Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1.a)Yes, T b)Yes, F c¢)Yes, T d)Yes, F e)No
f) No 3. a) Linda is not younger than Sanjay. b) Mei does
not make more money than Isabella. ¢) Moshe is not taller
than Monica. d) Abby is not richer than Ricardo. 5. a) Mei
does not have an MP3 player. b) There is pollution in New
Jersey. ¢)2+ 1 # 3. d) The summer in Maine is not hot or
it is not sunny. 7. a) Steve does not have more than 100
GB free disk space on his laptop. b) Zach does not block e-
mails from Jennifer, or he does not block texts from Jennifer.
¢)7-11-13 #999. d) Diane did not ride her bike 100 miles
onSunday. 9. a)F b)T ¢)T d)T e)T 11.a) Sharks
have not been spotted near the shore. b) Swimming at the
New Jersey shore is allowed, and sharks have been spotted
near the shore. ¢) Swimming at the New Jersey shore is not
allowed, or sharks have been spotted near the shore. d) If
swimming at the New Jersey shore is allowed, then sharks
have not been spotted near the shore. e) If sharks have not
been spotted near the shore, then swimming at the New Jersey
shore is allowed. f) If swimming at the New Jersey shore is
not allowed, then sharks have not been spotted near the shore.
g) Swimming at the New Jersey shore is allowed if and only
if sharks have not been spotted near the shore. h) Swimming
at the New Jersey shore is not allowed, and either swimming
at the New Jersey shore is allowed or sharks have not been
spotted near the shore. (Note that we were able to incorpo-
rate the parentheses by using the word “either” in the second
half of the sentence.) 13.a)pAg b)pA-g ¢)—pA-gq
dpvg e p—>qg HDEVPAP—-7g) ggep 15.a)-p
b)pA-qg )p—>qg d)p—> g €ep—>q HgAp
glg—p 17.a)rA-p b)-pAgAr ¢or— (qg< p)
d) “ghpAr e (g>CrATp)AN((CrATp) = q)
f)(pAr) - g 19.a)False b)True c)True d) True
21. a) Exclusive or: You get only one beverage. b) Inclusive
or: Long passwords can have any combination of symbols.
¢) Inclusive or: A student with both courses is even more qual-
ified. d) Either interpretation possible; a traveler might wish
to pay with a mixture of the two currencies, or the store may
not allow that. 23. a) Inclusive or: It is allowable to take
discrete mathematics if you have had calculus or computer
science, or both. Exclusive or: It is allowable to take discrete
mathematics if you have had calculus or computer science,
but not if you have had both. Most likely the inclusive or is
intended. b) Inclusive or: You can take the rebate, or you can
get a low-interest loan, or you can get both the rebate and a
low-interest loan. Exclusive or: You can take the rebate, or
you can get a low-interest loan, but you cannot get both the
rebate and a low-interest loan. Most likely the exclusive or is
intended. c¢) Inclusive or: You can order two items from col-

umn A and none from column B, or three items from column
B and none from column A, or five items including two from
column A and three from column B. Exclusive or: You can
order two items from column A or three items from column
B, but not both. Almost certainly the exclusive or is intended.
d) Inclusive or: More than 2 feet of snow or windchill below
—100 °F, or both, will close school. Exclusive or: More than
2 feet of snow or windchill below —100 °F, but not both, will
close school. Certainly the inclusive orisintended.  25. a) If
the wind blows from the northeast, then it snows. b) If it
stays warm for a week, then the apple trees will bloom. ¢) If
the Pistons win the championship, then they beat the Lakers.
d) If you get to the top of Long’s Peak, then you must have
walked 8 miles. e) If you are world famous, then you will get
tenure as a professor. f) If you drive more than 400 miles,
then you will need to buy gasoline. g) If your guarantee is
good, then you must have bought your CD player less than
90 days ago. h) If the water is not too cold, then Jan will go
swimming. i) If people believe in science, then we will have a
future. 27. a) You buy an ice cream cone if and only if it is
hot outside. b) You win the contest if and only if you hold the
only winning ticket. ¢) You get promoted if and only if you
have connections. d) Your mind will decay if and only if you
watch television. e) The train runs late if and only if it is a day
I take the train.  29. a) Converse: “I will ski tomorrow only
if it snows today.” Contrapositive: “If I do not ski tomorrow,
then it will not have snowed today.” Inverse: “If it does not
snow today, then I will not ski tomorrow.” b) Converse: “If
I come to class, then there will be a quiz.” Contrapositive: “If
1 do not come to class, then there will not be a quiz.” Inverse:
“If there is not going to be a quiz, then I don’t come to class.”
¢) Converse: “A positive integer is a prime if it has no divisors
other than 1 and itself.” Contrapositive: “If a positive integer
has a divisor other than 1 and itself, then it is not prime.” In-
verse: “If a positive integer is not prime, then it has a divisor
other than 1 and itself.” 31. a)2 b) 16 ¢) 64 d) 16
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Dp glpvalpra|@vo—wre e) P—q <
T T| T T T P q|p—>q|—~q|-p|—-qg—>-p | (—g—>p)
T F| T F F T T T F | F T T
F T| T F F T F F T | F F T
F F| F F T F T T F| T T T

F F T T | T T T

f) (P—q—

P q|\p—>q|q9—p (g —p)
T T T T T
T F F T T
F T T F F
F F T T T

35. For parts (a), (b), (c), (d), and (f) we have this table.

P 9| (pved->p®9 | (p®P—->Ppr) | (pVOB(pAg | (p=@(Ppoq | (pDg — (pD 9

T T F T F T T

T F T F T T F

F T T F T T F

F F T T F T T

For part (e) we have this table.

p q r|p|r|peqg|peo-r|(peqg®(por)

T T T| F | F T T F

T T F| F | T T F T

T F T| F | F F T T

T F F| F | T F F F

F T T| T|F F F F

F T F| T/|T F T T

F F T| T | F T F T

F F F| T | T T T F

37. =V |p=or|pogv | (o9
p q|p—=>—q|peoq|(p—>q | (p—>q | (Cpeqg (peq
T T F F T T T T
T F T T T F T T
F T T T T T T T
F F T F T F T T

39. P>V | >N | (peogV | (pe g o
p q r|p=>(qvr) | p-=>@-=>r)| (p-=>r) | (p-o>r) | (mger) (ger)

T T T T T T T T T
T T F F T T T T F
T F T T T T F T T
T F F T T T F F F
F T T T T T T F F
F T F T F T F T T
F F T T T T T T F
F F F T T T F T T




41. poq e

(res)

LS
~
)

ol R ol Bl B R R N N R R
mTmmTmHASSSTmTT S 3R
T HSTTS ST S nT a3y
THTRST ST TS TS TS TS| @
HSA-STmTooomooomToS-S-33|3
HmmaSmmSSmmS3nm3|d
SHmmESTmSSTmmESSTS TS

43. The first clause is true if and only if at least one of p, ¢, and
r is true. The second clause is true if and only if at least one
of the three variables is false. Therefore, the entire statement
is true if and only if there is at least one T and one F among the
truth values of the variables, in other words, that they don’t all
have the same truth value.  45. (A} N1 PV =9)) A
(Vi p,-) 47. a) Bitwise OR is 111 1111; bitwise AND is
000 0000; bitwise XOR is 111 1111. b) Bitwise OR is 1111
1010; bitwise AND is 1010 0000; bitwise XOR is 0101 1010.
¢) Bitwise OR is 100111 1001; bitwise AND is 00 0100 0000;
bitwise XORis 100011 1001. d) Bitwise ORis 11 1111 1111;
bitwise AND is 00 0000 0000; bitwise XOR is 11 1111 1111.
49. 0.2,0.6 51. 0.8,0.6 53. a) The 99th statement is true
and the rest are false.  b) Statements 1 through 50 are all true
and statements 51 through 100 are all false. ¢) This cannot
happen,; it is a paradox, showing that these cannot be state-
ments.

