
A user’s guide to logic

January 3, 2015

1 Translating from natural language to formal
logic

One of the most important skills we will learn in this course is to translate be-
tween formal logic and informal statements in a natural language, e.g., English.
This is particularly important in that a programmer needs to be able to take
an informal specification of a problem and come up with code that correctly
solves the problem . A first step towards doing this is to translate the informal
problem specification into a precise, mathematically stated specification. To do
this requires the ability to capture the underlying logical structure of informal
statements in formal mathematical terms. Another reason to learn this skill
is because, in textbooks, technical papers, and code documentation, computer
scientists communicate by alternatively using natural language (when writing
for easiest reader comprehension) and formal mathematics (when writing to
maximize precision). To read and write such documents requires the ability to
“shift gears” between natural language and formal mathematics,

Instead of trying to understand the entire logic of a sentence holistically, it is
usually better to capture the logical structure of a sentence from the ”outside-
in”. First, identify key words and phrases in the sentence that determine its
logical structure. The “outside” logical keyword is the one that applies to the
entire sentence, rather than to just some part.

If the sentence is saying something is a general rule (true for all objects
of a certain type) then the outermost logical structure is a ∀. If it is saying
that an object with certain properties exists, then it is a ∃. The other logical
key words are propositional connective phrases. Such connective phrases build
complex sentences from sub-sentences called clauses. If there are several such
connectives, the “outside”-most connective is the one whose removal most neatly
divides the sentence into relevant and coherrent sub-sentences. For example,
“If she gets home on time, then she will either eat an early dinner or watch
television.” has two connective phrases “if..then” and “either ..or” and three
clauses, “she gets home on time”, “she will eat an early dinner” “she will watch
television”. Note that because English abbreviates clauses that overlap, the last

1

clause does not appear word for word in the sentence. If we remove the “either
..or” it divides up the sentence into “If she gets home on time, then she can eat
an early dinner” and “she can watch television”. But you can’t piece together
the truth of the whole statement from the truth of these sub-sentences. If we
remove the “if then”, the sub-sentences are “She gets home on time” and “she
can either eat an early dinner or watch television”. If we knew these facts, we
could determine whether the original statement was true. So the outermost
connective is the “if, then”.

Once you’ve isolated the outermost connective, identify the corresponding
propositional logic operation. The following table shows several common English
connective phrases and their corresponding logical operation.

1. If the statement is a general rule, then the logical structure of the state-
ment is ∀ (variable) (something is true of the variable.) However, before
you translate the (something) that is true of the variable, think whether
there are any conditions that must be satisfied for the rule to hold, and
whether there are any exceptions to the rule. Conditions can be implicitly
listed by adjectives, rather than explicitly stated.

For example in the statement: “For any prime number p, and any 1 ≤
x ≤ p− 1, xp−1 − 1 is divisible by p”, x and p are universally quantified,
but with two conditions: p is prime, and 1 ≤ x ≤ p.

In general, the full translation would be ∀ (variable) [if ((the variable
meets the condition) and (the variable is not an exception)) then (the rule
is true of the variable)].

Here are some common constructions of universal statements:

(a) All (something’s) are (something else). Translation: ∀x[(x is a some-
thing) → (x is a something else)]. e.g., All men are mortals = ∀x[x
is a man → x is a mortal].

(b) For all x, (something happens). Translation: substitute ∀ for the
words “For all”

(c) The only (somethings) are (exceptions). Rule: x is not a something.
Exception: x is an exception. Translation: ∀x, [(x is not an excep-
tion) → (x is not a something)], or equivalently, ∀x, [(x is a some-
thing) → (x is an exception)]. Example: The only factors of p are 1
and p. Translation: ∀x, [(x 6= 1 ∧ x 6= p) → (x is not a factor of p)].
or equivalently, ∀x[(x is a factor of p)→ (x = 1 ∨ x = p)].

