
Informal Logic for Computer Science
By Jeff Edmonds

This chapter will cover the basics of the logic needed by any computer science student.

Lean over to watch the river
slipping away beneath you,

you will suddenly know
everything there is to be known.

1 The Logic of True/False and And/Or/Not/Implies

Logic: We start here with the basics of Propositional Logic, which covers True/False variables and sentences
with And/Or/Not/Implies connectors.

Statements: Here α and β each denote statements that are either true or false, eg α could be “I love logic”
or something more complex like “I love logic and I will do my homework.”

True or False: In our logic, each variable and logical sentence/formula/statement α is either true or
false or independent of what we know. Not knowing is caused by not knowing which uni-
verse/model/interpretation/assignment we are in. In each of these, α is either true or false. There is
no gray. Hoping will not help. We won’t consider different people with different beliefs. And we are
never wrong. There are no probability distributions. And hence no “likely”. There is no time. And
hence no “now” or “later”.

Connectors: Just to confuse you, logicians use the logical symbol ∧ to represent and, ∨ to represent or, ¬
to represent not. and → to represent implies. Just like the addition table that states 4 + 3 = 7, the
table states that α→ β is true whenever α being true implies that β is also true. Equivalently, it is
only false when α is true and β is false.
α β α∧β α∨β ¬β α→β
T T T T F T
T F F T T F
F T F T T
F F F F T

Axioms/Assumptions: Few things can be proved without making some kind of assumptions. An axiom
is a sentence that we will assume is true. Γ denotes the set of axioms.

Tautology/Valid: The sentence (α→β)→γ iff (¬α→γ)∧(β→γ) is said to be a tautology because under
all 23 assignments 〈α, β, γ〉 ∈ {true/false}3 the two sentences evaluate to the same T/F value.

Valid: A statement α is said to be valid if it is true in every possible model/assignment in which your
axioms/assumptions Γ are true. This is equivalent to the sentence Γ → α being a tautology.

Brute Force Proof: The most mindless proof makes a table listing all 2n possible T/F assignments to the
n variables checking for each that whenever the axioms Γ are true, so is α. The problem is that for
large n this proof is too long. It also fails to give you any intuition.

A Hilbert Style Proof: A Hilbert proof is a sequence of sentences each of which is either an axiom ∈ Γ or
follows by some mechanical symbol-manipulation rule from previous sentences in the proof. We want
by induction on the length of the proof that every sentence in the proof is valid. By definition the
axioms themselves are valid. Hence it is sufficient that each rule is sound, namely if all the previous
sentences that it depends on are valid, then so is the new sentence being added.

Modus Ponens: One rule your a proof system needs for sure is Modus Ponens, which states that if you
have proved both α and α→β are valid, then you can conclude that β is also valid. Here α→β is read
“α implies β”. You also need a rule that groups a number of proved sentences α1, α2, . . ., and αr into
a single sentence that is their And, namely (α1∧α2∧. . .∧αr).

Rule vs Axiom: After these, it is a matter of taste whether you add something as a rule or as an axiom.
The rule version would state that if you have proved sentences α1, α2, . . ., and αr are valid, then you
can conclude that β is also valid. An equivalent axiom to add to Γ would be (α1∧α2∧. . .∧αr) → β.

Formal Proof System: A proof system describes the rules being allowed. Though one could prove every-
thing with an extremely small list of rules, we will include every sound rule that we can think of that
a student might feel is useful.

Table of Rules: Figure 1 summarizes some axioms, proof techniques, and lemmas having to do with Propo-
sitional Logic.

Figure 1: A summary of rules/proof techniques/axioms having to do with logical operators. On the left of
the figure are those rules which use a ∧, ∨, or → statement after it has already been proved. On the right
are those which can be used to prove such a statement. Selecting Or, for example, states that if you already
know that (α or β) is true and you know that α is not true, then you can conclude that β must be true.
Eval/Build states that to prove that (α or γ) is true, it is sufficient to prove that α is true. We call it an
evaluation rule because from only α = T , you can evaluate α ∨ γ = T . We call it a build rule because from
α in your list of statements that you know are true, you can add the larger statement α ∨ γ.

Sound Rule: A rule is said to be sound if when all the previous sentences that it depends on are valid,
then so is the new sentence being added. As an example, we will give the brute force proof that the
Selecting Or rule is sound, i.e. for each of the 2n settings of the variables, either one of conditions is
false so the rule does not apply or in fact the conclusion is true. For the Selecting Or rule, this amounts
to (α∨β and ¬α) being false or β being true.

2

α β α∨β ¬α ¬((α∨β) and ¬α) β ¬(α∨β and ¬α) or β
T T T F T T T
T F T F T F T
F T T T F T T
F F F T T F T

Exercises:

1. For each rule in Figure 1, give an example, explain what it means, and informally argue that it is true.
Also give an example in which α→β is true and β→α is not.

2. Suppose your proof system is given the Selecting Or axiom ((α ∨ β)∧¬α)→β, the Eval/Build ∧ rule,
and Modus Ponens. Use them to effectively apply the Selecting Or rule.

3. Prove the other rules in the figure using the brute force (table) proof.

4. It can be fun to assume that a subset of these rules are true and from them prove that others are true.
Proof the Selecting Or statement ((α ∨ β)∧¬α)→β using any of the rules except for the Selecting Or
rule.

5. I just don’t understand my dad. Maybe if I do well at school, he will love me. Maybe if I follow all his
rules, he will love me. I know that at least one of these is true. I just don’t know which. What do I
need to do to guarantee his love? Let α denote “I do well at school,” β denote “I follow all his rules,”
γ denote “He will love me,” and X denote “The situation”, i.e., (α→γ)∨(β→γ).

(a) Suppose I believed that I do not need to both do well at school and follow his rules so I only
do one of them. Does this guarantee his love? Give a True/False value of all the variables and
statements in which it does not work out for me.

(b) To be careful, I both do well at school and follow his rules. Prove that this guarantees his love.

Answers:

1. Explanations of the rules:

Separating And: If you know “I love logic and I will do my homework,” then you know both that
“I love logic” and that “I will do my homework.” This is the meaning of the connector and. The
logical symbol ∧ denotes and. Hence, if the statement α∧β is true then by definition the statement
α is true, as is the statement β.

Eval/Build ∧: Conversely, if both α and β are true, then their and is true. We call it an evaluation
rule because from α = β = T , you can evaluate α∧β = T . We call it a build rule because if both
α and β are in your list of statements that you know are true, you can add the larger statement
α∧β.

A standard proof only lists things that it has proven to be true. Hence, you state that β is false
by stating that ¬β is true. Here ¬ denotes the logical negation symbol. The second Eval/Build
rule, from ¬β concludes that (the and of β with anything) is false, i.e., ¬(β∧γ) is true. One fun
thing about this is that we can evaluate ¬(β∧γ) = T without knowing the value of γ.

Selecting Or: If you know “I will do my homework or I love logic,” then you know that at least one
of these statements is true, perhaps both. This is the meaning of the connector or. From this,
you do not know whether or not “I love logic.” On the otherhand, if in addition you know that “I
will not do my homework,” then you because at least one is true, you can conclude that “I love
logic.” The logical symbol ∨ denotes or. The rule is that from the statements α∨β and ¬α, one
can conclude β.

3

Eval/Build ∨: If you know that “I love logic,” then you can conclude that “I love logic or I will
do my homework,” independent from knowing whether or not “I will do my homework.” More
generally, this rule states that to prove that either α or γ is true, it is sufficient to prove that α is
true. We call it an evaluation rule because from only α = T , you can evaluate α∨γ = T . We call
it a build rule because from α in your list of statements that you know are true, you can add the
statement α∨γ. On the other hand, in order to prove α∨β is not true, then you need to prove
that both α and β are not true.

Excluded Middle: The statements α∨¬α and ¬(α ∧ ¬α) are axioms of our logic, i.e., assumed to
be true. They state that in our logic, each variable and logical sentence/formula/statement α is
either true or false but not both.

De Morgan: If it is not the case that “I love logic” and “I will do my homework,” then at least one
of them must be false. More generally, ¬(α∧β) and ¬α∨¬β are equivalent statements because if
it is not true that both α and β are true, then at least one of them must be false.

Modus Ponens: If you already know that “I love logic implies I will do my homework” and that “I
love logic,” then a classic logic conclution is that “I will do my homework.” More generally, from
α and α→β, you can conclude β.

Deduction: The standard way to prove α → β is by temporarily assuming that α is true and using
that belief to prove β. See more below.

No-Causality: The statement α→β is widely missunderstood by beginners. Formally, it means “If
is α true, then so is β.” The statement, however, is not supposed to imply any sense of causality.
A better interpritation might be, “In every universe in which α true, it happens to be the case
that β is also true.” Equivalently, one might say “There are no universes in which α true and β
is mot.” An example is “Is hound” → “Is dog.” Note how the set hounds is a subset of the set of
dogs. As such, the set of universes in which you are a hound is a subset of the set in which you
are a dog. Note that modus ponens also follows from this understanding, because knowing that
you are in a universe in which α is true still tells you that β is true in this universe as well.

Reverse Direction: Note that α→β does not imply β→α. For example, “Is hound” → “Is dog” is
true and the reverse “Is dog → “Is hound” is not.

Eval/Build →: The statement (I am a billionaire) → (1 + 1 = 2) is automatically true whether or
not I am a billiionaire. More generallry, if β happens to be true, then the statement α → β is
automatically true because the contract is not broken. Similarly, the statement (1 + 1 = 3) →
(I am a billionaire) is automatically true again whether or not I am a billionare. If α happens
to be false, then again α→β is automatically true. Finally, the statement (1 + 1 = 2) → (I am
a billionaire) is false because the math is wrong and I am a not billionare. If α is true and β is
false, then α→β is false.

Contrapositive: If you know that “I love logic” implies “I will do my homework,” then it follows
that “I will not do my homework” implies “I do not love logic,” because if “I do love logic” then
“I would do my homework.” More generally α → β and ¬β → ¬α are considered equivalent
statement. They are the contra positive of each other. Other equivalent statements are ¬(α∧¬β)
and by De Morgan ¬α∨β. Recall, however, that β → α is a different statement.

Equivalence: If you know that “I love logic” implies “I will do my homework” and you know that “I
will do my homework” implies “I love logic,” then one of these is true if and only if the other is
true. These become equivalent/interchangeable statements.

Cases: A very common proof technique is proof by cases. Suppose, for example, you know that you
will either do your homework today or tomorrow. You know that if you do it today, then you will
pass the exam. You also know that if you do it tomorrow, then you will pass the exam. Either
way, you know that you will pass the exam. In general, our goal is to prove γ. We prove that
there are only two cases α and β, i.e., at least one of these is true. For the first case, we assume
α and prove γ. In the second, we assume β and again prove γ. Either way we can conclude γ.

Trying a case and backtracking to try another case is called branching and is the basis of Recursive
Backtracking. See Chapter ??. A common thing to branch on is the value of a variable x that

4

seems to appear in a lot of places, namely ((x=T)∨(x=F))∧((x=T) → γ)∧((x=F) → γ)) → γ.
For each such case, the algorithm simplifies the sentence and recurses.

One can build more elaborate decision tree of cases. For each path from the root to a leaf, the
proof proves that for this case, the statement is valid. Having a tree ensures that all the cases are
handled. See Tree of Options page ?? and in Exercise?? (used to be III.13).

Simplifying: If a value of a variable/subsentence is substituted into a sentence, then it can be
simplified as follows: F ∧β ≡ F ; T ∧β ≡ β; F ∨β ≡ β; T ∨β ≡ T ; F → β ≡ T ; T → β ≡ β;
α→F ≡¬α; α→T ≡T .

Figure 2: Proving logical equivalent statements using the Davis Putnam algorithm

Deduction: Let’s revisit deduction. The standard way to prove α→ β is by temporarily assuming
that α is true and using that belief to prove β. People struggle with understanding why we can
assume α. The reason is that we really are doing proof by cases. In the first, case α is false, in
which case α→β is automatically true. We are now doing the second case, in which we assume
α is true.

Transitivity: If you can travel/prove from α to β and from β to γ, then you can travel/prove directly
from α to γ. Similarly, from α→β and β→γ, you can conclude α→γ.