Section 1.2

l.e—a 3.g—->FAEm)AED) 5.e— (an(bVp)Ar)
7.a)g—>p b)g A p ¢)g—->p d)y-g—-p 9. Not
consistent 11. Consistent 13. NEW AND JERSEY
AND BEACHES, (JERSEY AND BEACHES) NOT NEW
15. “ETHIOPIAN RESTAURANTS” AND (“NEW YORK”
OR “NEW JERSEY”) 17.a)Queen cannot say this.
b) Queen can say this, but one cannot determine location
of treasure. ¢) Queen can say this; treasure is in Trunk 1.
d) Queen cannot say this.  19. “If I were to ask you whether
the right branch leads to the ruins, would you answer yes?”
21. If the first professor did not want coffee, then he would
know that the answer to the hostess’s question was “no.”
Therefore the hostess and the remaining professors know
that the first professor did want coffee. Similarly, the sec-
ond professor must want coffee. When the third professor
said “no,” the hostess knows that the third professor does
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not want coffee.  23. A is a knight and B is a knave.  25.
A is a knight and B is a knight. 27. A is a knave and B
is a knight. 29. A is the knight, B is the spy, C is the
knave. 31. A is the knight, B is the spy, C is the knave.
33. Any of the three can be the knight, any can be the
spy, any can be the knave. 35. No solutions 37. In or-
der of decreasing salary: Fred, Maggie, Janice 39. The
detective can determine that the butler and cook are lying
but cannot determine whether the gardener is telling the
truth or whether the handyman is telling the truth.  41. The
Japanese man owns the zebra, and the Norwegian drinks wa-
ter. 43. One honest, 49 corrupt 45. a) =(p A (g V —r))
b) (p) A (~g) V (P A7)

47.
p

r

o™

Section 1.3

_

1. The equivalences follow by showing that the appropriate
pairs of columns of this table agree.

plpAT |pvF | pAF | pvT | pVvp | PAp

T| T T F T T T
F| F F F T F F
38p glpvalave Pp q|prg]anp
T T| T T T T| T T
T F| T T T F| F F
F T| T T F T| F F
F F| F F F F| F F
S. AV
P q riqVvripA@Vvr|pAg|pAr| (PAD)
TTT| T T T | T T
TTF| T T T | F T
TFET| T T FlT T
TFFE|F F F | F F
FTT| T F F | F F
FTF| T F F | F F
FFT| T F F | F F
FFF|F F F | F F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not bi-
cycle tomorrow, and Carlos will not run tomorrow. ¢) Mei
does not walk to class, and Mei does not take the bus to
class. d) Ibrahim is not smart, or Ibrahim is not hard working.

9.a)pV-g b)y(pAg)VF ¢)pVg
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a) = Trrg [0rg —p
T T| T T
T F| F T
F T| F T
F F| F T
Dp glpve|p-0ve
T T| T T
T F| T T
F T| T T
F F| F T
9p q|w|p-q|v-0-09
T T| F T T
T F| F F T
F T| T T T
F F| T T T
Dp gqlprg|p=aloro-0-09
T T| T T T
T F| F F T
F T| F T T
F F| F T T
9p q|lp-q| -9 |-0—>9-p
T T| T F T
T F| F T T
F T| T F T
F F| T F T
Dp qlp—q|-0->[-q][-0->9—>—q
T T| T F F T
T F| F T T T
FT| T F F T
FF| T F T T

13. a) If this were not a tautology, then p A ¢ would be true
but p would be false. This cannot happen, because the truth of
P A g implies the truth of p.  b) If this were not a tautology,
then p would be true but p vV ¢ would be false. This cannot
happen, because the truth of p implies the truth of pv ¢. ¢) If
this were not a tautology, then p would be false and p — ¢
would be false. This cannot happen, because p — ¢ is true
when p is false. d) If this were not a tautology, then p A g
would be true and p — g would be false. This cannot happen,
because p — ¢ is true when both p and ¢ are true. ) If
this were not a tautology, then p — ¢ would be false and p
would be false. This cannot happen, because p — ¢ is true
when p is false. f) If this were not a tautology, then p — ¢
would be false and ¢ would be true. This cannot happen, be-
cause p — g istrue when gistrue. 15. a)(pAg) > p =
“pAgQ)Vp=-pVgVp=pPV-pVg=Tv-g=T
b)p—>@p@vge=-pvpvg=(pVvpVvg=Tvg=T
O Pp->pP—->9=pvpP->q9=pV(pVg =(pPVPpIVg=

Tvg=T )prAg) > P ->9=-pPArgV(pVg=
pVgVpVg = (pVp)V(mgvg) = pVT =T e ~(p -
@P->p=pP->9Vp=-pVgVp=(pVp)Vg=Tvg=T
H-p->q¢9—>-~q=p—->9Vg=-pvgvg=-pvT=T
17. That the fourth column of the truth table shown is identical
to the first column proves part (a), and that the sixth column
is identical to the first column proves part (b).

P q|prAq|pVPAQ |PVqg|PADPVY
T T| T T T T
T F| F T T T
F T| F F T F
F F| F F F F

19. It is a tautology. 21. Each of these is true precisely
when p and g have opposite truth values. 23. The propo-
sition -p <« ¢ is true when —p and g have the same truth
values, which means that p and ¢ have different truth val-
ues. Similarly, p < =g is true in exactly the same cases.
Therefore, these two expressions are logically equivalent.
25. The proposition =(p < ¢) is true when p < ¢ is false,
which means that p and ¢ have different truth values. Because
this is precisely when —p < ¢ is true, the two expressions are
logically equivalent. 27. For (p — r) A (¢ — r) to be false,
one of the two conditional statements must be false, which
happens exactly when r is false and at least one of p and ¢ is
true. But these are precisely the cases in which pVvg s true and
ris false, which is precisely when (pVv¢q) — ris false. Because
the two propositions are false in exactly the same situations,
they are logically equivalent. 29.For (p — r) V(¢ — r) to
be false, both of the two conditional statements must be false,
which happens exactly when r is false and both p and ¢ are
true. But this is precisely the case in which p A g is true and r
is false, which is precisely when (p A g) — r is false. Because
the two propositions are false in exactly the same situations,
they are logically equivalent. ~31. This fact was observed
in Section 1 when the biconditional was first defined. Each
of these is true precisely when p and g have the same truth
values.  33. The last column is all Ts.

P—-q9A

P->9N g—-nr—
pqrip—=qlgq—ri@—r) |p-r|p-—r)
TTT| T T T T T
TTF| T F F F T
TFT| F T F T T
TFF| F T F F T
FTT| T T T T T
FTF| T F F T T
FFT|l T T T T T
FFF| T T T T T

35. These are not logically equivalent because when p, ¢, and
rare all false, (p —» ¢q) — risfalse,butp — (¢ — r)is
true. 37. Many answers are possible. If we let  be true and



P ¢, and s be false, then (p — ¢) — (r — s) will be false,
but(p — r) - (g —» s)willbe true. 39.a)pVv gV r
bypvgvrAs o g(p AT)V (g AF) 41. If we take
duals twice, every V changes to an A and then back to an
V, every A changes to an V and then back to an A, every T
changes to an F and then back to a T, every F changes to
a T and then back to an F. Hence, (s*)* = s. 43. Letp
and ¢ be equivalent compound propositions involving only
the operators A, Vv, and =, and T and F. Note that =p and —¢
are also equivalent. Use De Morgan’s laws as many times as
necessary to push negations in as far as possible within these
compound propositions, changing Vs to As, and vice versa,
and changing Ts to Fs, and vice versa. This shows that =p
and —g are the same as p* and g* except that each atomic
proposition p; within them is replaced by its negation. From
this we can conclude that p* and ¢* are equivalent because
-pand ~gare. 45.(pAgA-N)VPA-GAT)V(TpAGAT)
47. Given a compound proposition p, form its truth table
and then write down a proposition ¢ in disjunctive normal
form that is logically equivalent to p. Because ¢ involves
only =, A, and V, this shows that these three operators form
a functionally complete set. 49. By Exercise 47, given a
compound proposition p, we can write down a proposi-
tion ¢ that is logically equivalent to p and involves only
-, A, and V. By De Morgan’s law we can eliminate all the
As by replacing each occurrence of p; Ap, A =+ A p, with
—(7p, Vapy, V- Vap,).  51.=(p A g) is true when either
p or g, or both, are false, and is false when both p and ¢ are
true. Because this was the definition of p | ¢, the two com-
pound propositions are logically equivalent. 53.-=(pV q)
is true when both p and ¢ are false, and is false otherwise.
Because this was the definition of p | g, the two are logically
equivalent. 55.(pIp)l @ L ((plp)lqg) 57.This fol-
lows immediately from the truth table or definition of p | g.
59.16 61.If the database is open, then either the system
is in its initial state or the monitor is put in a closed state.
63. All nine  65. a) Satisfiable b) Not satisfiable ¢) Not

satisfiable  67. a) ( N Vi PG A ( AL AL AL
PaHVPER)) A (AL AL A CPGDY
D) A (A At NP Gt v=pti = &
) A (ALAL NS Epp vpl+k
j+K); No solutions possible.  b) (AL, Vi, p(i.))) A
(AL AL Aoy 2DV 00 ) A (AL Ay Al
PEDVPED) A (A AL ATt
—pli—k k+ j)))/\( A A A iy pli+k,
j+ K ); No solutions possible. ) (AL, Vi, p(i.)) A
(AL AL A CpGp v =pG ) )A( AL AL A
iV p) A (Al A AT G pv
-p(i—k k + j))) A ( /\f:l /\}11 /\kmzili(4—i,4—j)(_|p(i, v
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—p(i +k,j+k))>; 1, 2, 2 4, 3 1, &4 3) or
(1,3), (2, 1), 3,4, 4 2 69.Use the same propositions
as were given in the text for a 9 X 9 Sudoku puzzle, with
the variables indexed from 1 to 4, instead of from 1 to 9,
and with a similar change for the propositions for the 2 X 2
blocks: /\i=0 /\31,=0 /\i=1 \/?=1 \/f=l pQ2r + i, 2s + j, n)
71. \/1.9=l p(, j, n) asserts that column j contains the num-
ber n, so /\191:1 \/?:1 p(, j, n) asserts that column j contains
all 9 numbers; therefore /\]9= . /\3= . \/?= , (i, j, n) asserts that
every column contains every number.