(d) Let x be any (something). Then (something happens concerning
x). or, For any (something) x, (something happens concerning x).
Translation : ∀x[(x is a something)→ (something happens concerning
x)]. Example: For any simple, undirected graph G, G has an even
number of odd degree verticies. Translation: ∀G ∈ {graphs}[(G is

2

simple and undirected) → (G has an even number of odd degree
vertices.)].

(e) It is never true that (something). or There are no (somethings).
Rule: not something. Translation:∀x(x is not a something.)

2. If the statement is saying that something with certain properties exists, the
overall structure is ∃x. Note that the properties may be implicitly listed
as adjectives, or explicitly given. Common forms for saying something
exists are:

(a) There is a (something) with (property). or For some (somethings),
(property), or For at least one (something), (property). Translation:
∃x[(x is a something) ∧(x has the property)]. Example: There is
a prime number larger than 10, or Some prime numbers are larger
than 10, or At least one prime number is larger than 10. Translation:
∃x[(x is prime) ∧(x > 10)].

(b) x can be written as (expression involving y). Translation: ∃y[x =
(expression involvingy)] Example: A rational number x can be writ-
ten as p/q for integers p, q. Translation: ∀x[(x is rational)→ (∃p, q ∈
Z[x = p/q])].

3. A sentence with a “not” or a contraction with “not” (e.g., “isn’t”) is the
negation (¬) of the sentence with the “not” removed.

4. The phrase “Neither p nor q” translates as ¬p ∧ ¬q.

5. Usually a sentence with an “or” or the phrase “either p or q” would be
translated as p∨ q. Occasionally, it is clear from context that exactly one
of the two is true, in which case it can be translated p⊕ q. For example,
“I will wear a red or orange shirt today” excludes the possibility that
I would wear both a red and an orange shirt. Some people hold that
“either..or” automatically excludes the case that both, but I am not one
of these people.

6. “Unless p, q” translates to q ∨ p.

7. The phrase “p and q” is translanslated as p ∧ q.

8. The phrase “p, but q” is translanslated as p ∧ q. Although “but” has
a different connotation from “and”, to say “p, but q” is to claim that ,
somewhat suprisingly, both are true.

9. Similarly with other words that mean “but”, such as “p; however, q” and
“although p, q”.

10. “If p then q” translates as p→ q.

3

11. “p suffices for q” translates as p→ q”

12. “p is necessary for q” translates as q → p. Note that, unlike in English,
p→ q does not connote that p causes q. It means that “If I know p, then
I can safely conclude q .” For example, “It is necessary for a seed to dry
out for it to grow into a tree” . This translates as “If a seed grows into a
tree, then it dried out (previously)” although the act of drying out causes
growth, not vice versa. If you observe that the seed has grown into a tree,
you can safely conclude it dried out.

13. “For p to happen, q must happen”. p → q See the above item for an
explanation.

Finally, after you isolate and identify the outside connective phrase, see
how removing the phrase breaks the sentence into clauses. If you introduced
a quantifier, you need to substitute the variable name throughout what is left.
Note that this may involve some modifications of the text as written. For
example, in the sentence “She will either watch television or eat dinner”, when
you remove the words “either” and “or”, you have to put the words “She will”
into both sub-sentences. Analyze the clauses using the same method, or, in
computer science lingo, recursively.

2 Formality vs. Informality in Proofs

What is a proof? A proof is an argument that should convince any mathe-
matically trained reader who knows the definitions of the concepts involved. A
mathematician being paid to poke holes in your argument should fail, no matter
how brilliant she is. Here are some guidelines for recognizing when an informal
proof is valid.

1. Address your proof not to myself or the TA, but to another undergraduate
who is competent at mathematical reasoning but who has not solved this
particular problem. Would such a person be able to understand what you
have written? Would she be compelled to accept your conclusion by the
argument?