Circuit: A circuit is like the and/or/not sentences described above, but it reuses some of the values
already computed. As such it is described by a directed acyclic graph of and/or/not gates. Such
circuits can compute any function from the 2n assignments of the input variables to the required
output. However, by simple counting, we know that most such functions require circuits of size
2n, i.e. The number of functions on 2n possible inputs is 22

n

. The number of circuits described
by s bits is 2s. Hence to have as many circuits as functions we need s ≥ 2n.

2. Applying the Selecting Or rule.

1 α ∨ β Proved before
2 ¬α Proved before
3 (α ∨ β)∧¬α Eval/Build from (1) and (2)
4 ((α ∨ β)∧¬α)→β Axiom
5 β Modus Ponens from (3) and (4)

3. No answers provided.

4. The following is a prove of the Selecting Or statement.

1 Deduction Goal: ((α∨β)∧¬α)→β.
2 (α∨β)∧¬α Assumption
3 α∨β Separating And from (2)
4 ¬α Separating And from (2)
5 ¬¬α∨β Double Negation from (3)
6 ¬α→β Contrapositive α′→β iff ¬α′ ∨ β from (5)
7 β Modus Ponens from (4) and (6)
8 ((α∨β)∧¬α)→β Deduction Conclusion

5

5. Love

(a) Suppose my strategy was to do well in school, but not follow his rules. It turned out that it was
the rules he really cares about. Hence, he did not love me. More formally, α=T , β=F , α∨β=T ,
γ=F , and as needed X = (α→γ)∨(β→γ) = (T →F)∨(F →F) = F∨T = T .

(b) Being careful:

1 (α→γ)∨(β→γ) X is given
2 α Being careful
3 β Being careful
4 Deduction Goal: (α→γ)→γ.
5 α→γ Assumption
7 γ Modus Ponens from (2) and (5)
8 (α→γ)→γ Deduction Conclusion
9 (β→γ)→γ Similar to (8)
10 γ Cases (1), (8), and (9)

2 Existential and Universal Quantifiers over Objects

This section introduces objects into our logic. Existential ∃ and universal/forall ∀ quantifiers provide an
extremely useful language for making formal statements about them. A game between a prover and a
verifier is a level of abstraction within which it is easy to understand and prove such statements.

The Domain of a Variable: As in Section 1, α represents a sentence/formula/statement that is either
true or false. Now each variable x represents an object. There must be an understood domain/set of
objects that the variables might take on. For example, this could be the set of integers or the set of
people. If one wants to talk about two different types of objects within the same logic, then one always
has to keep using predicates like girl(x) to test whether object x is a girl. This can be cumbersome.
Informally, it might be assumed that x is a real, i is an integer, p is a person, g is a girl, b is a boy and
so on. Even “the” set of girls needs to be clarified whether it means all girls in the room or all that
have ever existed.

The Loves Example: Suppose the relation Loves(p1, p2) means that person p1 loves person p2.

Expression Meaning
∃p2 Loves(Sam, p2) “Sam loves somebody.”
∀p2 Loves(Sam, p2) “Sam loves everybody.”
∃p1∀p2 Loves(p1, p2) “Somebody loves everybody.”
∀p1∃p2 Loves(p1, p2) “Everybody loves somebody.”
∃p2∀p1 Loves(p1, p2) “There is one person who is loved by everybody.”
∃p1∃p2

(

Loves(p1, p2) and ¬Loves(p2, p1)
)

“Somebody loves in vain.”

Definition of Relation: A relation like Loves(p1, p2) states for every pair of
objects p1 = Sam and p2 = Mary that the relation either holds between
them or does not. Though we will use the word relation, Loves(p1, p2) is
also considered to be a predicate. The difference is that a predicate takes
only one argument and hence focuses on whether the property is true or
false about the given tuple 〈p1, p2〉 = 〈Sam,Mary〉.

Representations: Relations (predicates) can be represented in a number of ways.

Functions: A relation can be viewed as a function mapping tuples of objects either to true or to
false, for example Loves : {p1 | p1 is a person } × {p2 | p2 is a person } ⇒ {true, false}.

6

Set of Tuples: Alternatively, it can be viewed as a set containing the tuples for which it is true,
for example Loves = {〈Sam,Mary〉 , 〈Sam,Ann〉 , 〈Bob,Ann〉 , . . .}. 〈Sam,Mary〉 ∈ Loves iff
Loves(Sam,Mary) is true.

Directed Graph Representation: If the relation only has two arguments, it can be represented by
a directed graph. The nodes consist of the objects in the domain. We place a directed edge 〈p1, p2〉
between pairs for which the relation is true. If the domains for the first and second objects are
disjoint, then the graph is bipartite. Of course, the Loves relation could be defined to include
Loves(Bob,Bob). See Figure 3.

Sam

Bob

Ron Jone

Ann

Mary Sam Mary

Bob

Ron Jone

Ann

Figure 3: A directed graph representation of the Loves relation.

Functions: Functions like f(x) and x+y takes a single or a tuple of objects from the universe as input and
returns a single object.

Quantifiers: You will be using the following quantifiers and properties.

The Existence Quantifier: The exists quantifier ∃ means that there is at
least one object in the domain with the property. This quantifier re-
lates the boolean operator OR. For example, ∃p1 Loves(Sam, p1) ≡
[Loves(Sam,Mary) OR Loves(Sam,Ann) OR Loves(Sam,Bob) OR . . .].

The Universal Quantifier: The universal quantifier ∀ means that all of the objects in the domain
have the property. It relates the boolean operator AND. For example, ∀p1 Loves(Sam, p1) ≡
[Loves(Sam,Mary) AND Loves(Sam,Ann) AND Loves(Sam,Bob) AND . . .].

Combining Quantifiers: Quantifiers can be combined. The order of operations is such that
∀p1∃p2 Loves(p1, p2) is understood to be bracketed as ∀p1 [∃p1 Loves(p1, p2)], namely “Every person
has the property “he loves some other person””. It relates to the following boolean formula.

Loves(Sam,Mary) Loves(Sam,Ann) Loves(Sam,Jone)

OR
Mary

Ann Jone

Loves(Bob,Mary) Loves(Bob,Ann) Loves(Bob,Jone)

OR
Mary

Ann Jone

Loves(Ron,Mary) Loves(Ron,Ann) Loves(Ron,Jone)

OR
Mary

Ann Jone

AND
Ron

Sam
Bob

Figure 4: The tree representing ∀ boys b ∃ girl g Loves(b, g). Note that ∀ relates to AND and ∃ relates to
OR.

Order of Quantifiers: The order of the quantifiers matters. For example, if b is the class of boys and g is
the class of girls, ∀b∃g Loves(b, g) and ∃g∀b Loves(b, g) mean different things. The second one states
that “The same girl is loved by every boy.” To be true, there needs to be a Marilyn Monroe sort of girl
that all the boys love. The first statement says that “Every boy loves some girl.” A Marilyn Monroe
sort of girl will make this statement true. However, it is also true in a monogamous situation in which
every boy loves a different girl. Hence, the first statement can be true in more different ways than the
second one. In fact, the second statement implies the first one, but not vice versa.

7

Figure 5: The order of the quantifiers matters.

Figure 6: Considering which inputs 〈x, y〉 tuples the statement talks about.

Sets of Tuples: Understanding what a logic statement like ∀x α(x, 2) says about the relation α can be
confusing. The following figure and examples explain this by considering which inputs 〈x, y〉 tuples the
statement talks about.

Similar we could build tables α(x, y) giving examples of the minimum number of input tuples that
need to be true so that the following logic statements are true.

∀x α(x, 2): This states that the y=2 column of the α table must be entirely true.

∃y∀x α(x, y): This is the same as ∀x α(x, 2) in that one column of the table must be entirely true,
but here we do not care which column this is.

∀x α(x, x): The diagonal in the table must be entirely true.

Let f(0) = 3, f(1) = 0, f(2) = 1, f(3) = 0, and ∀x α(x, f(x)): The tuples 〈0, 3〉, 〈1, 0〉, 〈2, 1〉,
and 〈3, 0〉 must be true. Note that each value of x has at least one value of y for which α(x, y) is
true.

∃f∀x α(x, f(x)): This is states the same as the previous example in that each value of x has at least
one value of y, but here we do not care which values of y those are.

∀x∃y α(x, y): This too says the same that each value of x has at least one value of y for which α(x, y)
is true.

Skolem/Auxiliary Functions: We have seen that ∀x∃y α(x, y) states that each value for x has at least
one value for y for which α(x, y) is true. One can use this fact to define a function y = f(x) which
gives you one such value of y for each value of x. It is useful to hold this view of the statement in mind
when trying to understand it.

8

Definition of Free and Bound Variables: The statement ∃p2 Loves(Sam, p2) means “Sam loves some-
one.” This is a statement about Sam. Similarly, the statement ∃p2 Loves(p1, p2) means “p1 loves
someone.” This is a statement about person p1. Whether the statement is true depends on who p1
is referring to. The statement is not about p2. The variable p2 is used as a local variable (similar to
for(i = 1; i <= 10; i + +)) to express “someone.” It could be a brother or a friend or a dog. In this
expression, we say that the variable p2 is bound, while p1 is free, because p2 has a quantifier and p1
does not.

Defining Other Relations: You can define other relations by giving an expression with free variables. For
example, you can define the relations LovesSomeone(p1) ≡ ∃p2 Loves(p1, p2).

Building Expressions: Suppose you wanted to state that “Every girl has been cheated on” using the
Loves relation. It may be helpful to break the problem into three steps.

Step 1) Assuming Other Relations: Suppose you have the relation Cheats(Sam,Mary), indicat-
ing that “Sam cheats on Mary.” How would you express the fact that “Every girl has been cheated
on”? The advantage of using this function is that we can focus on this one part of the statement.
We are not claiming that every boy cheats. One boy may have broken every girl’s heart.

Given this, the answer is ∀g∃b Cheats(b, g).

Step 2) Constructing the Other Predicate: Here we do not have a Cheats function. Hence, we
must construct a sentence from the loves function stating that “Sam cheats on Mary.”

Clearly, there must be someone else involved besides Mary, so let’s start with ∃p. Now, in
order for cheating to occur, who needs to love whom? (For simplicity’s sake, let’s assume that
cheating means loving more than one person at the same time.) Certainly, Sam must love p.
He must also love Mary. If he did not love her, then he would not be cheating on her. Must
Mary love Sam? No. If Sam tells Mary he loves her dearly and then a moment later he tells
Sue he loves her dearly, then he has cheated on Mary regardless of how Mary feels about him.
Therefore, Mary does not have to love Sam. In conclusion, we might define Cheats(Sam,Mary) ≡
∃p

(

Loves(Sam,Mary) and Loves(Sam, p)
)

.

However, we have made a mistake here. In our example, the other person and Mary cannot be the
same person. Hence, we define the relation as Cheats(Sam,Mary) ≡ ∃p

(

Loves(Sam,Mary)

and Loves(Sam, p) and p 6= Mary
)

. One could argue that Sam does not cheat if Mary knows
and is okay with the fact that Sam also love p, but we won’t get into this.

Step 3) Combining the Parts: Combining the two relations together gives you
∀g∃b∃p

(

Loves(b, g) and Loves(b, p) and p 6= g
)

. This statement expresses that “Every
girl has been cheated on.” See Figure 7.

Sam

Mary

Ann

Jone

Bob

true false

Sam

Mary

Ann

Jone

Bob

Figure 7: One states that “every girl has been cheated on” with ∀g∃b∃p (Loves(b, g) and Loves(b, p) and
g 6= p). On the left is an example in which the statement is true, i.e. all three girls have been cheated on.
On the right is one in which it is false, i.e. Mary has not been cheated on.

The Negation of a Statement: The negation of a statement is formed by putting a negation on the left-
hand side. (Brackets sometimes help.) A negated statement, however, is best understood by moving
the negation as deep (as far right) into the statement as possible. This is done as follows.

9

Negating AND and OR: A negation on the outside of an AND or an OR statement can be moved
deeper into the statement using De Morgan’s law. Recall that the AND is replaced by an OR
and the OR is replaced with an AND.

¬
(

Loves(S,M) AND Loves(S,A)
)

iff ¬Loves(S,M) OR ¬Loves(S,A): The negation of
“Sam loves Mary and Ann” is “Either Sam does not love Mary or he does not love Ann.” He
can love one of the girls, but not both.
A common mistake is to make the negation be ¬Loves(Sam,Mary)AND ¬Loves(Sam,Ann).
However, this says that “Sam loves neither Mary nor Ann.”