Section 1.4

1.a)T b)T ¢F 3.a)T b)F ¢F d)F 5.a)There
is a student who spends more than 5 hours every weekday
in class. b) Every student spends more than 5 hours ev-
ery weekday in class. ¢) There is a student who does not
spend more than 5 hours every weekday in class. d)No
student spends more than 5 hours every weekday in class.
7. a) Every comedian is funny. b) Every person is a funny
comedian. c¢) There exists a person such that if she or he
is a comedian, then she or he is funny. d) Some comedi-
ans are funny. 9. a) Ix(P(x) A Q(x)) b) Ix(P(x) A QX))
¢) Vx(P(x)VQO(x)) d) Vx~(P(x)VQ(x)) 11.a)T b)T ¢)F
dF T HF 13.a)T b)T ¢T d)T 15.a)T b)F
c)T d)F 17.a)P0) v P(1) v P2) v P(3) v P4)
b) P(0) A P(1) A P(2) A P(3) A P(4) ¢)=P(0) V =P(1) Vv
-P(2) v -P3)v-P4) d)-P0O)A-P()A-P2)AP3)A
-P(4) e) =(P(O)VP(1)VPR2)VP3)VP#A))f) =(P(O)AP(1) A
PQR)APB)AP@)) 19.a) P(1)v PQ2)V P3)V P@A)V P(5)
b) P(1) A P(2) A P(3) A P(4) A P(S) ¢)—(P(1) VPQ2) Vv
P3) vP4) vP(S)) d)~(P(1) AP2)APQB)APHE)AP(5))
e) (P(1)APR2) A P(4) A P(S)) V (=P(1) V =P(2) Vv =P(3) vV
-P(4) v =P(5)) 21.Many answers are possible. a) All
students in your discrete mathematics class; all students in
the world b) All United States senators; all college football
players ¢) George W. Bush and Jeb Bush; all politicians in
the United States d) Bill Clinton and George W. Bush; all
politicians in the United States ~ 23. Let C(x) be the proposi-
tional function “x is in your class.” a) IxH(x) and Ix(C(x) A
H(x)), where H(x) is “x can speak Hindi” b) VxF(x) and
Vx(C(x) — F(x)), where F(x) is “x is friendly” ¢) Ix—=B(x)
and Jx(C(x) A—B(x)), where B(x) is “x was born in California”
d) IxM(x) and Ix(C(x) A M(x)), where M(x) is “x has been in
amovie” e) Vx-L(x) and Vx(C(x) — —L(x)), where L(x) is “x
has taken a course in logic programming”  25. Let P(x) be
“xis perfect”; let F(x) be “x is your friend”’; and let the domain
be all people. a) Vx =P(x) b) ~Vx P(x) c) Vx(F(x) — P(x))
d) Ix(F(x) AP(x)) e) Vx(F(x) AP(x))or (Vx F(x)) A (Vx P(x))
f) (Vx F(x)) v (3x~P(x)) 27.Let Y(x) be the propositional
function that x is in your school or class, as appropriate. a) If
we let V(x) be “x has lived in Vietnam,” then we have 3xV(x)
if the domain is just your schoolmates, or Ix(Y(x) A V(x))
if the domain is all people. If we let D(x, y) mean that per-
son x has lived in country y, then we can rewrite this last one
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as Ax(Y(x) A D(x, Vietnam)). b) If we let H(x) be “x can
speak Hindi,” then we have 3x—H (x) if the domain is just your
schoolmates, or Ax(Y (x) A =H(x)) if the domain is all people.
If we let S(x, y) mean that person x can speak language y, then
we can rewrite this last one as Ix(Y(x) A =S(x, Hindi)). ¢) If
we let J(x), P(x), and C(x) be the propositional functions as-
serting x’s knowledge of Java, Prolog, and C++, respectively,
then we have Ix(J(x) A P(x) A C(x)) if the domain is just
your schoolmates, or Jx(Y(x) A J(x) A P(x) A C(x)) if the do-
main is all people. If we let K(x, y) mean that person x knows
programming language y, then we can rewrite this last one as
Ix(Y(x) A K(x, Java) A K(x, Prolog) A K(x, C++)). d) If
we let T'(x) be “x enjoys Thai food,” then we have Vx T'(x) if
the domain is just your classmates, or Vx(Y(x) — T(x)) if
the domain is all people. If we let E(x, y) mean that person
x enjoys food of type y, then we can rewrite this last one as
Vx(Y(x) — E(x, Thai)). e) If we let H(x) be “x plays hockey,”
then we have 3x ~H(x) if the domain is just your classmates,
or 3x(Y(x)A—H (x)) if the domain is all people. If we let P(x, y)
mean that person x plays game y, then we can rewrite this last
one as Ix(Y (x) A=P(x, hockey)).  29. Let T(x) mean that x is
a tautology and C(x) mean that x is a contradiction. a) 3x 7T'(x)
b) Vx(C(x) — T(—«x)) ¢) xIy(=T(x) A "Cx) A °T(y) A
SCOINT( V') D VaVy(T() ATG)  —  TGAY)
31.a) 00, 0,00 AQ(, 1,00 b)Q@O, 1, 1) v O(1, 1, 1) v
02, 1,1) ¢ =00, 0)v-000 1) d)-0@00 1)V
-0(1,0,1) v=0(2,0,1) 33.a)Let T(x) be the predicate
that x can learn new tricks, and let the domain be old dogs.
Original is 3x T(x). Negation is Vx =7'(x): “No old dogs can
learn new tricks.” b) Let C(x) be the predicate that x knows
calculus, and let the domain be rabbits. Original is =3x C(x).
Negation is 3x C(x): “There is a rabbit that knows calculus.”
¢) Let F(x) be the predicate that x can fly, and let the domain
be birds. Original is Vx F(x). Negation is Jx =F(x): “There
is a bird who cannot fly.” d) Let 7'(x) be the predicate that
x can talk, and let the domain be dogs. Original is =3x T(x).
Negation is 3x T(x): “There is a dog that talks.” e) Let F(x)
and R(x) be the predicates that x knows French and knows
Russian, respectively, and let the domain be people in this
class. Original is =3x(F(x) A R(x)). Negation is Ix(F(x) A
R(x)): “There is someone in this class who knows French and
Russian.”  35.a) Ix(x < 1) b)Ix(x > 2) ¢) Vx(x < 4)
DVxx 2 0) eAx((x 2 —D AKX <2) HVx(x 2 4)