2. In class we will occasionally omit some of the more tedious steps in a
proof. You may also want to skip some of the more technical steps as
being ”obvious”. However, a rule of thumb is that you should only omit
steps because it would be too boring for both reader and writer to include
them, not because you do not know how to fill in those details. When in
doubt, put details in. This is particularly important while we’re gettting
comfortable with proofs, especially since we will frequently be proving
very obvious statements as an exercise in the mechanics of proofs.

4

3. Steps in a proof need to do more than just give a true conclusion; they
must be logically valid. In other words, they must be true in any con-
ceivable circumstance. If the reasoning you want to use is true because
of something about the particular problem, but not in general, then you
need to think about exactly what it is about the particular circumstance
that makes that reasoning correct, and state it explicitly.

3 Solow’s backwards-forwards method summa-
rized

This section is paraphrased from: How to Read and Do Proofs: An Introduction
to Mathematical Thought Processes by Daniel Solow, and published by Wiley. If
you want more details, or are uncomfortable with proofs, I strongly recommend
this book.

Although there is no mechanical procedure for determing exactly how a proof
should go, there are several rules (or at least rules-of-thumb) that determine the
overall structure of the proof. It is at least possible to use these rules to clear
away the mechanical aspects of a proof, and get down to the real issues. (Once
you’ve reached the real issues, it is frequently and unfortunately necessary to
think hard.) You should always carefully distinguish between what is known to
be true at that point in the proof; and what the goal is at that point in the
proof.

3.1 The Backwards Stage

In the backwards-forwards method, the prover first uses the logical structure
of the goal to guide the formulation of a proof strategy, breaking it down into
simpler sub-goals, She then further breaks down the sub-goals recursively. This
is called the “backwards” stage by Solow, since you are working backwards from
your goal.

Note that in the backwards stage, you are formulating a proof strategy, not
starting to write down a proof. Keep notes on the steps you use in this stage on
a seperate piece of paper. When you are finished with the proofs of the simple
sub-goals, go back to your notes to see how this finishes the proof of the goal.
The finished proof will have the steps in reverse order from how they are written
in your notes. This is another reason this stage is called the “backwards” stage.

This is particularly confusing for beginners, because most students were
taught to do the opposite in Algebra, using algebraic rules to “simplify” the
goal. Algebraic rules, unlike logical rules, are almost all reversible, so if you
can go forward from one equation to another by algebraic rules, you can also go
back. Although this is picky, we am going to insist that such moves be written
in the logically correct order, even if they are reversible. This is because when
we do more complicated reasoning, writing things in the wrong order leads to

5

“circular arguments”, where you accidentally confuse the goal with the known,
and then use it to prove itself!

The current goal is used to guide the proof strategy as follows. Note that
only the “outside-most” logical operation in the goal needs to be looked at. The
backwards method will strip away these operations from outermost to innermost,
always making the sub-goal simpler.

1. If your goal is of the form p ∧ q, you need to prove p and then prove q, or
maybe prove q first and then p. So make one of p, q your sub-goal, and
then the other.

2. If your goal is of the form p∨ q, you need to prove one or the other. How-
ever, the tricky part is that usually, p will be true in some circumstances
and q in others. Thus, it is not always possible to just prove p or just
prove q.

A mechantical way of handling ∨ is to convert p ∨ q into ¬(p) → q, and
then use the syllogism method from the next item.

A way that requires more thinking is to use a proof by cases. You can
legally use a proof by cases to prove any statement, but this proof structure
seems particularly helpful for proving “or” statements.

Think about when p is true, and when q is true. (They don’t have to be
mutually exclusive.) For example, say you know, as part of what you are
given to work from or from a previous step in the proof, that r ∨ s. By
thinking about the problem, you decide that when r is true, so is p, and
when s is true so is q.

The general format for the proof by cases would be: “ Case 1: Assume r;
(Proof where we add r to the “known” and our sub-goal is p.) Therefore,
p ∨ q.

Case 2: Assume s; (Proof where we add s to the “known” and our sub-goal
is q.) Therefore, p ∨ q.