¬
(

Loves(S,M) OR Loves(S,A)
)

iff ¬Loves(S,M) AND ¬Loves(S,A): The negation of
“Sam either loves Mary or he loves Ann” is “Sam does not love Mary and he does not love
Ann.”

Negating Quantifiers: Similarly, a negation can be moved past one or more quantifiers either to the
right or to the left. However, you must then change these quantifiers from existential to universal
and vice versa. Suppose d is the set of dogs. Then

¬
(

∃d Loves(Sam, d)
)

iff ∀d ¬Loves(Sam, d): The negation of “There is a dog that Sam loves”
is “There is no dog that Sam loves” or “All dogs are not loved by Sam.” A common mistake
is to state the negation as ∃d ¬Loves(Sam, d). However, this says that “There is a dog that
is not loved by Sam.”

¬
(

∀d Loves(Sam, d)
)

iff ∃d ¬Loves(Sam, d): The negation of “Sam loves every dog” is “There
is a dog that Sam does not love.”

¬
(

∃b∀d Loves(b, d)
)

iff ∀b ¬
(

∀d Loves(b, d)
)

iff ∀b∃d ¬Loves(b, d): The negation of “There
is a boy who loves every dog” is “There are no boys who love every dog” or “For every boy,
it is not the case that he loves every dog.” or “For every boy, there is some dog that he does
not love.”

¬
(

∃d1∃d2 Loves(Sam, d1) AND Loves(Sam, d2) AND d1 6= d2
)

iff ∀d1∀d2 ¬
(

Loves(Sam, d1) AND Loves(Sam, d2) AND d1 6= d2
)

iff ∀d1∀d2 ¬Loves(Sam, d1) OR ¬Loves(Sam, d2) OR d1 = d2:
The negation of “There are two (distinct) dogs that Sam loves” is “Given any pair of (dis-
tinct) dogs, Sam does not love both” or “Given any pair of dogs, either Sam does not love
the first or he does not love the second, or you gave me the same dog twice.”

The Domain Does Not Change: The negation of ∃x≥ 5 x+2= 4 is ∀x≥ 5 x+2 6= 4. It is NOT
∃x< 5 Both the statement and its negation are asking a question about numbers greater or
equal to 5. More formally one should write ∃x (x≥5 and x+2=4) and ∀x (x≥5 → x+2 6=4). As
an exercise, check that these are negations of each other.

3 Proving Via Prover/Adversary/Oracle Game

There are a number of seemingly different techniques for proving that an existential or universal statement is
true. The core of all these techniques, however, is the same. Personally, I like to use a context free grammar
to parse the sentence to be proved and then to have the traversal of its parse tree guide a game between a
prover, an adversary, and an oracle. A proof of the sentence is then a winning strategy for the prover.

Proving Via Prover/Adversary Game: We will start by proving sentences that have exists and forall
but not imply.

Techniques for Proving ∃d Loves(Sam, d):

Proof by Example or by Construction: The classic technique to prove that something with
a given property exists is by example. You either directly provide an example, or you describe
how to construct such an object. Then you prove that your example has the property. For
the above statement, the proof would state “Let d be Fido” and then would prove that “Sam
loves Fido.”

10

Proof by Adversarial Game: Suppose you claim to an adversary that “There is a dog that
Sam loves.” What will the adversary say? Clearly he challenges, “Oh, yeah! What dog?”
You then meet the challenge by producing a specific dog d and proving that Loves(Sam, d),
that is that Sam loves d. The statement is true if you have a strategy guaranteed to beat any
adversary in this game.

• If the statement is true, then you can produce some dog d.

• If the statement is false, then you will not be able to.

Hard Proof: The reason that proving ∃d Loves(Sam, d) may be really hard is that you must
find a solution d to what might be a very hard computational problem. It could be an
uncomputable problem like “will my algorithm ever halt” or an exponentially large search
like finding a sequences of n Yes/No inputs that satisfies some circuit.

Techniques for Proving ∀d Loves(Sam, d):

Proof by Example Does NOT Work: Proving that Sam loves Fido is interesting, but it does
not prove that he loves all dogs.

Proof by Case Analysis: The laborious way of proving that Sam loves all dogs is to consider
each dog, one at a time, and prove that Sam loves it.
This method is impossible if the domain of dogs is infinite.

Proof by “Arbitrary” Example: The classic technique to prove that every object from some
domain has a given property is to let some symbol represent an arbitrary object from the
domain and then to prove that that object has the property. Here the proof would begin
“Let d be any arbitrary dog.” Because we don’t actually know which dog d is, we must either
prove Loves(Sam, d) (1) simply from the properties that d has because d is a dog or (2) go
back to doing a case analysis, considering each dog d separately.

Proof by Adversarial Game: Suppose you claim to an adversary that “Sam loves every dog.”
What will the adversary say? Clearly he challenges, “Oh, yeah! What about Fido?” You
meet the challenge by proving that Sam loves Fido. In other words, the adversary provides a
dog d′. You win if you can prove that Loves(Sam, d′).
The only difference between this game and the one for existential quantifiers is who provides
the example. Interestingly, the game only has one round. The adversary is only given one
opportunity to challenge you.
A proof of the statement ∀d Loves(Sam, d) consists of a strategy for winning the game. Such
a strategy takes an arbitrary dog d′, provided by the adversary, and proves that “Sam loves
d′.” Again, because we don’t actually know which dog d′ is, we must either prove (1) that
Loves(Sam, d′) simply from the properties that d′ has because he is a dog or (2) go back to
doing a case analysis, considering each dog d′ separately.

• If the statement ∀d Loves(Sam, d) is true, then you have a strategy. No matter how the
adversary plays, no matter which dog d′ he gives you, Sam loves it. Hence, you can win
the game by proving that Loves(Sam, d′).

• If the statement is false, then there is a dog d′ that Sam does not love. Any true adversary
(and not just a friend) will produce this dog and you will lose the game. Hence, you cannot
have a winning strategy.

Proof by Contradiction: A classic technique for proving the statement ∀d Loves(Sam, d) is
proof by contradiction. Except in the way that it is expressed, it is exactly the same as the
proof by an adversary game.

By way of contradiction (BWOC) assume that the statement is false, that is,
∃d ¬Loves(Sam, d) is true. Let d′ be some such dog that Sam does not love. Then
you must prove that in fact Sam does love d′. This contradicts the statement that
Sam does not love d′. Hence, the initial assumption is false and ∀d Loves(Sam, d) is
true.

Proof by Adversarial Game for More Complex Statements: The advantage to this technique
is that it generalizes into a nice game for arbitrarily long statements.

11

The Steps of Game:

Left to Right: The game moves from left to right, providing an object for each quantifier.

Prover Provides ∃b: You, as the prover, must provide any existential objects.

Adversary Provides ∀d: The adversary provides any universal objects.

To Win, Prove the Relation Loves(b′, d′): Once all the objects have been provided, you
(the prover) must prove that the innermost relation is in fact true. If you can, then you
win. Otherwise, you lose.

The Game Tree: This game can be represented by a game tree.

Figure 8: The game tree

Proof Is a Strategy: A proof of the statement consists of a strategy such that you win the
game no matter how the adversary plays. For each possible move that the adversary takes,
such a strategy must specify what move you will counter with.

Negations in Front: To prove a statement with a negation in the front of it, first put the state-
ment into “standard” form with the negation moved to the right. Then prove the statement
in the same way.

Examples:

∃b∀d Loves(b, d): To prove that “There is a boy that loves every dog”, you must produce a
specific boy b′. Then the adversary, knowing your boy b′, tries to prove that ∀d Loves(b′, d)
is false. He does this by providing an arbitrary dog d′ that he hopes b′ does not love. You
must prove that “b′ loves d′.”

¬
(

∃b∀d Loves(b, d)
)

iff ∀b∃d ¬Loves(b, d): With the negation moved to the right, the
first quantifier is universal. Hence, the adversary first produces a boy b′. Then, knowing
the adversary’s boy, you produce a dog d′. Finally, you prove that ¬Loves(b′, d′).
Your proof of the statement could be viewed as a function D that takes as input the
boy b′ given by the adversary and outputs the dog d′ = D(b′) countered by you. Here,
d′ = D(b′) is an example of a dog that boy b′ does not love. The proof must prove that
∀b¬Loves(b,D(b))

Models and Free Variables: If you want prove something, then you need to start with an open mind
about the possibilities. Maybe, for example, for some really really big integers x+y 6= y+x. Can you
prove otherwise? A model in logic defines the universe U of objects which ∀x considers and for each
tuple of objects 〈x, y〉∈U×U whether or not the relations Loves(x, y) and x<y are defined to be true
and what the functions f(x) and x+y evaluate to. The model also fixes an object for each free variable
like Sam and x in statements like ∃p2 Loves(Sam, p2) and α(x).

A Given Model: One option is to clearly state the assumed model. For example, a paper could state
that it is working over the standard model of the integers in which 1+1= 2 as we all know and
love. In this model, the “variable” 0 is not free but is bound to being the constant zero.

Valid: A proof of a statement ensures that it is true in every possible model in which your ax-
ioms/assumptions are true. Such a statement is said to be valid. This is the formal approach

12

to take even when proving things about the integers. One assumes nothing about the integers
except a small list of axioms like ∃0 ∀x x+0 = x and from those alone prove statements like
∃0 ∀x x×0=0 must also be true. See Exercise 4.9. One advantage of doing this is that you are
can be sure your proof does not make any unstated assumptions. Another is that it is fun to see
what follows from what. Another is that then any statement you prove will automatically also
be proved true in any initially unintended models in which the axioms are true, for example the
integers mod a prime.

Universal Closure: Wanting valid statements to be true under every model, means that in front of
a statement like ∃p2 Loves(Sam, p2), a forall quantifier is implied, namely

∀ universes U ∀ relations Loves ∀ objects Sam
[All axioms/assumptions true → ∃p2 Loves(Sam, p2)].

Adversary: In our game, forall objects are provided by the adversary. Hence, you can start every
proof by having him provide a universe of objects U , a worst case relation Loves, and an object
Sam for which the axioms/assumptions are true.

Counter Example: The negation of the above statement is that there exists at least one model in
which the axioms are true and the statement is false. A proof that a statement is not valid only
requires describing one such model. It does not need to be model that anyone would ever had in
mind. It says that even if your statement is true in your favorite model, you can’t prove it from
these axioms if it is not true in this strange model for which the axioms are also true. If you
are still convinced that your statement is true in your model, you could try adding some extra
axioms/assumptions that are true in your model and false in the strange one. With these extra
axioms, you might be able to prove your statement.

Free Variable Fail: The assumed forall in front means that the three statements α(x) and ∀x α(x)
and hence ∀x′ α(x′) are interchangeable. A common mistake is to think that this means that
the statement α(x) → ∀x′ α(x′) is always true. It is not. Its implied universal closure is not
[∀x α(x)] → [∀x′ α(x′)] which is trivially true, but is ∀x [α(x) → ∀x′ α(x′)] which is not. The
adversary can choose that U = {0,1}, α(0) is true, α(1) is false, and x= 0. Then α(x) is true,
while ∀x′ α(x′) is not. See Exercise 4.5.

Being Assured by an Oracle: One can’t even prove that 1+ 1 = 2 without assumptions about what the
symbols 1, 2,+, and = mean. Hence, we add to our proof system a lot of axioms like x+y = x+y
and x+0 = x. Knowing that these are true, the prover can use them to prove other things. Once
other things have been proved, knowing that they are true, he can use them to prove yet other things.
Similarly, if the prover wants to prove that α→β, then he temporarily assumes that α is true. A useful
way to use the fact that these statements are true is by assuming that the prover has an oracle that
will assure him of the fact. If the oracle assures the prover of ∀x α(x), i.e. α(x) is true for all values of
x, then she can allow the prover to specify his favorite value for xprover and she will assure him that
α(x) is true for this value. To assure that ∃y α(y), i.e. α(y) is true some y, the oracle must construct
a value yoracle for y for which it is true.

Example: A famous proof is as follows. Suppose that an oracle assures that ∀x (Human(x) →
Mortal(x)) and that Human(Socrates) and the prover wants to prove Mortal(Socrates). This
has the form (α ∧ β) → γ. No universe is defined, so we have to prove this in every possible
universe under any definition of human and mortal. The prover needs to prove Mortal(Socrates)
without knowing which object Socrates represents. Because his oracle assures that something
is true for every value of x, he can give her this object Socrates and she will assure him of the
statement for this object, namely that Human(Socrates)→Mortal(Socrates). The prover points
out to his oracle that she happens to be assuring him that Human(Socrates). Hence, by Modus
Ponens, she can assure him that Mortal(Socrates). This competes the proof.