A (x < 7)) 37.a) Thereisno counterexample. b)x =10
c)x=2 39.a) Vx((F(x, 25,000) v S(x, 25)) — E(x)), where
E(x) is “Person x qualifies as an elite flyer in a given year,”
F(x, y) is “Person x flies more than y miles in a given year,”
and S(x, y) is “Person x takes more than y flights in a given
year” b) Vx(Mx)AT(x, 3)) V(=M (x) A T(x, 3.5))) - Ox)),
where Q(x) is “Person x qualifies for the marathon,” M(x)
is “Person x is a man,” and T'(x, y) is ‘“Person x has run the
marathon in less than y hours” ¢) M — ((H(60) v (H(45) A
7)) A Vy G(B, y)), where M is the proposition “The student
received a masters degree,” H(x) is “The student took at least
x course hours,” T is the proposition “The student wrote a
thesis,” and G(x, y) is “The person got grade x or higher in

course ¥y d) Ix ((T(x, 21) A G(x, 4.0)), where T(x, y) is “Per-
son x took more than y credit hours” and G(x, p) is “Person x
earned grade point average p” (we assume that we are talking
about one given semester) 41. a) If there is a printer that
is both out of service and busy, then some job has been lost.
b) If every printer is busy, then there is a job in the queue.
c) If there is a job that is both queued and lost, then some
printer is out of service. d) If every printer is busy and every
job is queued, then some job is lost.  43. a) (Ix F(x, 10)) —
dx S(x), where F(x, y) is “Disk x has more than y kilobytes
of free space,” and S(x) is “Mail message x can be saved”
b) (AxA(x)) — Vx(Q(x) — T(x)), where A(x) is “Alert x
is active,” Q(x) is “Message x is queued,” and T'(x) is “Mes-
sage x is transmitted” ¢) Vx((x # main console) — T(x)),
where T'(x) is “The diagnostic monitor tracks the status of sys-
tem x” d) Vx(—=L(x) — B(x)), where L(x) is “The host of the
conference call put participant x on a special list” and B(x)
is “Participant x was billed” 45. They are not equivalent.
Let P(x) be any propositional function that is sometimes true
and sometimes false, and let Q(x) be any propositional func-
tion that is always false. Then Vx(P(x) — Q(x)) is false but
VxP(x) - VxQ(x) is true.  47. Both statements are true pre-
cisely when at least one of P(x) and Q(x) is true for at least
one value of x in the domain. 49. a) If A is true, then both
sides are logically equivalent to VxP(x). If A is false, the left-
hand side is clearly false. Furthermore, for every x, P(x) A A
is false, so the right-hand side is false. Hence, the two sides
are logically equivalent. b) If A is true, then both sides are
logically equivalent to 3x P(x). If A is false, the left-hand side
is clearly false. Furthermore, for every x, P(x) A A is false,
so Ax(P(x) A A) is false. Hence, the two sides are logically
equivalent. 51. We can establish these equivalences by ar-
guing that one side is true if and only if the other side is true.
a) Suppose that A is true. Then for each x, P(x) — A is true;
therefore, the left-hand side is always true in this case. By sim-
ilar reasoning the right-hand side is always true in this case.
Therefore, the two propositions are logically equivalent when
A is true. On the other hand, suppose that A is false. There
are two subcases. If P(x) is false for every x, then P(x) — A
is vacuously true, so the left-hand side is vacuously true. The
same reasoning shows that the right-hand side is also true,
because in this subcase IxP(x) is false. For the second sub-
case, suppose that P(x) is true for some x. Then for that x,
P(x) — A is false, so the left-hand side is false. The right-
hand side is also false, because in this subcase IxP(x) is true
but A is false. Thus, in all cases, the two propositions have
the same truth value. b) If A is true, then both sides are triv-
ially true, because the conditional statements have true con-
clusions. If A is false, then there are two subcases. If P(x) is
false for some x, then P(x) — A is vacuously true for that x,
so the left-hand side is true. The same reasoning shows that
the right-hand side is true, because in this subcase VxP(x)
is false. For the second subcase, suppose that P(x) is true
for every x. Then for every x, P(x) — A is false, so the
left-hand side is false (there is no x making the conditional
statement true). The right-hand side is also false, because it
is a conditional statement with a true hypothesis and a false



conclusion. Thus, in all cases, the two propositions have
the same truth value. 53.To show these are not logi-
cally equivalent, let P(x) be the statement “x is positive,”
and let Q(x) be the statement “x is negative” with domain
the set of integers. Then Ix P(x) A Ix Q(x) is true, but
Ix(P(x) A Q(x)) is false. 55.a) True b) False, unless
the domain consists of just one element or the hypothe-
sis is false. ¢) True 57.a) Yes b)No c¢)juana, kiko
d) math273, ¢s301  e) juana, kiko 59.sibTing(X,Y)
:-  mother(M,X), mother(M,Y), father(F,X),
father(F,Y) 61.a) Vx(P(x) - -Qx)) b)Vx(Q(x) —
R(x)) ¢) Vx(P(x) — —=R(x)) d) The conclusion does not follow.
There may be vain professors, because the premises do not
rule out the possibility that there are other vain people besides
ignorant ones. 63. a) Vx(P(x) - —Q(x)) b) Vx(R(x) — —S(x))
¢) Vx(=Q(x) =»S(x)) d) Vx(P (x) — —R(x)) e) The conclusion
follows. Suppose x is a baby. Then, by the first premise, x is
illogical, so by the third premise, x is despised. The second
premise says that if x could manage a crocodile, then x would
not be despised. Therefore, x cannot manage a crocodile.

Section 1.5

1. a) For every real number x there exists a real number y such
that x is less than y. b) For every real number x and real num-
bery, if x and y are both nonnegative, then their product is non-
negative. c¢) For every real number x and real number y, there
exists a real number z such that xy = z. 3. a) There is some
student in your class who has sent a message to some student
in your class. b) There is some student in your class who
has sent a message to every student in your class. c¢) Every
student in your class has sent a message to at least one student
in your class. d) There is a student in your class who has been
sent a message by every student in your class. e) Every stu-
dent in your class has been sent a message from at least one
student in your class. f) Every student in the class has sent
a message to every student in the class. 5. a) Sarah Smith
has visited www.att.com. b) At least one person has visited
www.imdb.org. ¢) Jose Orez has visited at least one website.
d) There is a website that both Ashok Puri and Cindy Yoon
have visited. e) There is a person besides David Belcher who
has visited all the websites that David Belcher has visited.
f) There are two different people who have visited exactly
the same websites. 7. a) Abdallah Hussein does not like
Japanese cuisine. b) Some student at your school likes Ko-
rean cuisine, and everyone at your school likes Mexican cui-
sine. ¢) There is some cuisine that either Monique Arsenault
or Jay Johnson likes. d) For every pair of distinct students at
your school, there is some cuisine that at least one them does
not like. e) There are two students at your school who like
exactly the same set of cuisines. f) For every pair of students
at your school, there is some cuisine about which they have
the same opinion (either they both like it or they both do not
like it). 9. a) VxL(x, Jerry) b) Vx3IyL(x, y) ¢) IyVxL(x, y)
d) Vx3y-L(x, y) e)dx~L(Lydia, x) f) IxVy-L(y, x)
g) Ax(VyL(y, x) A VZ(YWL(w, 2)) — z = x)) h) IxTy(x #
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yAL(Lynn, x) A L(Lynn, y) A Vz(L(Lynn, z) = (z=xV z=Y)))
D VxL(x, x) j)IxVy (Lx, y) © x=1y) 1l.a)A(Lois,
Professor Michaels) b) Vx(S(x) — A(x, Professor Gross))
¢) Vx(F(x) — (A(x, Professor Miller) v A(Professor Miller,
) d) IS AYVFQ) = A 1) €) TxF@) A VIS —
~AG, ) B YY(FO) 3@ VAR ») ) IEF) A
YEG) A (5 # 0) =AG »)  h) TS A WEG) —
—A(y, x)))  13. a) -M (Chou, Koko) b) =M (Arlene, Sarah)A
—T(Arlene, Sarah) ¢) =M (Deborah, Jose) d) VxM(x, Ken)
e) Vx—T'(x, Nina) f) Vx(T(x, Avi) v M(x, Avi)) g) IxVy(y #
x = Mxy) hIvyy # x - Mxy) Vv T y)
i) xFy(x #yAM(x, y) AM(y,x)) j) IxM(x, x) k) IxVy(x #
y = ("M AT (Y, X)) D Vx(@y(x # yAM(©, )VT(y, X))
m) xIy(x # y A Mx, y) A T(y, x)) n)AxIy(x # y A
Va((z#xAz#y) > M 2)VM©,2) VT2 VT, 2))
15. a) VxP(x), where P(x) is “x needs a course in discrete
mathematics” and the domain consists of all computer sci-
ence students b) IxP(x), where P(x) is “x owns a personal
computer’” and the domain consists of all students in this class
¢) Vx3yP(x, y), where P(x, y) is “x has taken y,” the domain
for x consists of all students in this class, and the domain for y
consists of all computer science classes d) Ix3yP(x, y), where
P(x, y) and domains are the same as in part (c) €) VxVyP(x, y),
where P(x, y) is “x has been in y,” the domain for x consists
of all students in this class, and the domain for y consists of
all buildings on campus f) Ix3IyVz(P(z, y) — O(x, z)), where
P(z,y)is “zisiny” and Q(x, z) is “x has been in z”’; the domain
for x consists of all students in the class, the domain for y con-
sists of all buildings on campus, and the domain of z consists
of all rooms. @) VxVy3z(P(z, y) A QO(x, 7)), with same en-
vironment as in part (f) 17.a) Vudm(A(u, m) A Vn(n #
m — —A(u, n))), where A(u, m) means that user u has
access to mailbox m b) 3pVe(H(e) A S(p, running))
— S (kernel, working correctly), where H(e) means that
error condition e is in effect and S(x, y) means that the
status of x is y c¢) VuVs(E(s, .edu) — A(y, s)), where
E(s, x) means that website s has extension x, and A(u, s)
means that user u# can access website s d) IxIy(x #
yAVYZ(VsM(z, 5)) <> (z=xV z=1Y))), where M(a, b) means
that system a monitors remote server b 19. a) VaVy((x <
OAQlY <0 - x+y < 0) b)-"aVy((x>0) A
G>0 - (@=-y>0) ©Va¥y o +y* > x+y)?)
d) VxVy (|xy| = [x|]|lyD 21.Vx3a3b3IcAd (x > 0) —
x =a* + b* + ¢* + d?), where the domain consists of all in-
tegers 23.a)VxVy(x < 0) A (y < 0) =» (xy > 0)
b)Vx(x —x =0) ¢)Vxdadb(a # bAVe(P=x o (c=aV
c =b)) dVx((x < 0) - -Iy(x = y?) 25.a) There
is a multiplicative identity for the real numbers.  b) The
product of two negative real numbers is always a positive
real number. c¢) There exist real numbers x and y such that
x* exceeds y but x is less than y. d) The real numbers are
closed under the operation of addition.  27. a) True b) True
¢) True d) True e) True f) False g) False h) True i) False
29.a) P(1,1) A P(1,2) A P(1,3) A P2, 1) A P(2,2) A
P2,3) A P3, 1) A P3,2 A P3,3) bP1, 1)V
P(1,2) v P(1,3) v P2, 1) v P(2,2) v P(2,3) v P3,1) v
P@3,2) v P3,3) o @, 1) A P, 2) A P, 3)) Vv
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(P2, 1) AP22,2) AP(2,3)) vV (PG, 1) AP@3,2) AP3, 3))
d)(P(1,1) v P2, 1) v PGB, 1)) A (P(1,2) vV P2,2)V
PG, 2)APA,3) v P2, 3) Vv P@3,3) 3l.a)dxVydz T
x v, 20 b)IxVy=P(x, y) A IxVy = QOx, y) ¢) IxVy
(P y) V VZR® y, 2) &) IVYPL ) A O, ¥)
33.a) IxIy-P(x, y) b) IyVx-P(x, y) ¢) IyIx(—=P(x,
» A 20 y) A (VaVyP, y) Vo (FxTy0(x, )
e) Ax(Vydz=P(x, y, 2) VvV VzIy-P(x, y, 2)) 35. Any do-
main with four or more members makes the statement true;
any domain with three or fewer members makes the state-
ment false. 37.a) There is someone in this class such
that for every two different math courses, these are not
the two and only two math courses this person has taken.
b) Every person has either visited Libya or has not visited
a country other than Libya. c¢) Someone has climbed ev-
ery mountain in the Himalayas. d) There is someone who
has neither been in a movie with Kevin Bacon nor has been
in a movie with someone who has been in a movie with