Thus, in either case p ∨ q (Reason: refer to the line where we know or
prove r ∨ s, last statement of Case 1, last statement of Case 2; using the
rule, “proof by cases”) ”

Note that when you have a line in a proof where you make an assumption,
you are starting a self-contained sub-proof. Statements proved in the sub-
proof are only necessarily so if the assumption is true. Thus, you cannot
later use a line in the part of a proof based on an assumption in the part
of the proof not using the assumption.

3. If your goal is of the form p→ q, use a syllogism proof. Assume p. Now
your sub-goal is q. If by making the assumption p, we reach the conclusion
q, then ”if p then q”.

6

Note that when you have a line in a proof where you make an assumption,
you are starting a self-contained sub-proof. Statements proved in the sub-
proof are only necessarily so if the assumption is true. Thus, you cannot
later use a line in the part of a proof based on an assumption in the part
of the proof not using the assumption.

4. If your goal is p ⇐⇒ q, then that’s the same as p → q ∧ q → p. So
you need to do two proofs, one p→ q, so assume p and prove q, the other
q → p , so in this part, assume q and prove sub-goal p.

5. If your goal is of the form ¬p, usually you should use a negation rule to
convert your goal into an equivalent goal of another form. For example,
say your goal is “It is not the case that both x is prime and y divides
x.”. This is equivalent, by De Morgan’s Law, to “Either x is not prime or
y does not divide x.” Now your sub-goal is an “or”, so use the rule for
“or”. Note this simplification and the rule used on your separate paper.
After you prove the “or”, you still need to include in your proof a line
going from the “or” to the equivalent negation of the “and” justified by
De Morgan’s Law.

6. You can also use a “proof by contradiction” at any time. To use a proof
by contradiction, assume the negation of your goal, adding it to your list
of “known” facts, and attempt to get a contradiction. If the negation of
your goal yields a contradiction, then your goal must be incorrect. The
format for a proof by contradiction looks like: “Assume ¬(goal) [Proof
where we add ¬(goal) to our known facts, and our sub-goal is to prove
a contradiction, e.g., prove both r and ¬(r)] From this contradiction, the
assumption ¬(goal) must be incorrect, so goal. (Reason: cite the line
where you got the contradiction, the line where you make the assumption,
and use the rule “proof by contradiction”.)”

If you use a proof by contradiction, go immediately to the forward stage.

7. If your goal is of the form ∀xp(x), you usually use Universal Generalization.
The next line of the proof should be ”Let a (or other new variable name) be
an arbitrary (thing of the right type).” Now your sub-goal is p(a). Once
you prove this subgoal, you can use Universal Generalization to justify
your conclusion that ∀xp(x).

8. If your goal is of the form ∃xp(x), you need to find a particular value c and
prove p(c). The heart of the argument is finding the right c, and usually
you should start working from the ”Known” and stop working from the
”Goal” at this point. Once you find the right c, and prove p(c), then you
can conclude ∃xp(x) using the rule of ”Existence by Example”.

9. If your goal is an algebraic equation, you can do algebraic simplifications to
get your new goal. However, be careful when writing up the proof: Prove

7

the simplified version, then do the simplifications in REVERSE order to
get your original goal from the simplified version.

10. If your goal has no obvious logical connectives, it might still be of one
of the above forms because it involves concepts DEFINED using logical
connectives. So replace all or some of the DEFINED symbols with their
definitions. For example, if the goal is A ⊆ B, replace this with the
defintion of one set being a subset of the other: ∀x[x ∈ A → x ∈ B].
Now use the rule for statements which are of the form ∀, since this is the
”outermost” logical symbol. Be sure to write up this in the proper order;
you should first prove the translated goal, and then conclude your original
goal in the next line, with the justification, ”definition of (concept)”.