Follow the Parse Tree: When proving a complex statement, it might be hard to know which rule to follow
next. There are can be so many moving parts. The first step is to really understand what you are
trying to prove. You can’t understand an English sentence until you build a parse tree for it clarifying

13

which is the subject and which is the verb. Similarly, complex logic statements also need to be parsed.
Chapter ?? explains how a context free grammar will both inform you of which sequences of characters
form syntactically correct logical statement and allow you to build a parse tree for such a statement
that will clarify what it means.

Context Free Parse Tree: A context free grammar parses the string ∀a ∃b a+ b = 0 as follows.
See Figure 9. You start with the start non-terminal Sprover at the root of the tree. The rule
Sprover ⇒ ∀Xadversary Sprover builds under any node labeled with the LHS, two children labeled
with the RHS parts ∀Xadversary and Sprover. Recurse on all non-terminal nodes. The rule
Sprover ⇒ ∃Yprover Sprover builds under this second node, two children labeled ∃Yprover and
Sprover. The rule Sprover ⇒ R(T, T, T) builds under this second node, a nodes labeled R(T, T, T).
The rule T ⇒ a|b|0 builds under the three T , the three terms a, b, and 0. The rule R ⇒ + =
plugs these terms into this relation producing a+b=0. The rules Xadversary ⇒ a and Yprover ⇒ b
does the same for these variables. The parsing stops here because only terminal symbols remain.
Reading these off the leaves gives the string ∀a ∃b a+b=0 being parsed.

Figure 9: Parse tree for ∀a∃b a+b=0.

Game Parse Tree: The proof follows a game dictated by traversing this tree in depth-first-search
order. To be clearer, we replace each node label ∀Xadversary and ∃Yprover with “Adversary:
∀aadversary” and “Prover: ∃bprover”. When located at such a node, the player in question must
provide a specific object for the variable in question. We replace each label Sprover and Soracle with
“Prover” or “Oracle” followed by the string parsed by this subtree, with the objects constructed
so far substituted in. In the game, this is the string that the prover must prove and the oracle
must assure the truth of when located at this node. The prover wins if he is able to prove the
statement at the leaf. This proof will bubble back up the tree to a proof of the root.

Table of Rules: The table in Figure 10 lists the contest free grammar rules I recommend. Each
is modified to clarify how the object produced is used. For example, the first rule Sprover ⇒
∀Xadversary Sprover is modified to Sprover ⇒ ∀xadversary Sprover(xadversary). The description on
the right of each rule explains how the game plays out for the nodes being traversed. For example,
this first rule says “The prover proves ∀x by having his adversary provide him a value xadversary

and him going on to prove the statement for this value.”

Play Game: Prove the statement ∀a ∃b a+b=0 by traversing the tree. The prover receives a value
aadversary from his adversary. He constructs bprover to be the additive inverse −aadversary of the
adversary’s value. The winner wins because aadversary+bprover=aadversary+(−aadversary)=0.

Mechanical: The advantage of the game is that it is completely mechanical except for knowing which
objects the prover should construct at his nodes labeled “Prover: ∃g′prover” and at his oracle’s nodes
labeled “Prover: ∀bprover”.

14

Grammar Rule Explanation
Sprover ⇒ ∀xadversary Sprover(xadversary) The prover proves ∀x by having his adversary provide him a

value xadversary

⇒ ∃yprover Sprover(yprover) The prover proves ∃y by constructing such a value.
⇒ Sadversary → Sprover The prover proves an implies by having his oracle assure him of

Sadversary and using this to prove Sprover.
⇒ Sprover ∧both Sprover The prover proves an and by proving both statements.
⇒ Sprover ∨one Sprover The prover proves an or by proving one of the statements. The

prover gets to decide which one.
⇒ R(T, T) Here R represents some relation and the T s each represent some

term which represents some object from your universe. At this
point in the game, the prover checks whether or not the relation
is true when the constructed values are plugged in.

Soracle ⇒ ∀xprover Soracle(xprover) The oracle assures ∀x by allowing the prover to provide her a
value xprover

⇒ ∃yoracle Soracle(yoracle) The oracle assures ∃y by constructing such a value.
⇒ Sprover → Soracle The oracle assures an implies by having the prover prove Sprover

and then going on to assure him of Soracle. Sometimes the
prover does this with cases.

⇒ Soracle ∧both Soracle The oracle assures an and is true by assuring that both state-
ments are true.

⇒ Soracle ∨cases Soracle The oracle assures an or is true by assuring that at least one of
the statements is true. Careful, the oracle not the prover gets
to decide which one. Hence, the prover will have to consider
both cases.

⇒ R(T, T) The oracle assures that the relation is true when the constructed
values are plugged in.

Figure 10: The contest free grammar rules for parsing a logical sentence. The prover/adversary/oracle game
follows the resulting parse tree.

A Second Example: Let’s prove the statement ∃g∀b Loves(b, g) implies ∀b′∃g′ Loves(b′, g′). Clearly, if
there is a girl like Marilyn Monro that is loved by every boy then every boy loves at least her. But we
want to see how to mechanically produce this proof.

Game Parse Tree: Figure 11 gives the parse tree for the sentence. The root includes the implied
universal closure ∀ universes U ∀ relations Loves. This quantifier is within the left child of the
root. For the right child, the grammar rule Sprover ⇒ Sadversary → Sprover has the prover prove
this implies by having his oracle assure him of Sadversary and using this to prove Sprover. Note
that the oracle has her own set of parsing rules, changing “prover proves” to “oracle assures” and
“adversary challenges” to “prover asks for help”. For example, she assures ∀x not with an object
from an adversary but by allowing the prover to provide her a value xprover.

Figure 11: Parse tree for ∃g∀b Loves(b, g) → ∀b′∃g′prover Loves(b′, g′).

15

Play Game: The prover proves the statement at the root of the tree by following a “merged” depth
first search traversal this tree. He starts by traversing left to the node labeled “Adversary: ∀
universes U ∀ relations Loves at which his adversary specifies the universe of people U and for
each tuple of objects 〈b, g〉 ∈ U×U whether or not the relation Loves(b, g) is defined to be true.
Moving to the right node, the prover must prove the statement. From here he traverses left to the
node labeled “Oracle: ∃g∀b Loves(b, g)” at which his oracle assures him that the given statement
is true. The oracle will follow a depth first search traversal of her subtree, but only in an as need
basis. Our focus being on the prover, the oracle is left here and the prover moves right to the node
labeled “Prover: ∀b′∃g′ Loves(b′, g′)” which gives the sub-statement he currently needs to prove.
Traversing to the node labeled “Adversary: ∀b′adversary”, the adversary provides b′adversary and
then to the node labeled “Prover : ∃g′ Loves(b′adversary, g

′)” which gives the statement he now
must prove. He traverse to the node labeled “Prover: ∃g′prover”, but here the prover gets stuck.
Not being able to produce this girl on his own, he talks to his oracle. We left her assuring at
the node labeled “Oracle: ∃g∀b Loves(b, g)”. She traverses left, giving the prover the girl goracle
assumed to exist. Going back to the prover at the node labeled “Prover: ∃g′prover”, he chooses
g′prover to be the oracle’s girl goracle, i.e. g

′
prover = goracle. Traversing to the node to the right,

he still must prove Loves(b′adversary, g
′
prover) or equivalently Loves(b′adversary, goracle), i.e. that

Loves is true for the adversary’s b′adversary and the oracle’s goracle. Again he gets the oracle’s
help. Traversing to her right node, she assures the prover of ∀b Loves(b, goracle). Traversing to
“Prover: ∀bprover,” she allows him to give her his favorite boy bprover. He gives her the boy
b′adversary given to him by his adversary, i.e. bprover = b′adversary. Traversing right, she assures
him that Loves(bprover, goracle) or equivalently Loves(b′adversary, goracle) is true. This proves the
prover’s leaf statement. The proof wraps up by bubbling back up the tree to prove the statement
at the root. Namely, because he constructed a girl g′prover for which Loves(b′adversary, g

′
prover)

is true, he knows ∃g′ Loves(b′adversary, g
′). Because he did this for a boy b′adversary provided by

his adversary, he knows that ∀b′∃g′ Loves(b′, g′). Because he had his oracle assure him of the
LHS and using this he proved the RHS, he proofs that LHS→RHS. Because he did this with the
Adversary’s worst case relation Loves, he know that the statement is true in every model.

Faster: Yes, this story feels unnecessarily complicated, but once you get the hang of it you can do it
faster and with the players removed. Assume the LHS: ∃g∀b Loves(b, g). Let g denote the girl
stated to exist such that ∀b Loves(b, g) is true. To prove the RHS: ∀b′∃g′ Loves(b′, g′), let b′ be
an arbitrary boy. The assumption ∀b Loves(b, g) states that something is true for all b and hence
it is true for b′, namely Loves(b′, g). Having this true for g, proves ∃g′ Loves(b′, g′). Given we
did this for an arbitrary b′ proves ∀b′∃g′ Loves(b′, g′).

A Harder Example: See Exercise 5.1.

More Examples: Below are some more complicated parse trees.

α→(β→γ): See Figure 12. The prover proves α→(β→γ) by having an oracle assure him of α and
then going on to prove β→γ. The prover proves β→γ by having a second oracle assure him of
β and then going on to prove γ. It would be the same if there was only one oracle that assured
him of α and β.

(α∧β)→γ: The prover proves (α∧β)→γ by having an oracle assure him of α∧β and then going on
to prove γ. Amusingly is effectively the same game as that in our first example. It turns out that
these two statements are logically equivalent.

(α→β)→γ: Suppose α is “The material is hard”, β is “I will study”, and γ is “I will pass”. I, the
oracle, assure my father α→ β, i.e. “if the material is hard, then I will study”. From this, my
dad the prover whats to prove to himself γ, i.e. “I will pass the test”. The table states that the
oracle assures the prover of an implies by having the prover prove Sprover and then going on to
assure him of Soracle. As suggested, the prover will do this by cases. In the first case, α i.e. “The
material is hard”. Then I as the oracle as promised assure the prover that β i.e. “I will study”.
From this, the prover on his own can prove γ i.e. “I will pass”. In the second case, ¬α i.e. “The

16

Figure 12: More parse trees

material is not hard”. From this, the prover on his own can prove γ i.e. “I will pass”. Either way
we are good.

(¬α→γ)∧(β→γ): To prove this, the prover needs to prove both statements. To prove the first, his
oracle assures him that ¬α i.e. “The material is not hard” and he on his own goes on to prove
γ i.e. “I will pass”. To prove the second, his oracle assures him that β i.e. “I will study” and he
on his own goes on to prove γ i.e. “I will pass”. Amusingly these are the exact two things that
ultimately need to be proved in our previous example. It turns out that these two statements are
logically equivalent. See Figure 2.

(¬α∨β)→γ): To prove this, the prover has his oracle assure him that ¬α∨β. Because he does not
know which of these the oracle assures him of, he needs to consider both cases. In the first case,
his oracle assures him that ¬α i.e. “The material is not hard”, and he on his own goes on to prove
γ i.e. “I will pass”. In the second case, his oracle assures him that β i.e. “I will study”, and he on
his own goes on to prove γ i.e. “I will pass”. Amusingly these are the same things proved for the
previous two examples. It turns out that these three statements are logically equivalent.

4 Formal Proof System

We will now very quickly cover formal proofs. To ensure that personal beliefs don’t lead to false proofs
it should adhere to strict mechanical symbol-manipulation rules. No meaning or intuition is needed. I,
however, am not convinced that as taught in most texts this teaches students to understand or produce
correct proofs. I also feel that the way mathematicians actually write papers is closer to the game described
above. If one wants a formal mechanical proof system, I recommend the following. We start with the logic
of true/false and and/or/not/implies given in Section 1. Then we add some new rules for handling objects.

A Formal Proof: A formal proof is a sequence of sentences each of which is either an axiom or follows
from previously proved sentences by one of the proof systems rules.

Sound and Complete: A proof system is said to be sound if for any statement α, having a proof for it
ensures that it is true in every possible model in which your axioms/assumptions are true. Conversely,
a proof system is said to be complete if every statement α that is true in every possible model in which
your axioms/assumptions are true has a proof. Such statements are said to be valid. See Gödel’s
incompleteness and completeness theorems in Section 5.