Kevin Bacon. 39.a)x = 2,y = -2 b)x = -4
ox = 17,y = =1 4L.VxVyVz((xy)z = x-(y-2)
43.Vm Vb (m # 0 - Ix(mx + b = 0 A Vw(imw + b =
0 —- w = x)) 45.a)True b)False c¢)True

47. 2(FxVyP(x, y)) © Vx(=VyP(x, y)) <«  YxIy-P(xy)
49. a) Suppose that VxP(x) A IxQ(x) is true. Then P(x) is true
for all x and there is an element y for which Q(y) is true. Be-
cause P(x) A Q(y) is true for all x and there is a y for which
Q(y) is true, VxIy(P(x) A Q(y)) is true. Conversely, suppose
that the second proposition is true. Let x be an element in the
domain. There is a y such that Q(y) is true, so AxQ(x) is true.
Because VxP(x) is also true, it follows that the first proposi-
tion is true. b) Suppose that VxP(x) vV IxQ(x) is true. Then
either P(x) is true for all x, or there exists a y for which Q(y)
is true. In the former case, P(x) V Q(y) is true for all x, so
Vx3Ay(P(x) vV O(y)) is true. In the latter case, Q(y) is true for a
particular y, so P(x) V Q(y) is true for all x and consequently
Vx3Ay(P(x) V Q()) is true. Conversely, suppose that the sec-
ond proposition is true. If P(x) is true for all x, then the first
proposition is true. If not, P(x) is false for some x, and for this
x there must be a y such that P(x) v Q(y) is true. Hence, Q(y)
must be true, so IyQ(y) is true. It follows that the first propo-
sition must hold.  51. We will show how an expression can
be put into prenex normal form (PNF) if subexpressions in it
can be put into PNF. Then, working from the inside out, any
expression can be put in PNF. (To formalize the argument,
it is necessary to use the method of structural induction that
will be discussed in Section 5.3.) By Exercise 49 of Section
1.3, we can assume that the proposition uses only Vv and - as
logical connectives. Now note that any proposition with no
quantifiers is already in PNF. (This is the basis case of the
argument.) Now suppose that the proposition is of the form
QxP(x), where Q is a quantifier. Because P(x) is a shorter
expression than the original proposition, we can put it into
PNF. Then Qx followed by this PNF is again in PNF and
is equivalent to the original proposition. Next, suppose that
the proposition is of the form —P. If P is already in PNF,
we slide the negation sign past all the quantifiers using the
equivalences in Table 2 in Section 1.4. Finally, assume that

proposition is of the form P v Q, where each of P and Q is in
PNF. If only one of P and Q has quantifiers, then we can use
Exercise 48 in Section 1.4 to bring the quantifier in front of
both. If both P and Q have quantifiers, we can use Exercise
47 in Section 1.4, Exercise 48, or part (b) of Exercise 49 to
rewrite P vV Q with two quantifiers preceding the disjunction
of a proposition of the form R Vv S, and then put R Vv S into
PNF.

Section 1.6

1. Modus ponens; valid; the conclusion is true, because
the hypotheses are true. 3. a) Addition b) Simplification
¢) Modus ponens d) Modus tollens e) Hypothetical syllo-
gism 5. Let w be “Randy works hard,” let d be “Randy is
a dull boy,” and let j be “Randy will get the job.” The hy-
potheses are w, w — d, and d — —j. Using modus ponens
and the first two hypotheses, d follows. Using modus ponens
and the last hypothesis, —1j, which is the desired conclusion,
“Randy will not get the job,” follows. 7. Universal instan-
tiation is used to conclude that “If Socrates is a man, then
Socrates is mortal.” Modus ponens is then used to conclude
that Socrates is mortal. 9. a) Valid conclusions are “I did
not take Tuesday off,” “I took Thursday off,” and “It rained
on Thursday.” b) “I did not eat spicy foods and it did not
thunder” is a valid conclusion. c¢) “I am clever” is a valid
conclusion. d) “Ralph is not a CS major” is a valid conclu-
sion. e) “That you buy lots of stuff is good for the U.S. and
is good for you” is a valid conclusion. f) “Mice gnaw their
food” and “Rabbits are not rodents” are valid conclusions.
11. Suppose that py, p,, ..., p, are true. We want to establish
that ¢ — r is true. If ¢ is false, then we are done, vacuously.
Otherwise, ¢ is true, so by the validity of the given argument
form (that whenever p,, p,, ..., p,, q are true, then r must be
true), we know that r is true.  13. a) Let c(x) be “x is in this
class,” j(x) be “x knows how to write programs in JAVA,”
and h(x) be “x can get a high-paying job.” The premises are
c(Doug), j(Doug), Vx(j(x) — h(x)). Using universal instan-
tiation and the last premise, j(Doug) — Ah(Doug) follows.
Applying modus ponens to this conclusion and the second
premise, h(Doug) follows. Using conjunction and the first
premise, c(Doug) A h(Doug) follows. Finally, using existen-
tial generalization, the desired conclusion, Ix(c(x) A h(x))
follows. b) Let c¢(x) be “x is in this class,” w(x) be “x enjoys
whale watching,” and p(x) be “x cares about ocean pollution.”
The premises are Ix(c(x) A w(x)) and Vx(w(x) — p(x)). From
the first premise, c¢(y) A w(y) for a particular person y. Using
simplification, w(y) follows. Using the second premise and
universal instantiation, w(y) — p(y) follows. Using modus
ponens, p(y) follows, and by conjunction, c(y) A p(y) follows.
Finally, by existential generalization, the desired conclusion,
dx(c(x) A p(x)), follows. ¢) Let c(x) be “x is in this class,” p(x)
be “x owns a PC,” and w(x) be “x can use a word-processing
program.” The premises are c¢(Zeke), Vx(c(x) — p(x)), and