3.2 The forward stage

Once you’ve simplified your goal as much as possible using the backwards
method, start the proof by going forwards from what you know. Usually, you
have to use every fact you know at least once, and you can start making deduc-
tions “stream of consciousness” style. Then go back and eliminate the part of
the proof you don’t actually need.

1. What is the “known”? You start knowing all premises (givens). Any line in
the proof becomes “known” and remains known throughout the proof. The
exception to this is if you ”assume” something, as in a proof by syllogism,
cases, or contradiction. Then the assumption becomes ”known” during
the sub-proof where you are making that assumption, but then reverts to
not ”known” after you are done proving that case. All lines in the sub-
proof also are no longer “known” outside the sub-proof, since they were
based on the assumption.

2. If you know a statement of the form p∧ q, then you know p and you know
q.

3. One way to use a known statement of the form p∨ q is in a proof by cases.
Assume p, and prove your goal. Then go back and assume q and prove
your goal. Note that the two have to be seperate sub-proofs, since we
can’t use a conclusion based on an assumption outside the sub-proof for
the assumption.

Alternatively, if you later find out ¬p, then you can use the knowledge
p ∨ q to conlude q.

4. If you know p→ q, then if you later prove p, you can conclude q using the
rule “modus ponens”. If you later prove ¬q, you can conclude ¬(p) using
the rule “modus tollens”.

Alternatively, convert it to q ∨ ¬p and use a proof by cases as in the
previous item.

8

5. If what you know is of the form ¬p, it frequently helps to use negation
rules to convert it to an equivalent statement of one of the other forms.

6. If what you know is of the form p ⇐⇒ q, then you can substitute q for
p throughout the proof. In particular, if you prove one, you can conclude
the other, and if you prove the negation of one, you can conclude the
negation of the other.

7. If what you know is of the form ∃xp(x), you introduce a new variable, say
a, by ”Pick a so that p(a). Now you know p(a), but nothing else about a.
This is called the ”Rule of Choice” by me (and probably no one else.)

8. If what you know is of the form ∀xp(x), and c is any variable or expression
of the same ”type” as x, you also know p(c) by the rule of Universal
Specification.

9. If what you know is an algebraic statement, you can do any of the normal
algebraic simplifications or moves.

10. If what you know doesn’t seem to be of any of the above types, it might
still really be of one of the types because of DEFINED symbols or words.
Translate some or all of the defined symbols using their definitions. For
example if you know A is not a subset of B, then you know ¬(∀x[x ∈ A→
x ∈ B] which is logically equivalent to ∃x[x ∈ B ∧ x /∈ A], so you now
should use the rule of choice.

4 Proofs by contradiction

It is never absolutely necessary to do a proof by contradiction, so if it makes
you uncomfortable don’t do it. What a proof by contradiction allows us to do
is translate our goals into knowns, so that we can do the whole proof working
from knowns, rather than switching between goals to knowns. If our goal is p,
we assume ¬p. Now ¬p is a known, and our goal is a contradiction. Note that
the form of the goal switches when you negate it. If your goal was an “or”, it
will become a known that’s an “and” by DeMorgan’s Law and vice versa, and
a goal that’s a ”for all” becomes a known that’s an ”exists” and vice versa. A
goal that’s an implication becomes a known that’s the and of the hypothesis
and the negation of the conclusion. ”Assume that it’s not true that (p → q)”
is the same as ”Assume p, BUT ¬q”. “But” and “and” have the same logical
meaning, it’s only their connotations that are different.

5 Informal proofs

: Most of the time, working mathematicians and computer science do not pro-
vide detailed step-by-step explanations of their proofs like I said to do above.

9

However, the same reasoning steps are in fact used. The difference is just that
things are not completely spelled out: steps are combined or left to the reader
to fill in. As we progress in this class, we will move from the very formal proof
style above to more informal styles. However, you need to walk before you can
run, so I would like you to practice the formal proofs at the beginning of the
class. I think they will be a big help when we are trying to be less formal later.

10