Equality: Symbols like + and < might get reinterpreted by your model, but the symbol = will not be. In
our logic, x = y means that in our model x and y represent the same object. Formalizing equivalence

17

relations requires it to be reflexive: x=x, symmetric: x=y iff y=x, transitive: x=y and y=z implies
x=z, and substitutions: x=y implies f(x)=f(y) and α(x) is true iff α(y) is true.

Lemmas/Theorems: Proofs can be shortened by proving a lemma once and then using it many times in
different settings.

Substitute Objects: For example if ∀x x×0 = 0 is something you have proved as a lemma, then
this must be true in your model no matter which object x represents. A term is any sequence of
symbols that represents an object, eg. 2f(y). We can substitute such a term into the lemma and
be assured that the resulting statement is also true in our model, i.e. 2f(y)×0=0.

Substitute True/False: For example if [(α or β) and ¬α] → β is is something you have proved as
a lemma, then this must be true in your model no matter which statement α represents. We can
substitute in α ≡ (∀x α(x)) and β ≡ (∃y γ(x)) into the lemma and be assured that the resulting
statement is also true in our model, i.e. [((∀x α(x)) or (∃y γ(x))) and ¬(∀x α(x))] → (∃y γ(x)).

Free Variables x vs Fixed Objects x∃: Generally, the sentence α(x) means that α is true for an arbi-
trary value x and hence from it ∀x α(x) can be concluded. In order to make each line of the proof have
a clear meaning, I introduce the symbol y∃ to mean a fixed object which can depend on the definition
of α but not on value of free variables x. This can be extended to y∃(x) being a fixed function from
values of x to values of y. As such α(x, y∃) means ∃y∀x α(x, y) and α(x, y∃(x)) means ∃ function
y∃ ∀x α(x, y∃(x))) which in turn means ∀x∃y α(x, y).

Deduction with Free Variables: Above we proved that the statement α(x) → ∀x′ α(x′) is not true
in every model. The following rule is included in order to ensure that our proof system is unable to
prove it. Before we showed that one proves α→ β by assuming α, proving β, and concluding α→ β.
This is complicated when the assumption α (or an axiom) contains free variables. To fix the problem,
we introduce a new type of symbol x

→
and change the rule to assuming α(x

→
), proving β(x

→
), and

concluding α(x)→ β(x). Within the assumption block we are only assuming that α(x
→
) is true for

some object x
→
. Hence, from α(x

→
) you can conclude ∃x α(x), but the subscript → on the x prevents

you from concluding ∀x α(x). After the assumption block, we conclude ∀x [α(x) → β(x)], because we
did this for an arbitrary object x

→
.

Rules (Adding/Removing ∀/∃): These help define and to work with quantifiers.

Removing ∀: From line ∀x α(x), include line α(term(x)) (eg α(x)).

Adding ∀: From line α(x), include line ∀x α(x). Cannot be done for fixed x∃ or x
→
.

Removing ∃: From line ∃y α(y), include line α(y∃). From line ∃y α(x, y), include line α(x, y∃(x)).
Note y∃ is a fixed object while y∃(x) depends on x. If needed use y1∃, y2∃, . . . to make sure they
are not reused.

Adding ∃: From line α(term), include line ∃y α(y). Cannot be done if term depends on x bounded
with ∀x.

Negating ∀ & ∃: ¬∃x α(x) iff ∀x ¬α(x).

Proof: The following is a formal proof of [∃g∀b Loves(b, g)] → [∀b′∃g′ Loves(b′, g′)]. I could not help but
surround the formal sentences with lots of intuition, but mechanical rules are being followed.

Prove by Deduction:
∃g∀b Loves(b, g) Assumption
∀b Loves(b, g∃) Let g∃ denote the object stated to exist.
Loves(b, g∃) If true forall b, then true for b as a free variable.

The assumed meaning in each line is that the exists variables g∃,
are fixed first so as to not depend on the free variables b.

∃g′ Loves(b, g′) Shown to be true for g∃.
This is a weakening of the previous statements.

18

There is an implied “forall values of the free variables b”
on the outside on which the value of g that exists might depend.

∀b′∃g′ Loves(b′, g′) Shown to be true for free b.
LHS → RHS Deduction conclusion

The reverse proof is not true.
Prove by Deduction:
∀b′∃g′ Loves(b′, g′) Assumption
∃g′ Loves(b′, g′) If true forall b′, then true for b′ as a free variable.
Loves(b′, g′∃(b

′)) Let g′∃ denote the object stated to exist.
The assumed meaning in each line is that the exists variables g′∃ are fixed first.
But here g′∃ is fixed to be a function mapping the boy indicated by free variable b′

to the girl g′∃(b
′) stated to exist.

∀b Loves(b, g′∃(b)) Shown to be true for free b′.
All previous steps are correct and the meaning of each line is identical to that of the first.

∃g∀b Loves(b, g) Shown to be true for g∃.
This RHS does not follow from our LHS.
The rules are designed to disallow the last step by not allowing an ∃g to be added
for term g∃(b) if the b has already been quantified with ∀b.

Exercise 4.1 Let Loves(b, g) denote that boy b loves girl g. If Sam loves Mary and Mary does not love Sam
back, then we say that “Sam loves in vain.”

1. Express the following statements using universal and existential quantifiers. Move any negations to the
right.

(a) “Sam has loved in vain.”

(b) “There is a boy who has loved in vain.”

(c) “Every boy has loved in vain.”

(d) “No boy has loved in vain.”

2. For each of the above statements and each of the two relations below either prove that the statement is
true for the relation or that it is false.

Sam

Bob

MarySam Mary

Exercise 4.2 (See solution in Section 6) For each prove whether true or not when each variable is a real
value. Be sure to play the correct game as to who is providing what value.

1) ∀x ∃y x+ y = 5 2) ∃y ∀x x+ y = 5
3) ∀x ∃y x · y = 5 4) ∃y ∀x x · y = 5
5) ∀x ∃y x · y = 0 6) ∃y ∀x x · y = 0
7) [∀x ∃y P (x, y)] ⇒ [∃y ∀x P (x, y)]
8) [∀x ∃y P (x, y)] ⇐ [∃y ∀x P (x, y)]
9) ∀a ∃y ∀x x · (y + a) = 0
10) ∃a ∀x ∃y [x = a or x · y = 5]

Exercise 4.3 The game Ping has two rounds. Player-A goes first. Let mA
1 denote his first move. Player-

B goes next. Let mB
1 denote his move. Then player-A goes mA

2 and player-B goes mB
2 . The relation

AWins(mA
1 ,m

B
1 ,m

A
2 ,m

B
2) is true iff player-A wins with these moves.

1. Use universal and existential quantifiers to express the fact that player-A has a strategy in which he
wins no matter what player-B does. Use mA

1 ,m
B
1 ,m

A
2 ,m

B
2 as variables.

19

2. What steps are required in the Prover/Adversary technique to prove this statement?

3. What is the negation of the above statement in standard form?

4. What steps are required in the Prover/Adversary technique to prove this negated statement?

Exercise 4.4 Why does [∀n0, ∃n > n0, P (n)] prove that there are an infinite number of values n for which
the property P (n) is true?

Exercise 4.5 (See solution in Section 6) Building the parse tree for [∀x α(x)] → [∀x′ α(x′)] and for
∀x [α(x) → ∀x′ α(x′)]. Play the proof game for each.

Exercise 4.6 (See solution in Section 6) For each of the following either play the logic game to prove the
statement is true or find a counter example, i.e. a table α(x, y) in which the left hand side is true and the
right hand side is false.

1. ∀x α(x) → ∃y α(y)

2. ∃y α(y) → ∀x α(x)

3. ∃y∀x α(x, y) → ∃y′ α(y′, y′)

4. ∀x∃y α(x, y) → ∃y′ α(y′, y′)

5. ∀y α(y, y) → ∀x′∃y′ α(x′, y′)

Exercise 4.7 (See solution in Section 6) For which α and f are the following true and for which is is false?

1. (∀y α(y)) → (∀x α(f(x)))

2. (∀x α(f(x))) → (∀y α(y))

3. Answer the previous question knowing that ∀y′∃x′ y′=f(x′).

4. (∃x α(f(x))) → (∃y α(y))

5. (∀x α(f(x))) → (∃y α(y))

• Answer:

1. This is true for every α and every f . The oracle assures the prover that ∀y α(y) is true. The
prover proves ∀x α(f(x)) by getting his adversary to give him a value for xadversary and then
proving α(f(xadversary)) for this value. Because his oracle assures him ∀y α(y), the prover can
give the value f(xadversary) to her for yprover and she will assure α(yprover) for his value, namely
she assures him of α(f(xadversary)) as needed. This completes his game.

2. This is not true when ∀x f(x)=0 and α(y) is true only for y=0 because ∀x α(f(x)) is then true
and ∀y α(y) is false.

The statement is only true when function f is onto, namely every value of y has some value of x
for which y=f(x), i.e. ∀y′∃x′ y′=f(x′).

3. The first oracle assures the prover that ∀y′∃x′ y′=f(x′) is true and the second that ∃x α(f(x))
is true. In order to prove ∀y α(y), the prover gets from his adversary a value yadversary and he
must prove α(yadversary) for this value. Because his first oracle assures him of ∀y′∃x′ y′=f(x′),
he can give her this value yadversary for y′prover and she assures him of ∃x′ yadversary = f(x′).
Assuring him of this, she gives him a value x′

oracle such that yadversary =f(x′
oracle). Because his

second oracle assures him of ∀x α(f(x)), he can give her this value x′
oracle for xprover and she

assures him of α(f(x′
oracle)). Because yadversary = f(x′

oracle), he knows α(yadversary) as needed.
This completes his game.

20

4. This is true for every α and every f . The oracle assures the prover that ∃x α(f(x)) is true.
In order to prove ∃y α(y), the prover must construct a value for yprover and prove α(yprover)
for this value. Because his oracle assures him of ∃x α(f(x)), she gives him a value xoracle for
which α(f(xoracle)) is true. The prover sets yprover to be f(xoracle) which gives him α(yprover) as
needed. This completes his game.

5. Exercise 4.6.1 proved ∀x α(x) → ∃y α(y). This is almost the same as (∀x α(f(x))) → (∃x α(f(x))).
The last question proves (∃x α(f(x))) → (∃y α(y)). Transitivity then gives us what we want.

Exercise 4.8 For each either play the logic game to prove the statement is true or find a counter example,
i.e. a tables α(x) and β(x) in which the left hand side is true and the right hand side is false.

1. [∀x (α(x) → β(x))] → [∀x α(x) → ∀x β(x)]

2. [∀x α(x) → ∀x β(x)] → [∀x (α(x) → β(x))]

3. [∃x(α(x) ∨ β(x))] → [(∃xα(x)) ∨ (∃xβ(x))]

4. [(∃xα(x)) ∨ (∃xβ(x))] → [∃x(α(x) ∨ β(x))]

5. [∃x(α(x) ∧ β(x))] → [(∃xα(x)) ∧ (∃xβ(x))]

6. [(∃xα(x)) ∧ (∃xβ(x))] → [∃x(α(x) ∧ β(x))]

Exercise 4.9 (See solution in Section 6) A Field has a universe U of values, two operations: + and ×, and
the following axioms.

+ Identity: ∃0 ∀a a+0=a
× Identity: ∃1 ∀a a×1=a
Associative: a+(b+c) = (a+b)+c and a×(b×c) = (a×b)×c
Commutative: a+b = b+a and a×b = b×a
Distributive: a×(b+c) = (a×b)+(a×c)
+Inverse: ∀a ∃b a+b = 0, i.e. b=−a
× Inverse: ∀a 6=0 ∃b a×b = 1, i.e. b= 1

a

1. Which of these are fields: Reals; Complex Numbers; Rationals/Fractions; Integers; and Invertible
Square Matrices?

2. Let “3” be a short form notation for 1+1+1. Prove from the above axioms that 3×4=12.

3. Does it follow from these axioms that a×0 = 0? Warning: The proof is hard. Be sure not to use any
facts about the reals that is not listed above. There is no rule that mentions both × and 0. All rules
are paired giving a symmetry between 〈+, 0〉 and 〈×, 1〉 except the distributive law which tie the two
together. The same symmetry ties a×0 = 0 and a+1 = 1. Clearly the later is not true. Hence, any
proof of a×0 = 0 must use the distributive law.

