7) $C \lor D$	Building OR (6)
8) Case B	Assumption
9) D	Modus Ponens (8&3)
10) $C \lor D$	Building OR (9)
100) $C \lor D$	Cases Conclusion $(1,7 \& 10)$

(c) Use the purple table to prove the following statement:

 $[\neg L \to (\neg G \lor \neg H)] \land [(H \land L) \to (F \land B)] \to [\neg B \to (\neg G \lor \neg H)].$

Hint: This may look hard but you can just bang it out. Start by putting at the bottom of your page the line 100) $[\alpha \wedge \beta] \rightarrow RHS$??. To prove \rightarrow , use Deduction. If you have a \rightarrow , try to use Modus Ponens. If you don't quite have what you want, build it up with either the Build And or the Build OR rule. If you have an $C \vee D$ that you don't know what to do with, start a Proof By Cases of what you want from these cases. Number your lines so that you can refer to them when you use some rule. Do NOT convert the \rightarrow into and or or or use the distributive rule.

• Answer:

1) Deduction Goal: $[\alpha \land \beta] \rightarrow RHS$ 2) $\alpha \wedge \beta$ Assumption/Premise 3) $\neg L \to (\neg G \lor \neg H)$ Separating And $(H \wedge L) \to (F \wedge B)$ (4)Separating And 5)Deduction Goal: $\neg B \rightarrow (\neg G \lor \neg H)$ 6) $\neg B$ Assumption/Premise 7) $\neg (F \land B)$ Building And (6) $\neg (F \land B) \rightarrow \neg (H \land L)$ 8)Contra Positive (4)9) $\neg (H \land L)$ Modus Ponens (7&8) 10) $\neg H \lor \neg L$ De Morgan's Law (10) 11)Cases Goal $\neg G \lor \neg H$ Cases $\neg H$ and $\neg L$ 12)Case $\neg H$ Assumption 13) $\neg G \lor \neg H$ Building OR (12)14)Case $\neg L$ Assumption 15) $\neg G \lor \neg H$ Modus Ponens (15&3) 98 $\neg G \lor \neg H$ Cases Conclusion (10,13 & 15) $\neg B \to (\neg G \lor \neg H)$ 99)Conclude deduction. 100) $[\alpha \land \beta] \rightarrow RHS$ Conclude deduction.

- 4. (10+10+15 =35 marks) For each of the following, either prove that its true over the reals by playing Jeff's prover/adversary game or take the negation of it and prove that.
 - (a) $\forall a \exists y \ \forall x \ x \cdot (y+a) = 0$
 - Answer: True: Let a be arbitrary. Let y = -a. Let x be arbitrary. $x \cdot (y+a) = x \cdot (-a+a) = x \cdot 0 = 0$.
 - (b) $\exists x, \forall y, y+x > 2y$
 - Answer: False: $\forall x, \exists y, y+x \leq 2y$ is true. Let x be arbitrary. Let y = x + 1. $y + x = y + (y 1) \leq 2y$.
 - (c) We say that the sequence f = f(0), f(1), f(2), f(3),... converges if ∃c ∀ε>0 ∃n₀ ∀n≥n₀ |f(n)-c|≤ε.
 Does the sequence f = 1, -1, 1, -1, ..., i.e., f(n) = (-1)ⁿ converges or not.
 Hint: your proof should have two cases. In the first case, a given value is positive and in the

second, it is negative. By symmetry, you only have to prove the second case. Hint: $\frac{1}{3}$ and even numbers are great.

• Answer: It does not converge but osculates. The negation is $\forall c \exists \epsilon > 0 \forall n_0 \exists n \ge n_0 | f(n) - c | > \epsilon$. Prove true.

Let c_{\forall} be arbitrary. As hinted, we can assume by symmetry, that $c_{\forall} \leq 0$. Let ϵ_{\exists} be $\frac{1}{3}$. Let n_0 be arbitrary. Let $n \geq n_0$ be the next even integer at least n_0 . By definition, $f(n) = (-1)^n = 1$. We have that $|f(n) - c_{\forall}| \geq |1 - 0| > \frac{1}{3} = \epsilon$.