Vx(p(x) — w(x)). Using the second premise and universal
instantiation, c(Zeke) — p(Zeke) follows. Using the first
premise and modus ponens, p(Zeke) follows. Using the third
premise and universal instantiation, p(Zeke) — w(Zeke) fol-
lows. Finally, using modus ponens, w(Zeke), the desired con-
clusion, follows. d) Letj(x) be “x is in New Jersey,” f(x) be “x
lives within 50 miles of the ocean,” and s(x) be “x has seen the
ocean.” The premises are Vx(j(x) — f(x)) and Ix(j(x) A =s(x)).
The second hypothesis and existential instantiation imply
that j(y) A =s(y) for a particular person y. By simplification,
J(y) for this person y. Using universal instantiation and the
first premise, j(y) — f(y), and by modus ponens, f(y) fol-
lows. By simplification, —s(y) follows from j(y) A =s(y). So
f@) A —s(y) follows by conjunction. Finally, the desired con-
clusion, 3x(f (x) A—s(x)), follows by existential generalization.
15. a) Correct, using universal instantiation and modus po-
nens b) Invalid; fallacy of affirming the conclusion c¢) Invalid;
fallacy of denying the hypothesis d) Correct, using universal
instantiation and modus tollens 17. We know that some x
exists that makes H(x) true, but we cannot conclude that Lola
is one such x. 19. a) Fallacy of affirming the conclusion
b) Valid argument using modus tollens ¢) Fallacy of denying
the hypothesis  21. By the second premise, there is some
lion that does not drink coffee. Let Leo be such a creature. By
simplification we know that Leo is a lion. By modus ponens
we know from the first premise that Leo is fierce. Hence,
Leo is fierce and does not drink coffee. By the definition of
the existential quantifier, there exist fierce creatures that do
not drink coffee, that is, some fierce creatures do not drink
coffee.  23. The error occurs in step (5), because we cannot
assume, as is being done here, that the ¢ that makes P true
is the same as the ¢ that makes Q true. 25. We are given
the premises Vx(P(x) — Q(x)) and ~Q(a). We want to show
—P(a). Suppose, to the contrary, that =P(a) is not true. Then
P(a) is true. Therefore, by universal modus ponens, we have
Q(a). But this contradicts the given premise =Q(a). There-
fore, our supposition must have been wrong, and so =P(a) is
true, as desired.

27. Step Reason
1. Vx(P(x) A R(x)) Premise
2. P(a) AR(a) Universal instantiation from (1)

3. P(a) Simplification from (2)
4. Vx(P(x) > Premise
(O(x) A S(x)))
5. Q(a) A S(a) Universal modus ponens from(3)
and (4)
6. S(a) Simplification from (5)
7. R(a) Simplification from (2)

8. R(a) A S(a) Conjunction from (7) and (6)
9. Vx(R(x) A S(x))  Universal generalization from (5)
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29. Step Reason
1. 3x-P(x) Premise
2. P(c) Existential instantiation from (1)
3. Vx(P(x) V Q(x)) Premise
4. P(c) vV Q(c) Universal instantiation from (3)
5. 0(c) Disjunctive syllogism from (4)

and (2)

6. Vx(=Q(x) V S(x)) Premise
7. 20(c) vV S(c) Universal instantiation from (6)
8. S(¢) Disjunctive syllogism from (5)

and (7)
9. Vx(R(x) — —~S(x)) Premise
10. R(c) - —=S(c¢)  Universal instantiation from (9)
11. =R(c) Modus tollens from (8) and (10)
12. 3x-R(x) Existential generalization from

Y

31. Let p be “It is raining”’; let ¢ be “Yvette has her umbrella”;
let r be “Yvette gets wet.” Assumptions are =p V g, g V -,
and p V —r. Resolution on the first two gives =p V —r. Res-
olution on this and the third assumption gives —r, as desired.
33. Assume that this proposition is satisfiable. Using resolu-
tion on the first two clauses enables us to conclude g V g; in
other words, we know that g has to be true. Using resolution
on the last two clauses enables us to conclude ~g V —g; in
other words, we know that =g has to be true. This is a contra-
diction. So this proposition is not satisfiable. ~ 35. Valid

Section 1.7

I.Let n =2k + 1and m = 2] + 1 be odd inte-
gers. Then n+m=2(k+1+1) is even. 3. Suppose that n
is even. Then n = 2k for some integer k. Therefore, n> =
(2k)? = 4k* =2(2k?). Because we have written n2 as 2 times an
integer, we conclude that n? is even. 5. Direct proof: Sup-
pose that m +n and n + p are even. Then m + n = 2s for some
integer s and n+p = 2t for some integer ¢. If we add these, we
get m+ p + 2n = 25 + 2t. Subtracting 2n from both sides and
factoring, we have m + p = 2s + 2t — 2n = 2(s + t — n).
Because we have written m + p as 2 times an integer, we
conclude that m + p is even. 7. Because n is odd, we can
write n = 2k + 1 for some integer k. Then (k + 1) — k? =
K +2k+1-k =2k+1 = n 9. Suppose that r is
rational and i is irrational and s = r + i is rational. Then by
Example 8, s + (—r) = i is rational, which is a contradiction.
11. Because \/5 \/5 = 2 is rational and \/5 is irrational, the
product of two irrational numbers is not necessarily irrational.
13. Proof by contraposition: If 1/x were rational, then by def-
inition 1/x = p/q for some integers p and g with g # 0.
Because 1/x cannot be O (if it were, then we’d have the con-
tradiction 1 = x - 0 by multiplying both sides by x), we know
thatp # 0. Nowx = 1/(1/x) = 1/(p/q) = q/p by the
usual rules of algebra and arithmetic. Hence, x can be written
as the quotient of two integers with the denominator nonzero.
Thus, by definition, x is rational. ~ 15. Assume that \/} were
rational. Then, because the product of two rational numbers
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is rational, (\/;)2 = x is also rational. This contradicts the
hypothesis that x is irrational. ~ 17. Assume that it is not true
thatx > lory > 1. Thenx < 1 and y < 1. Adding these
two inequalities, we obtain x +y < 2, which is the negation
of x+y>2. 19.a) Assume that n is odd, so n = 2k + 1 for
some integer k. Then n® + 5 = 2(4k> + 6k* 4+ 3k + 3). Because
n® + 5 is two times some integer, it is even. b) Suppose that
n® + 5 is odd and 7 is odd. Because 7 is odd and the prod-
uct of two odd numbers is odd, it follows that n? is odd and
then that #° is odd. But then 5 = (n® + 5) — »n® would have
to be even because it is the difference of two odd numbers.
Therefore, the supposition that n* + 5 and n were both odd
is wrong.  21. The proposition is vacuously true because 0
is not a positive integer. Vacuous proof.  23. P(1) is true be-
cause (a+b)! =a+b > a'+b' = a+b. Direct proof.  25. If
we chose 9 or fewer days on each day of the week, this would
account for at most 9-7 = 63 days. But we chose 64 days. This
contradiction shows that at least 10 of the days we chose must
be on the same day of the week. ~ 27. Suppose by way of con-
tradiction that a/b is arational root, where a and b are integers
and this fraction is in lowest terms (that is, @ and » have no
common divisor greater than 1). Plug this proposed root into
the equation to obtain a* /b +a/b + 1 = 0. Multiply through
by b3 to obtain @ +ab*+b> = 0. If a and b are both odd, then
the left-hand side is the sum of three odd numbers and there-
fore must be odd. If a is odd and b is even, then the left-hand
side is odd +even +even, which is again odd. Similarly, if a is
even and b is odd, then the left-hand side is even+even+ odd,
which is again odd. Because the fraction a/b is in simplest
terms, it cannot happen that both a and b are even. Thus, in all
cases, the left-hand side is odd, and therefore cannot equal 0.
This contradiction shows that no such root exists.  29. First,
assume that n is odd, so that n = 2k + 1 for some integer k.
Then 5n+6 = 52k+1)+6 = 10k+ 11 = 2(5k+5)+ 1. Hence,
5n + 6 is odd. To prove the converse, suppose that n is even,
so that n = 2k for some integer k. Then 5n + 6 = 10k + 6 =
2(5k + 3), so 5n + 6 is even. Hence, n is odd if and only if
Sn+61isodd. 31. This proposition is true. Suppose that m is
neither 1 nor —1. Then mn has a factor m larger than 1. On the
other hand, mn = 1, and 1 has no such factor. Hence, m = 1 or
m = —1. In the first case n = 1, and in the second case n = —1,
becausen = 1/m.  33. We prove that all these are equivalent
to x being even. If x is even, then x = 2k for some integer k.
Therefore, 3x+2 = 3-2k+2 = 6k+2 = 2(3k+1), which is even,
because it has been written in the form 2¢, where t = 3k + 1.
Similarly, x+5 =2k+5 =2k+4+1 =2(k+2)+1,s0x+51s
odd; and x> = (2k)? = 2(2k?), so x? is even. For the converses,
we will use a proof by contraposition. So assume that x is not
even; thus, x is odd and we can write x = 2k + 1 for some inte-
ger k. Then 3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which
is odd (i.e., not even), because it has been written in the form
2t+1, where = 3k+2. Similarly, x+5 = 2k+1+5 = 2(k+3),
so x 4+ 5 is even (i.e., not odd). That x* is odd was already
proved in Example 1. 35. We give proofs by contraposition
of (i) — (i), (i) = (i), (i) — (iii), and (iii) — (i). For the
first of these, suppose that 3x + 2 is rational, namely, equal to