4. What goes wrong with these axioms if zero also has a multiplicative inverse?

5. The integers mod prime p form a field with only the objects {0, 1, . . . , p−1}. From the additional axiom
that 7=mod 7 0, find the multiplicative inverse of 3.

The integers mod 6 do not form a field. 2×3=6=mod 6 0 is called a zero divisor. What problems arise
from this?

5 Theory of Computation Via Logic

Let’s try covering much of the theory of computation taught in a standard undergrad computer science
degree: data structures, induction, computable vs uncomputable, deterministic vs probabilistic algorithms,
time complexity, big-oh notation, coding vs execution phase, compiling a JAVA program into a TM, uni-
versal TM, computable vs acceptable, polynomial time vs NP, reductions, proof that the halting problem

21

is uncomputable, and Gödel’s incompleteness and completeness theorem. You must be saying “too hard”!!!
but our goal is much more humble. We want first year students to be able to read and understand the
key quantification statements that arise from these topics. Such statements are hugely expressive. For any
mathematical statement you want to understand and prove, it is best to first write it as a logic sentence.
From this, the mechanics of the proof sometimes just falls out.

Graph Data Structure: A directed graph is an object consisting of nodes u, v, . . . , and edges 〈u, v〉. In
logic, we might use a predicate/relation Edge(u, v) to be true if and only if 〈u, v〉 is an edge of our
graph.

Out Degree One: We can use logic to specify some property of the graph. For example, we could
say that every node has degree exactly one as follows.

Logic: ∀ nodes u, ∃ a node v, [Edge(u, v) and ∀ nodes v′ 6= v, ¬Edge(u, v′)].

Game: If the prover is claiming this is true, then when a adversary gives him some node u, he
can name a node v such that 〈u, v〉 is an edge. Then to test that this is the only such edge,
the adversary can give him another node v′ different from v and the prover can verify that
〈u, v′〉 is not an edge.

Connected: If you can only talk about nodes and edges, then you can’t say that the graph is connected
or that it is finite. On the other hand, if you can talk about paths, then you can define whether
the graph is connected.

Logic: ∀ nodes s and t, ∃ a path p from s to t.
p is such a path if it is an encoding of a sequence of nodes 〈s, u1, u2, . . . , t〉 such that ∀i,
〈ui, ui+1〉 is an edge.

Induction: Let S(i) be a yes/no statement, for each positive integer i. For example, it could be the fact
that “1 + 2 + 3 + . . . + i = 1

2 i(i + 1)”, that “my iterative algorithm maintains its loop invariants for
the first i iterations” or that “my recursive algorithm gives the correct answer on every input of size
at most i”. The goal is to prove S(i) is true for each i, but there are an infinite number of such i.
We do this by assuming that induction is an axiom of our proof system, namely we will go under the
assumption that it is true even though there are models/interpretations/universes within which it is
not.

Logic: ∀S [[S(0) and ∀i [S(i) → S(i+1)]] → ∀i S(i)]

Finite Proof: Given any integer i, it is clear that from S(0) and ∀i [S(i) → S(i+1)], there is a finite
proof of S(i), namely from S(0) and S(0)→S(1) we get S(1); from S(1) and S(1)→S(2) we get
S(2); and so on. But this does not mean that there is necessarily a finite proof of ∀i S(i).

Oracle Game: Let’s not give the logic game that proves this logic sentence, but instead assume that
we have an oracle that assures us of it. The prover uses this to prove ∀i S(i) for his favorite
statement S as follows. He first proves S(0). Then he let’s an adversary give him an arbitrary
positive integer i. He assumes that S(i) is true. From that he proves that S(i+1) is true. From
this he concludes that ∀i S(i).

False in Model: Suppose that in addition to the integers, our model/interpretation/universe contains
the object ∞. It is possible that S(i) is true for every finite integer i but not for ∞.

Countable: A set S may contain an infinite number of objects, but is considered countable if its objects
can be “counted”, i.e. mapped 1, 2, 3, . . . to the integers. This proves that the “size” of S is the same
as that for the set of integers.

Logic: ∃ a List mapping integers to objects in S, such that ∀x ∈ S, ∃ integer i, List(i) = x.

Objects with a Finite Description: Let S be the set of all objects that can be described with a
finite length English description. For example, it contains strings like “I love you”, fractions
like 4

5 , finite sets like {5, 28, “cat′′}, tuples like [3, [6, 4, [] , 2] , 93], special real numbers like π, and
algorithms/machines A, because in each case I can describe them in English.

22

Game: The ith item List[i] in the list is defined as follows. Write down integer i in hexadecimal.
Pair the digits and turn every pair into an ASCII character. Read this string of characters and
if it makes an understandable description of some object, then make List[i] be this object. The
adversary provides an arbitrary object x ∈ S. By the definition of S, x has a finite description.
Convert each character in the description into ASCII and string them together to make an integer
i in hexadecimal. Note List(i) = x.

Reals: A random real number x ∈ [0, 1] written in binary 0.x1x2x3 . . . can be formed by flipping a
coin for each bit xi to the right of the decimal. It almost surely does not have a finite description.
We will prove that the set of reals is uncountable. We than can prove that the set of functions f
from integers to 0/1 is also uncountable by defining a bijection between them and the above reals
x, namely by setting f(i) = 1 iff the ith bit xi of x is 1. We can do the same for computational
decision problems P by making P (I) be yes iff the ith bit xi is one, where string I and integer i
are related as described above.

Uncountable: ∀ List, ∃x ∈ Reals, ∀ integer i, List(i) 6= x.

Game: Suppose an adversary provides List and claims that it lists every real number. The prover
will produce a real number x = 0.x1x2x3 . . . that he claims is not in the list. He chooses each bit
xi′ to be the flip of the i′th bit of the i′th real number List(i′) listed. The adversary provides
an integer i claiming that this real number x is listed as the ith real number in his list. But
the prover shows that x and List(i) differ in their ith bits. This is called a diagonalization proof
because the bits considered form a diagonal of List.

Computational Problem: Let P be some computational problem. Let I be an input. Let P (I) denote the
required output for problem P on input I. For example, P ≡ Sort is an example of a computational
problem. We know that the input I to sorting is an array of values. But computer theorists just
assume this is encoded by a generic binary string. Sort(I) denotes the same array of numbers as in I
but sorted.

Algorithm/Machine: Let A be an algorithm/machine/code. For example, A ≡ InsertionSort is an
example of an algorithm. Computer theorists tend to assume that the algorithm is a Turing Machine
TM M , but being Java code is the same for our purposes. All we need is that A has a finite description
and on any input I what it does is determined.

Let A(I) denote the output produced by algorithm A on input I. Or A(I)=“Runs for ever”, if it
does not halt on this input. If bug free, InsertionSort(I) returns the sorted list. If algorithm A is
computing problem P , then we need its output A(I) to be as required. Let A(I) = P (I) indicate that
algorithm A gives the correct answer for problem P on input I. From a logic perspective, P (I) = A(I)
is just another true/false relation between the objects P , A, and I.

Computable: A computational problem P is said to be computable if some algorithm A computes it, i.e.
gives the correct answer on every input.

Logic: ∃ algorithms A, ∀ inputs I, A(I) = P (I)
Note that this sentence says something about P , because P is free, i.e. not quantified.

Game: The prover proves that P is computable by producing one algorithm A that computes it.
He proves that A work on every input by allowing an adversary to choose the input I and then
proving that the algorithm returns the correct answer on it, i.e. A(I) = P (I). This is what we do
in Computer Science.

WRONG: ∀ inputs I, ∃ algorithms A, A(I) = P (I).

I want you to feel physical pain when you see this as it allows each input I to have its own
algorithm AI . For example, the algorithm AI(I

′) might ignore the input I ′ and simply outputs
the correct answer P (I).

Almost All Computational Problems are Uncomputable: We have seen that the set of algo-
rithms/machines A is countable and the set of computational problems P is uncountable. Because
there as so many more problems than algorithms, most problems have no algorithms.

23

Uncomputable: Every CS student should know the limits of computer science, eg. that the Halting problem
is uncomputable. People tend to struggle trying to understand what this means as their intuition tends
to be wrong. As such times, it is helpful to know how to mechanically follow the rules of formal
logic. Simply take the negation by moving the negation to the left while switching ∀ and ∃. P is
uncomputable because every algorithm fails to compute it. Algorithm A fails to compute P because
there is an input I on which it fails. A fails to compute P on I because it gives the wrong answer.

Logic: ∀ algorithms A, ∃ input I, A(I) 6= P (I)

Game: The prover proves that P is not computable, by allowing an adversary to produce an algorithm
A that he claims does compute the stated problem P . To disprove this, the prover just needs to
provide one input I on which the algorithm fails to work.

Table Lookup: Table lookup can be viewed as a model of computation. Each algorithm Atable is described
by a finite table listing input/output pairs. Given an input, it “computes” by looking up the answer.
If the input instance is not there, then the algorithm fails. Because the answers are listed, any compu-
tational problem can be computed this way. You can build it to work for as many inputs as you like,
but this number must always be finite.

Logic: ∀ integers k, ∃ table algorithm Atable, ∀ inputs 〈x, y〉 ≤ 〈k, k〉, Atable(x, y) = x× y.

Game: The prover proves that this is true, by allowing an adversary to specify the size k to be as
big as he likes, maybe a billion billion billion. The prove then works very hard and builds the
multiplication table listing the answer for every pair of integers at most k. When the adversary
names one such input 〈x, y〉, the table algorithm gives the correct answers.

False Logic: ∃ table algorithm Atable, ∀ inputs 〈x, y〉, Atable(x, y) = x× y.

Game: This states that table algorithms can multiply. Let’s reverse the game to prove that this is
false. An adversary produces an algorithm Atable that he claims multiplies. The prover says that
this table better be of finite in size, i.e. it can’t list an infinite number of answers. Because of this,
he is able to find an input 〈x, y〉 for which the table does not have an answer.

Time Complexity: To be practical, it is important that your algorithms run quickly. We need to allow,
however, that the algorithm takes longer on larger inputs. Running in time n2 or n3 on inputs of
size n= |I| is called polynomial time and is completely reasonable. But running in time 2n is called
exponential time and is not reasonable.

Size: The size n= |I| of input I is formally defined to be the number of bits to describe I. If I is a
list of n′ objects each described by k bits, then the formal size would be n = n′k, but for ease we
may say that this size is n′. If I is an integer, DO NOT say that its size is this value because the
value I ≈ 2n is exponentially bigger than the number of bits n = log I needed to describe it.

Time: We could measure time as the number of seconds the program takes on your personal laptop
or the number of lines of code executed. These are the same within a multiplicative constant.

Logic: ∃ algorithms A, ∃ integer c, ∀ inputs I, A(I) = P (I) and T ime(A, I) ≤ |I|c

Game: The prover proves that P is computable in polynomial time, by providing the algorithm A
and stating the expected running time. The adversary gives an input I and wins if either the
algorithm gives the wrong answer or if the running time is too big.

Constant Time O(1): We will say a problem can be computed in constant time if the running time does
not “depend” on input. Really what we mean is that the time does not grow with the input, i.e. it is
bounded by some constant c.

Logic: ∃ algorithms A, ∃ integer c, ∀ inputs I, A(I) = P (I) and T ime(A, I) ≤ c

Game: If the prover is claiming P is computable in constant time, he is allowed to choose the constant
c. One might say that this is unfair, because the prover could choose the constant c to be a billion
billion. But then the adversary would likely choose an input of size billion billion billion.

24

BigOh Notation: The exact running time of an algorithm can depend on the programming language and
on the hardware, and determining it can be tedious. Hence, theorists tend to ignore the multiplicative
constant in front. We say the algorithm runs in O(f(n)) time if the time is bounded by some constant
c times f(|I|).

Logic: ∃ algorithms A, ∃ integer c, ∀ inputs I, A(I) = P (I) and T ime(A, I) ≤ c · f(|I|)

Small Inputs: On small inputs, the algorithm may still need a bunch of time for set up. This can
be allowed either by not letting the adversary give too small of an input or by simply making c
bigger.

Coding vs Execution Phase: We will split the designing and running of an algorithm into two phases.
The coding phase does not depend on input. At this point, the programmer can decide how many lines
of code his algorithm A should have, how many variables and their ranges, and if it is a Turing machine
how many states it should have. Compile time errors occur here. In contrast, the execution phase can
depend on input. It includes the running time and the amount of memory dynamically allocated. Run
time errors occur here.

Logic: ∃ Algorithm A, ∃ number k, ∀ Inputs I, ∃ time t, A(I) = P (I) and Lines(A, I) = k and
T ime(A, I) = t

Game: Note the prover when designing the algorithm gets to specify the number of lines of code k,
before the adversary supplies the input I. But the prover does not need to state the running time
t until after he knows the input.

False Logic: ∀ numbers k, ∃ Algorithm A, ∀ Inputs I, A(I) = P (I) and Lines(A, I) = k

Game: The adversary is very happy. He knows that problem P is computable. In fact, he knows
many algorithms A that solves it. But P is not that easy and it takes some minimum number of
lines of code. He does not spend too much time working out the exact minimum. He just says
“Let k be two”. Now it is the prover that no longer wants to play. He can easily give a two line
program. He can easily give a program that solves P . But he can’t do both at the same time.

Probabilistic Algorithms: The reason that flipping coins makes writing algorithms easier is because the
logic game changes.

Las Vegas Logic: ∃ randomized algorithm A, ∀ inputs I, [∀ random flips R, A(I,R) = P (I)] and
[ExpRT ime(A, I,R)≤T ime(|I|)].

Game: The prover proves that P is computable by a randomized algorithm, by telling the adversary
his algorithm A, but not telling him the random coin flips R. From this, the adversary must
choose his input I. With these, two things must be true. First, whatever coin flip results R
the adversary chooses, the algorithm must give the correct answer. This does not sound like an
improvement over deterministic algorithms. The advantage the prover has is that for some coin
flips R the running time may be really really bad. The second thing that must be true is that for
this fixed input, for a random R, the expected running time must be good.

Monte Carlo Logic: ∃ randomized algorithm A, ∀ inputs I, PrR[A(I,R) 6=P (I)] ≤ 2−|R|.

Game: Unlike Las Vegas algorithms, Monte Carlo ones need not always give the correct answer. As
before, the prover provides an algorithm A and the adversary chooses an input I. The prover
wins if for most coin flips R, his algorithm works.

Compiling Java to TM: The formal definition of a problem being computable is that a Turing machine
can compute it. But writing Turing machines is not fun. Instead, we write our algorithm in some high
level programming language like Java and compile it into machine code to run it. To fit the formal
definition, one could also compile it into a Turing machine.

Logic: ∀ Java Programs J , ∃ TM M , ∀ inputs I, J(I) = M(I).

25

Game: To test the prover’s compiling ability, the adversary gives some very complicated Java program
J , the prover compiles it into a Turing machine M , and the adversary provides an input I on
which to test whether the two programs return the same answer.

Exercise: See Exercise 5.1.

Universal TM: We don’t tend to build machines whose only job is to run your favorite algorithm A.
Instead, we build a universal machine that can run any algorithm you give it.

Logic: ∃ TM MU , ∀ algorithms A, ∀ inputs I, MU (“A”, I) = A(I) .

Game: The prover proves that such a universal machine MU exists by providing one. Then the
adversary can give any crazy algorithm A and input I and this machine MU on input 〈“A”, I〉
will simulate algorithm A on input I and give the same answer A(I). Here “A” denotes the string
of characters describing the code for A.

∃ Witness ⇒ Acceptable:

A Computable Problem: Given algorithm A, an input I, and a time limit t, the computational
problem Halt(A, I, t) determines whether or not A(I) halts in time t.

Algorithm: Run A(I) for t time steps.

An Uncomputable Problem: The computational problem Halt(A, I) determines whether ∃t,
Halt(A, I, t), i.e. does A(I) ever halt?

Search Space: The number of t to consider is infinite.

A Computable Problem: Given a multi-variable polynomial P eg x2y3 + . . . and an integer assign-
ment/solution S of the variables eg x = 34325, y = 304, . . . , the computational problem SAT (P, S)
decides whether or not P (S) = 0.

Algorithm: Multiply and sum.

An Uncomputable Problem: The computational problem SAT (P) decides whether ∃S,
SAT (P, S), i.e. is P satisfiable?

Search Space: The number of S to consider is infinite.

Acceptable Complete: The obvious algorithm for determining whether algorithm A halts on input
t is to run it. This algorithm halts when the answer is yes and does not halt when the answer is
no. Acceptable is the set/class of computation problems that have such an algorithm. The halting
problem is “at least as hard” as every problem in this class.

∃ Witness ⇒ Non-Deterministic Polynomial Time:

A Polynomial Time Computable Problem: Given an and-or-not circuit C, a true/false assign-
ment S to the n variables, the computational problem SAT (C, S) determines whether C(S)
outputs true.

Algorithm: Percolate T/F down wires.

An Non-Poly Computable Problem: The computational problem SAT (C) determines whether
∃S, SAT (C, S), i.e. is C satisfiable?

Search Space: The number of S to consider is 2n.

The Clause-SAT Problem: A common restriction to put on the input circuit C is that it is the and
of clauses, where each clause is the or of literals, where each literal is a variable or its negation, eg
C = (a or ¬b or d) and (¬a or ¬c or d or e) and (b or ¬c or ¬e) and (c or ¬d) and (¬a or ¬c or e).
A solution is still an assignment, eg S = {a = T, b = T, c = F, d = F, e = T}. The solution S
satisfies satisfies the circuit C, if it satisfies each of the clauses. It satisfies a clause, if it satisfies
at least one of the literals.

Logic: SAT (C) ≡ ∃ a solution S, ∀ clauses Ci, ∃ variable x, x is an unnegated variable in Ci

and is set by S to be true or is an negated variable and is set to false.

26

NP Complete: Non-Deterministic Polynomial Time (NP) is the set/class of computation problems
P where each instance I has an exponential number of possible solutions S. Each solution S
is either valid or not. There is a poly-time algorithm V alid(I, S) that given an instance I and
a solution S, tests whether or not S is a valid solution of I. The output P (I) is Yes, if it has
a valid solution and No, it does not. More formally, P (I) ≡ ∃S V alid(I, S). This problem
Clause-SAT (C) is “at least as hard” as every problem in the class NP.

Reductions: It is useful to be able to compare the difficulty of two computation problems, Peasier ≤ Pharder.
It is hard to prove that Pharder is at least as hard as, so instead we prove that Peasier is at least as easy
as, by designing an algorithm for Peasier using a supposed algorithm/oracle for Pharder as a subroutine.
Such reductions can be used to create a new algorithm from a known algorithm; to prove that a new
problem is likely hard, from knowing a known problem is likely hard; and to learn that two problems
have similar “structures”.

Logic: ∀ inputs Ieasier to Peasier, Peasier(Ieasier) = Pharder(Iharder), where Iharder =
InstanceMap(Ieasier)

Game: In order for the prover to design an algorithm for the computational problem Peasier, he starts
by getting an input Ieasier for it from an adversary. From Ieasier, he produces an input Iharder =
InstanceMap(Ieasier) for Pharder. He gives this input Iharder to the supposed algorithm/oracle
who returns Pharder(Iharder). He too returns this answer, because he knows that his problem
Peasier(Ieasier) requires the same answer.

Uncomputable: Every CS student should know the limits of computer science, i.e. that the Halting problem
is uncomputable. Let’s start with the statement that some problem is uncomputable.

Logic: ∃ problem Phard, ∀ algorithms A, ∃ input IA, A(IA) 6= Phard(IA)

Game: The proof is so easy, you likely won’t believe it. Simply play the logic game. The prover needs
to produce one computational problem Phard that no algorithm A can solve for every input. An
adversary produces one algorithm A that he claims does compute the stated problem Phard. To
disprove this, the prove just needs to provide one input IA on which the algorithm A fails to work.

The prover defines a computational problem Phard by specify for every input I what the required
output Phard(I) is. Given some input I, think of it as a sequence of characters and think of
this as the JAVA code for some algorithm AI . If this code compiles and runs, then running this
algorithm on its own description AI(I) does something. Define the required output Phard(I) to
be anything different from this. To continue the game, an adversary produces one algorithm A.
The prover let’s input IA be the string of characters in the code for A. What algorithm A does on
input IA is A(IA). By the definition of problem Phard, the required output Phard(IA) is anything
different from this. This completes the game, proving that the sentence is true.

Halting Problem: On input 〈A, I〉, the halting program asks whether or not algorithm A halts on
input I. The intuition is that if A does unpredictable/chaotic things, how can you predict what
it will do. One obvious algorithm would be to simply run A on I. If it stops, then your algorithm
for the halting problem can report this. But if A does not halt for a billion years, at what point
does your algorithm for the halting problem halt and report this.

Halting is Uncomputable: Suppose we had an algorithm that solved the halting problem. We
could use this as a subroutine to give a working algorithm for Phard. On input I, ask your halting
problem algorithm whether or not algorithm AI halts on input I. If it does not, then you know
what AI does on I. If it does, then you can safely run AI on input I to find out what it does.
Either way your algorithm for Phard on input I can output something different. This contradicts
the fact that Phard is uncomputable. Hence, the assumption that we do have an algorithm for
the halting problem must be false.

Hugely Expressive: There are rules of syntax, verses, rhyme, and rhythm that dictate how words can be
strung together into poetry. Shakespeare shows how this form is powerful enough to express everything

27

he has to say about love. The rules of syntax dictate how symbols can be strung together into logical
sentences over the integers (+,×). Variables x and y represent integers. You can use +, ×, <, =, ≥,
∀, ∃, ∧ (and), ∨ (or), ¬ (negation), and →. The mathematician Gödel wants this form to be powerful
enough to express everything he has to say about math. We want this same form to be powerful enough
to express everything I have to say about computer science.

“x is prime”: ∀a, ∀b, (a× b = x) → (a = 1 or b = 1).

A on I outputs Y : The next example is really quite amazing We are even able to say “Algorithm A
on input I outputs Y ”. One problem, however, is that in our logic we are only able to talk about
integers. To get around this, write out the code for A as a string of characters, use ASCII to
code each character as a hexadecimal number, concatenated the digits of these numbers together,
convert the hexadecimal into decimal and let “A” denote the resulting integer. Similarly, denote
“I” and “Y ” as integers.

Logic: The logical sentence will be
∃C, “C is an integer encoding a valid computation for algorithm A with input I outputting Y ”
Here integer C encodes 〈C0, C1, . . . , CT 〉, where each Ct encodes the configuration of A at time t.
i.e. Ct specifies the line of code that A is on and the values of everything in memory.
The requirements are that C0 encodes the starting configuration of A on input I,
∀t, configuration Ct+1 follows in one time step from configuration Ct and CT encodes a halting
configuration of A with output Y .

Encoding: Consider the tuple T = [120, 234, 93]. Gödel encoded this into an integer by considering
the first three prime numbers and defining “T” to be the integer 2120×3234×593. Another encoding
writes each integers in binary, i.e. T = [1110002, 11010102, 0111012], replaces the commas with
the digit 2 and concatenates, i.e. T = 1110002110101020111012, and lets “T” be this integer in
decimal notation. With either encoding, one can use multiplication to define exponentiation and
division and then use these to pick out the individual integers [120, 234, 93] from the integer “T”.

Logic Truth is Uncomputable: We can determine whether algorithm A on input I outputs Y by forming
the above logical sentence and then asking whether or not this sentence is true. The bad news is that
there is no algorithm for the former, hence for knowing whether a sentence is true over the integers
(+,×).

Gödel’s Incompleteness Theorem: A theorem that rocked mathematics in 1931 is that there is not a
proof system that can correctly prove or disprove every logical sentences over the integers.

The intuition around Gödel’s proof is that logic sentences are able to talk about themselves, namely
Φ can state that “Φ has no proof in your proof system”. If Φ is true, then it true is but has no proof.
If it is not true, then it is false yet has a proof of being true. Both are problems.

The computer science proof is easier. If there was a proof system that could prove or disprove every
logical sentences over the integers (+,×), then by simply trying all possible proofs, an algorithm could
determine whether a given sentence was true. However, we already stated that this problem was
uncomputable.

Gödel’s Completeness Theorem: The integers is the standard model/interpretation/universe for which
the axioms of your proof system was designed. However, there are always nonstandard models. For
example, the integers mod a prime p satisfy all the axioms of the integers (+,×), but only has p
distinct integers. A model specifies which objects are in the universe and defines the result of adding
and multiplying any pair of them.