p/q for some integers p and g with g # 0. Then we can write
x=((p/q9)—2)/3 = (p—2q)/(3q), where 3q # 0. This shows
that x is rational. For the second conditional statement, sup-
pose that x is rational, namely, equal to p/q for some integers
p and g with g # 0. Then we can write 3x+2 = 3p + 29)/q,
where g # 0. This shows that 3x + 2 is rational. For the third
conditional statement, suppose that x/2 is rational, namely,
equal to p/q for some integers p and ¢ with ¢ # 0. Then
we can write x = 2p/q, where ¢ # 0. This shows that
x is rational. And for the fourth conditional statement, sup-
pose that x is rational, namely, equal to p/q for some integers
p and g with ¢ # 0. Then we can write x/2 = p/(2q),
where 2g # 0. This shows that x/2 is rational. 37.No
39. Suppose that p; — p, = p, = ps = p3 = P
To prove that one of these propositions implies any of the
others, just use hypothetical syllogism repeatedly. 41. We
will give a proof by contradiction. Suppose that a,, a,, ..., a,
are all less than A, where A is the average of these numbers.
Thena, + a, + --- + a,, < nA. Dividing both sides by n shows
thatA = (a; + a, + - +a,)/n < A, which is a contradiction.
43. We will show that the four statements are equivalent by
showing that (i) implies (ii), (if) implies (iii ), (iii ) implies
(iv), and (iv) implies (i). First, assume that n is even. Then
n = 2k for some integer k. Then n + 1 = 2k + 1, so
n + 1 is odd. This shows that (i) implies (ii ). Next, suppose
that n + 1 is odd, son + 1 = 2k + 1 for some integer k.
Then3n +1 = 2n+ (m+ 1) = 2(n + k) + 1, which
shows that 3n+ 1 is odd, showing that (ii ) implies (iii ). Next,
suppose that 3n 4+ 1 is odd, so 3n + 1 = 2k + 1 for some
integer k. Then 3n = (2k + 1) — 1 = 2k, so 3n is even.
This shows that (iii) implies (iv). Finally, suppose that n is
not even. Then 7 is odd, so n = 2k + 1 for some integer k.
Then 3n =32k + 1) =6k +3 =23k + 1)+ 1, so 3n is odd.
This completes a proof by contraposition that (iv) implies (7).

Section 1.8

LI2+1=22>2=2122+1=5>4=2%32+1=
10>8=2%42+1=17 > 16 =2* 3. We must show
that for all positive integers x it is not true that x> = 100.
Case (i): If x < 4, then x3 < 64, so x> # 100. Case (ii):
If x > 5,then x> > 125,50 x> # 100. 5.Ifx < y, then
max(x, y) + min(x,y) = y+x = x4+ y. If x > y, then
max(x, y) + min(x, y) = x + y. Because these are the only two
cases, the equality always holds. 7. Because |[x—y| = |y—x|,
the values of x and y are interchangeable. Therefore, with-
out loss of generality, we can assume that x > y. Then
(x+y—(@x=y)/2=@+y—x+y)/2=2y/2 =y = min(x, y).
Similarly, (x+y+(x—=y))/2 = x+y+x—y)/2 =2x/2 =x =
max(x, y). 9. There are four cases. Case 1: x > 0andy > 0.
Then [x| + |[y] =x+y = |x+y|. Case 2: x < Oand y < 0.
Then |x| + |y| = —x + (—=y) = —(x + y) = |x + y| because
x+y<0.Case3:x>0andy < 0. Then |x| + [y] =x+ (—y).
If x > —y, then |x + y| = x + y. But because y < 0, =y >y,
so x|+ ]yl = x+(=y) > x+y = |x+y|. If x < —y, then
|[x+y] == +y) = —x + (—y). But because x > 0, x > —x,



so x| + |y =x+(=y)>—x+(—=y)=|x+y|. Case 4: x < 0
and y > 0. Identical to Case 3 with the roles of x and y re-
versed. 11.10,001, 10,002, ..., 10,100 are all nonsquares,
because 1002 = 10,000 and 1012 = 10,201; constructive.
13.8 = 22and9 = 32 15.Letx = 2andy = /2. If
X = 2\/5 is irrational, we are done. If not, then let x = 2\/5 and
y = V/2/4. Then x* = @V2)V2/4 = 2V2 (V214 — 2172 — /2.
17. a) This statement asserts the existence of x with a certain
property. If we let y = x, then we see that P(x) is true. If y
is anything other than x, then P(x) is not true. Thus, x is the
unique element that makes P true. b) The first clause here says
that there is an element that makes P true. The second clause
says that whenever two elements both make P true, they are
in fact the same element. Together these say that P is satisfied
by exactly one element. c¢) This statement asserts the exis-
tence of an x that makes P true and has the further property
that whenever we find an element that makes P true, that ele-
ment is x. In other words, x is the unique element that makes
Ptrue. 19. The equation |[a—c| = |b—c]| is equivalent to the
disjunction of two equations: a —c =b—cora—c = —-b+c.
The first of these is equivalent to a = b, which contradicts the
assumptions made in this problem, so the original equation is
equivalent to @ — ¢ = —b + c. By adding b + ¢ to both sides
and dividing by 2, we see that this equation is equivalent to
¢ = (a+ b)/2. Thus, there is a unique solution. Furthermore,
this ¢ is an integer, because the sum of the odd integers a and b
iseven. 21. We are being asked to solve n = (k—2) + (k+3)
for k. Using the usual, reversible, rules of algebra, we see that
this equation is equivalent to k = (n—1) /2. In other words, this
is the one and only value of k that makes our equation true.
Because n is odd, n — 1 is even, so k is an integer. ~ 23. If x is
itself an integer, then we can take n = x and € = 0. No other so-
lution is possible in this case, because if the integer n is greater
than x, then n is at least x + 1, which would make ¢ > 1. If x
is not an integer, then round it up to the next integer, and call
that integer n. Let e = n—x. Clearly 0 < e < 1; this is the only
e that will work with this n, and n cannot be any larger, be-
cause € is constrained to be less than 1. 25. The harmonic
mean of distinct positive real numbers x and y is always less
than their geometric mean. To prove 2xy/(x + y) < \/_ R
multiply both sides by (x + y)/ (2\/5) to obtain the equiv-
alent inequality \/E < (x + ¥)/2, which is proved in Ex-
ample 14.  27. The parity (oddness or evenness) of the sum
of the numbers written on the board never changes, because
J + k and |j — k| have the same parity (and at each step we
reduce the sum by j + k but increase it by |j — k|). There-
fore the integer at the end of the process must have the same
parity as 1 + 2 + -+ + (2n) = n(2n + 1), which is odd
because nis odd.  29. Without loss of generality we can as-
sume that 7 is nonnegative, because the fourth power of an
integer and the fourth power of its negative are the same. We
divide an arbitrary positive integer n by 10, obtaining a quo-
tient k and remainder /, whence n = 10k + [, and [ is an
integer between 0 and 9, inclusive. Then we compute n* in
each of these 10 cases. We get the following values, where X
is some integer that is a multiple of 10, whose exact value we
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do not care about. (10k + 0)* = 10,000k* = 10,000k* + 0,
(10k + 1)* = 10,000k* + X - I3 + X - K> + X - k + 1,
(10k + 2)* = 10,000k* + X - I + X - k> + X - k + 16,

(10k + 3)* = 10,000k* + X - &> + X - kK2 + X - k + 81,
(10k + 4)* = 10,000k* + X - k> + X - k> + X - k + 256,
(10k + 5)* = 10,000k* + X - k> + X - kK2 + X - k + 625,
(10k + 6)* = 10,000k* + X - k> + X - k> + X - k + 1296,
(10k + 1* = 10,000k* + X - k> + X - k* + X - k + 2401,
(10k + 8)* = 10,000k* + X k> + X - k> + X - k + 4096,

(10k + 9)* = 10,000k* + X - k3 + X - k* + X - k + 6561.
Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the
answer. Therefore, the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,
1, respectively, so it is always a 0, 1, 5, or 6.  31. Because
n3 > 100 for all n > 4, we need only note thatn = 1, n = 2,
n =3, and n = 4 do not satisfy n> + n> = 100.  33. Because
5% = 625, both x and y must be less than 5. Then x* +
Y <4444 =512 <625, 35.1fitis not true that a < y/n,
b < {/n,orc < 4/n,then a > {/Z,b > {/ﬁ,andc > {/Z
Multiplying these inequalities of positive numbers together
we obtain abc < ({/5)3 = n, which implies the negation
of our hypothesis that n = abc. 37. By finding a common
denominator, we can assume that the given rational numbers
are a/b and c/b, where b is a positive integer and a and ¢ are
integers with @ < c¢. In particular, (a + 1)/b < ¢/b. Thus,
x=(a+ %\/5) /b is between the two given rational numbers,

because 0 < 4/2 < 2. Furthermore, x is irrational, because if
x were rational, then 2(bx —a) = \/5 would be as well, in vio-
lation of Example 11 in Section 1.7.  39. a) Without loss of
generality, we can assume that the x sequence is already sorted
into nondecreasing order, because we can relabel the indices.
There are only a finite number of possible orderings for the y
sequence, so if we can show that we can increase the sum (or
at least keep it the same) whenever we find y; and y; that are
out of order (i.e., i <jbuty; > y;) by switching them, then we
will have shown that the sum is largest when the y sequence is
in nondecreasing order. Indeed, if we perform the swap, then
we have added x;y; +x;y; to the sum and subtracted x;y; +x;y;.
The net effect is to have added x;y; + x;y; — x;y; — xy; =
(; = x)(v; — ¥;), which is nonnegative by our ordering as-
sumptions. b) Similar to part (a) 41.a)6 — 3 — 10 —
55165824 —->2->1b)7->22->11 - 34 —>
17 - 52 26 - 13 - 40 - 20 - 10 > 5> 16 -
8 >4 5251 ¢l17 - 52 - 26 - 13 - 40 -
20010 - 5 - 16 - 8 - 4 - 2 — 1
d)2l - 64 ->32—-516—->8 >4 -2 -1 43. Without
loss of generality, assume that the upper left and upper right
corners of the board are removed. Place three dominoes hor-
izontally to fill the remaining portion of the first row, and fill
each of the other seven rows with four horizontal dominoes.
45. Because there is an even number of squares in all, either
there is an even number of squares in each row or there is an
even number of squares in each column. In the former case,
tile the board in the obvious way by placing the dominoes hor-
izontally, and in the latter case, tile the board in the obvious
way by placing the dominoes vertically. 47. We can rotate
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the board if necessary to make the removed squares be 1 and
16. Square 2 must be covered by a domino. If that domino is
placed to cover squares 2 and 6, then the following domino
placements are forced in succession: 5-9, 13-14, and 10-11,
at which point there is no way to cover square 15. Otherwise,
square 2 must be covered by a domino placed at 2-3. Then
the following domino placements are forced: 4-8, 11-12, 6-7,
5-9, and 10-14, and again there is no way to cover square 15.
49. Remove the two black squares adjacent to a white corner,
and remove two white squares other than that corner. Then no
domino can cover that white corner.

51. a)
) @) G) ) (5)

b) The picture shows tilings for the first four patterns.
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To show that pattern 5 cannot tile the checkerboard, label the
squares from 1 to 64, one row at a time from the top, from left
to right in each row. Thus, square 1 is the upper left corner,
and square 64 is the lower right. Suppose we did have a tiling.
By symmetry and without loss of generality, we may suppose
that the tile is positioned in the upper left corner, covering
squares 1, 2, 10, and 11. This forces a tile to be adjacent to
it on the right, covering squares 3, 4, 12, and 13. Continue in
this manner and we are forced to have a tile covering squares
6, 7, 15, and 16. This makes it impossible to cover square 8.
Thus, no tiling is possible.

Supplementary Exercises

l.ayg - p b)gAp ¢)~gV-p d)g <& p 3.a)The
proposition cannot be false unless —p is false, so p is true. If
p is true and q is true, then =g A (p — ¢) is false, so the
conditional statement is true. If p is true and ¢ is false, then
p — qis false, so 7g A (p — ¢) is false and the conditional
statement is true. b) The proposition cannot be false unless
q is false. If ¢ is false and p is true, then (p V g) A —p is false,
and the conditional statement is true. If ¢ is false and p is

false, then (p Vv g) A —p is false, and the conditional statement
istrue. 5.mg - p;p > g p —> g T.(p AgAT
ATSIVPAGA-TAS)NV PATGATAS)VEPAGATAS)
9. Translating these statements into symbols, using the obvi-
ous letters, we have =t — =g, 7g — g, r — ¢, and =t A r.
Assume the statements are consistent. The fourth statement
tells us that = must be true. Therefore, by modus ponens with
the first statement, we know that —g is true, hence (from the
second statement), that g is true. Also, the fourth statement
tells us that » must be true, and so again modus ponens (third
statement) makes ¢ true. This is a contradiction: g A g. Thus,
the statements are inconsistent. 11. Reject-accept-reject-
accept, accept-accept-accept-accept, accept-accept-reject-
accept, reject-reject-reject-reject, reject-reject-accept-reject,
and reject-accept-accept-accept  13. Aaron is a knave and
Crystal is a knight; it cannot be determined what Bohan is.
15.Brenda  17. The premises cannot both be true, because
they are contradictory. Therefore, it is (vacuously) true that
whenever all the premises are true, the conclusion is also
true, which by definition makes this a valid argument. Be-
cause the premises are not both true, we cannot conclude
that the conclusion is true.  19. Use the same propositions
as were given in Section 1.3 for a 9 X 9 Sudoku puzzle,
with the variables indexed from 1 to 16, instead of from 1
to 9, and with a similar change for the propositions for the
4x4blocks: A2y ALy vy Vi, Vi p@r + i 4s +j n).
2l.a)F b)T ¢oF d)T eF )T 23.Many an-
swers are possible. One example is United States sena-
tors.  25.Vxdydz (y # zAYW(PW, x) & (W = yVw = 7))
27. a) ~3xP(x) b) Ix(P(x) A Yy(P(y) - y = Xx)
©) Ix; I, (P(x)) A P(xy) Axp #x, AVY(PQY) = (y =x,Vy =
X)) d) Ix; Ix, Ta3(Pe)AP(x,) AP(X))AX] # Xy AXp #
X3AX, F ALY - =5 Vy=xVy = X))
29. Suppose that Ix(P(x) — Q(x)) is true. Then either O(x,)
is true for some x,, in which case VxP(x) — 3x Q(x) is true;
or P(x,) is false for some x, in which case VxP(x) — 3xQO(x)
is true. Conversely, suppose that Ix(P(x) - Q(x)) is false.
That means that Vx(P(x) A —Q(x)) is true, which implies
VxP(x) and Vx(=Q(x)). This latter proposition is equiva-
lent to =3xQ(x). Thus, VxP(x) — JxQ(x) is false. 31. No
33.Vx Vz dy T(x, y, z), where T(x, y, z) is the statement
that student x has taken class y in department z, where
the domains are the set of students in the class, the set of
courses at this university, and the set of departments in the
school of mathematical sciences 35.3!x3!y T(x, y) and
AVz(AYVwW(T(z, w) < w = y)) < z = x), where T(x, y)
means that student x has taken class y and the domain is all
students in this class  37. P(a) — Q(a) and Q(a) — R(a)
by universal instantiation; then =Q(a) by modus tollens and
—P(a) by modus tollens  39. This is not true. Let x = 2173,
Then x2 = 4!/3 is irrational (the proof of this is very similar
to the proof in Example 11 in Section 1.7), but x> = 2 is
rational. 41. We can give a constructive proof by letting
m = 100 + 1. Then m? = (10°%° + 1)2 > (10°%)? = 10'0°,
43. 23 cannot be written as the sum of eight cubes.  45. 223
cannot be written as the sum of 36 fifth powers.