If a sentence Φ is true in some of these and false in others then, your proof system shouldn’t be able
to proof or disprove Φ. However, Gödel gives a simple proof system and proves that his proof system
has a proof of every sentence Φ that is true in every possible model/interpretation/universe. We call
such sentences valid.

28

How do you possibly prove that every possible valid statement has a proof when there are true state-
ments about the integers that have no proofs? Given a sentence Φ, start a very simple mechanical but
possibly infinite process of building a proof of Φ. If this process terminates then you have a (big but
finite) proof that Φ is true in every model M . And if it does not, then there is a simple mechanical
method of turning this infinite “proof” into a model M in which is Φ is false. Note that this proves
the result. If sentence Φ is true in every model M , then the second option cannot happen. Hence, this
process constructs a proof of Φ.

Vector Spaces: Most people think of a vector as either being a tuple of values 〈a1, a2, . . . , an〉 or as being
an arrow with a direction and a length. However, it can be any abstract object.

Uses: The point of formal proofs is to prove theorems with as few assumptions as possible about the
nature of the objects we are talking about so that we can find a wide range of strange new objects
for which the same theorems are true.

Rules: The only requirement on a set of vectors is that they can be multiplied by a real number and
any two of them can be added together to produce a third with the obvious rules: Associative:
u + (v + w) = (u + v) + w; Commutative: u + v = v + u; Distributive: a(u + v) = au + av; and
Additive Inverse: ∀u∃v u+ v = 0, i.e. v = −u.

Spanning the Space: From these alone, one can prove the following. Suppose that you have an
arbitrary set of n linearly independent basis vectors 〈w1, w2, . . . , wn〉, where n is the dimension
of your space. Then these span the entire space, meaning that any vector v in your vector space
can be formed from some unique linear combination of the basis vectors, namely there are unique
real numbers 〈a1, a2, . . . , an〉 such that v = a1w1 + a2w2 + . . .+ anwn.

∀ vector spaces V ,
∀ basis 〈w1, w2, . . . , wn〉 of vectors,

∀ vector v in the entire space,
∃ real coefficients 〈a1, a2, . . . , an〉,

such that v = a1w1 + a2w2 + . . .+ anwn

Figure 13: Standard and non-standard bases spanning the vector space.

Standard Euclidean Basis: The standard basis 〈w1, w2, . . . , wn〉 consists of the vectors of length
one that follow each of the n axises, namely 〈0, 0, 1, 0, . . .〉. Then if v is the vector 〈a1, a2, . . . , an〉,
then the coefficients giving v = a1w1 + a2w2 + . . . + anwn are the same values. In this way, the
vector v as originally expected can in fact be represented by a tuple 〈a1, a2, . . . an〉.

Change in Basis: What is fun is that one can consider both a standard 〈w1, w2, . . . , wn〉 and a non-
standard basis 〈w′

1, w
′
2, . . . , w

′
n〉. Then the same vector v can be represented with the coefficients

〈a1, a2, . . . , an〉 with respect to the first and 〈a′1, a
′
2, . . . , a

′
n〉 with respect to the second. Multiply-

ing the first tuple of values 〈a1, a2, . . . , an〉 by an n×n-matrix gives the second 〈a′1, a
′
2, . . . , a

′
n〉.

Colour: Each colour can be thought of as a vector. Surprisingly this is an infinite dimensional vector
space, because there are an infinite number of different frequencies of light and each colour is
a linear combination of these. On the other hand, our eyes only have three sensors that detect
frequency so our brain only returns three different real values. Hence, we see three dimensional

29

colour. Each colour we see can be represented by a linear combination of 〈red, green, blue〉 or of
〈red, blue, yellow〉. Evidently the colour birds can see is four dimension.

Figure 14: Colour is a vector space.

Fourier Transformations: Consider some signal with strength v(t) at discrete times t. This too can
be thought of as a vector. The time-basis is 〈w1, w2, . . . , wn〉, where each wt′(t) is the signal that
is zero everywhere but one at time t′. Note that v = a1w1 + a2w2 + . . .+ anwn is the signal given
by v(t) = at. The sin-cos-basis is 〈w′

1, w
′
2, . . . , w

′
n〉, where each w′

f (t) is either w
′
f (t) = sin(t · 2fπ

n
)

with frequency f or the cos function. Doing a change of basis to the coefficients 〈a′1, a
′
2, . . . , a

′
n〉

then gives our signal as a linear combination of sine and cosine waves. This is what a equalizer
does.

Figure 15: The set of all functions can be represented in the time domain and in the Fourier domain.

JPEG: The image compression program JPEG does the same thing except in two dimensions. It
is given an image represented by the brightness of each pixel and converts this into a linear
combination of sine and cosine waves. To make the file smaller, it drops details on the high
frequency coefficients.

FFT: Generally computing a change of basis takes O(n2) time. In some cases, Fast Fourier Transfor-
mations can do it in O(n log n) time. See Section 9.4.

Polynomial Interpolation: Let 〈x1, x2, . . . , xn〉 be any fixed distinct values for x. Consider some
function v(x) defined only on these n values. This too can be thought of as a vector. The time-
basis is 〈w1, w2, . . . , wn〉, where each wi(x) is the function that is zero everywhere but one at xi.
Note that v = a1w1 + a2w2 + . . . + anwn is the function given by v(xi) = ai. The xd-basis is
〈w′

1, w
′
2, . . . , w

′
n〉, where each w′

d(x) is the function xd. Doing a change of basis to the coefficients
〈a′1, a

′
2, . . . , a

′
n〉 then gives the coefficients of the unique polynomial P (x) = a′0+ a′1x

+a′2x
2+ . . .+

a′n−1x
n−1 that passes through these n points. See Section 9.4.

Exercise 5.1 Define:
A: “Computational problem P is computable by a Java Program,” namely

∃ Java M ∀ ASCII I ∃ time t P (I)=M(I) and T ime(M, I)= t
B: “The computational problem P treats inputs the same whether in binary or ASCII,” namely

∀ binary I ′ P (I ′)=P (I) where B(binary)=ASCII and I=B(I ′)

30

C: “Java programs can be simulated by TM” and
“The TM takes the square of whatever time Java program takes,” namely

∀ Java M ∃ TM M ′ ∀ binaryI ′ M ′(I ′)=M(I)
where M ′=CompileJAV A⇒TM (M)
and ∀t [T ime(M,B(I ′))= t → T ime(M ′, I ′) ≤ t2]

Z: “Computational problem P is computable by a TM,” namely

∃ TM M ′ ∀ binary I ′ ∃ time t′ P (I ′)=M ′(I ′) and T ime(M ′, I ′)= t′

Prove 〈A,B,C〉 → Z

1. Using the prover/adversary/oracle game. Fancy parsing is not required. Prover Z and the three oracles
A, B, and C each play their game by reading their statement left to right. These four games merge
together. Focus on who gives whom what when.

2. Using our formal proof system.

6 Exercise Answers

The following are the answers to some of the exercises.

4.2 1. ∀x ∃y x+ y = 5 is true. Let x be an arbitrary real value and let y = 5− x. Then x+ y = 5.

2. ∃y ∀x x+ y = 5 is false. Let y be an arbitrary real value and let x = 6− y. Then x+ y 6= 5.

3. ∀x ∃y x · y = 5 is false. Let x = 0. Then y must be 5
0 , which is impossible.

4. ∃y ∀x x · y = 5 is false. Let y be an arbitrary real value and let x = 6
y
if y 6= 0 and x = 0 if y = 0.

Then x · y 6= 5.

5. ∀x ∃y x · y = 0 is true. Let x be an arbitrary real value and let y = 0. Then x · y = 0.

6. ∃y ∀x x · y = 0 is true. Let y = 0 and let x be an arbitrary real value. Then x · y = 0.

7. [∀x ∃y P (x, y)] ⇒ [∃y ∀x P (x, y)] is false. Let P (x, y) = [x+ y = 5]. Then as seen above the first
is true and the second is false.

8. [∀x ∃y P (x, y)] ⇐ [∃y ∀x P (x, y)] is true. Assume the right is true. Let y0 the that for which
[∀x P (x, y0)] is true. We prove the left as follows. Let x be an arbitrary real value and let y = y0.
Then P (x, y0) is true.

9. ∃a ∀x ∃y [x = a or x · y = 5] is true. Let a = 0 and let x be an arbitrary real value. If x 6=0, let
y = 1

x
. Otherwise, let y = 5. Then [x = a or x · y = 5] is true.

4.5

31

4.6 1. The oracle assures the prover that ∀x α(x) is true. In order to prove ∃y α(y), the prover must
produce some value of yprover for which α(yprover) is true. In this case, he can let yprover be
anything he wants. His oracle assuring ∀x α(x), lets the prover provide any value of xprover that
he wants and she will assure him of α(xprover) for this value. In this case, the prover provides
his yprover. The oracle assures that α(yprover) is true for this value. This completes the prover’s
game.

2. This statement is false when α(0) is true and α(1) is false, because this makes ∃y α(y) true and
∀x α(x) false.

3. The oracle assures the prover that ∃y∀x α(x, y) is true. In order to prove ∃y′ α(y′, y′), the prover
needs to find a value y′prover for which α is true on this diagonal. His oracle assuring ∃y∀x α(x, y)
gives the prover a value yoracle for which ∀x α(x, yoracle) is true. Assuring him of ∀x α(x, yoracle),
the oracle allows the prover to give her his favorite xprover and she will assure α(xprover, yoracle)
for this value. He gives her for xprover this same value yoracle, i.e. xprover=yoracle. Hence, what
she assures him of is α(yoracle, yoracle) is true. In order to prove ∃y′ α(y′, y′), the prover sets
y′prover to be this value yoracle, y

′
prover=yoracle giving him as needed that α(y′prover, y

′
prover). This

completes the prover’s game.

4. This is not true for the following α.
α x = 0 1 2 3

y = 0 F T T T
1 T F
2 F
3 F

Note that ∀x∃y α(x, y) is true because each column (value of x) has a row (value of y) for which
α is true. Note that ∃y′ α(y′, y′) is not true because every diagonal is false.

5. The oracle assures the prover that ∀y α(y, y) is true. In order to prove ∀x′∃y′ α(x′, y′), the prover
gets from his adversary a value for x′

adversary and he must prove ∃y′ α(x′
adversary, y

′) for this
value. Because his oracle assures him of ∀y α(y, y), he can give this value yprover = x′

adversary

and she will assure him of α(x′
adversary, x

′
adversary). In order to prove ∃y′ α(x′

adversary, y
′), he

choose y′prover to be x′
adversary. Because his oracle assures him of α(x′

adversary, x
′
adversary) and

y′prover=x′
adversary, he knows that α(x′

adversary, y
′
prover). This completes his game.

4.9

1. The following are fields: Reals; Complex Numbers; and Rationals/Fractions. The set of Integers
is not because the multiplicative inverse of 2 is 1

2 which is not an integer. The Invertible Square
Matrices is not because it is not multiplicatively communicative, i.e. M×N might be different
than N×M because spinning an object 90 degrees along the z and then 90 degrees along the x
results in a different orientating than doing them in the reverse order.

2. 3×4 = (1+1+1)×(1+1+1+1) = ((1+1)+1)×(1+1+1+1) = (1+1)×(1+1+1+1)+1×(1+1+1+1) =
1×(1+1+1+1) + 1×(1+1+1+1) + 1×(1+1+1+1) = 1+1+1+1+1+1+1+1+1+1+1+1 = 12.

3. To prove a×0 = 0, lets start in the middle with the distributive law, a×(0+1) = (a×0)+(a×1). The
LHS = a×(1) = a and the RHS = (a×0)+(a). Adding −a to both sides gives LHS = a+(−a) = 0
and the RHS = (a×0)+a+(−a) = a×0. This gives the result.

4. If a= 1
0 is zero’s multiplicative inverse, then by definition 0×a= 1. Commutativity then gives

a×0=1. But our last proof shows that a×0=0. This can be resolved by having 1=0. But then
by the × identity ∀a a×0=a. But again we just proved that a×0=0. This can be resolved by
having a=0, for all values a. This makes a fine field with one element 0.
Even if ∞ is added to your set of objects, you better have ∞×0 = 0.

5. In the integers mod 7, the multiplicative inverse of 3 is 5 because 3×5=15=7+7+1=mod 7 0+0+1=1.

The problem that arises with 2×3 = 6 =mod 6 0 is that if 2 has a multiplicative inverse 1
2 , then

multiplying both sides by it gives that 3=0.

32

