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35722 Existential and Universal Quantifiers

Existential and universal quantifiers provide an extremely useful language for mak-
ing formal statements. You must understand them. A game between a prover and a
verifier is a level of abstraction within which it is easy to understand and prove such
statements.
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The Loves Example: Suppose the relation (predicate) Loves(p1, p2) means that per-
son p1 loves person p2. Then we have

Expression Meaning

∃p2 Loves(Sam, p2) “Sam loves somebody.”
∀p2 Loves(Sam, p2) “Sam loves everybody.”
∃p1∀p2 Loves(p1, p2) “Somebody loves everybody.”
∀p1∃p2 Loves(p1, p2) “Everybody loves somebody.”
∃p2∀p1 Loves(p1, p2) “Theres one person who is loved

by everybody.”
∃p1∃p2 (Loves(p1, p2) and ¬Loves(p2, p1)) “Somebody loves in vain.”

Definition of Relation: A relation like
Loves(p1, p2) states for every pair of objects
(say p1 = Sam and p2 = Mary) that the re-
lation either holds between them or does
not. Though we will use the word relation,
Loves(p1, p2) is also considered to be a pred-
icate. The difference is that a predicate takes
only one argument and hence focuses on
whether the property is true or false about the
given tuple 〈p1, p2〉 = 〈Sam, Mary〉.

Representations: Relations (predicates) can be represented in a number of ways.

Functions: A relation can be viewed as a function mapping tuples of ob-
jects either to true or to false, for example, Loves : {p1|p1 is a person } × {p2|p2

is a person } ⇒ {true, false}.

Set of Tuples: Alternatively, it can be viewed as a set containing the tuples for
which it is true, for example Loves = {〈Sam, Mary〉, 〈Sam, Ann〉, 〈Bob, Ann〉, . . .}.
〈Sam, Mary〉 ∈ Loves iff Loves(Sam, Mary) is true.

Directed Graph Representation: If the relation only has two arguments, it can be
represented by a directed graph. The nodes consist of the objects in the domain.
We place a directed edge 〈p1, p2〉 between pairs for which the relation is true. If
the domains for the first and second objects are disjoint, then the graph is bi-
partite. Of course, the Loves relation could be defined to include Loves(Bob, Bob).
See Figure 22.1.

Quantifiers: You will be using the following quantifiers and properties.

The Existential Quantifier: The quantifier ∃ means that there is at least one ob-
ject in the domain with the property. This quantifier relates to the Boolean
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AnnFigure 22.1: A directed graph representa-
tion of the Loves relation.

operator OR. For example, ∃p1 Loves(Sam, p1) ≡ [Loves(Sam, Mary) OR
Loves(Sam, Ann) OR Loves(Sam, Bob) OR . . .].

The Universal Quantifier: The quantifier ∀ means that all of the objects in
the domain have the property. It relates to the Boolean operator AND. For
example, ∀p1 Loves(Sam, p1) ≡ [Loves(Sam, Mary) AND Loves(Sam, Ann) AND
Loves(Sam, Bob) AND . . .].

Combining Quantifiers: Quantifiers can be combined. The order of opera-
tions is such that ∀p1∃p2 Loves(p1, p2) is understood to be bracketed as
∀p1[∃p1 Loves(p1, p2)], i.e., “Every person has the property ‘he loves some other
person’.” It relates to the following Boolean formula:

Loves(Sam,Mary) Loves(Sam,Ann) Loves(Sam,Jone)

ORMary
Ann Jone

Loves(Bob,Mary) Loves(Bob,Ann) Loves(Bob,Jone)

OR
Mary

Ann Jone

Loves(Ron,Mary) Loves(Ron,Ann) Loves(Ron,Jone)

OR
Mary

Ann Jone

AND
Ron

Sam

Bob

Order of Quantifiers: The order of the quantifiers matters. For example, if b is the
class of boys and g is the class of girls, ∀b∃g Loves(b, g) and ∃g∀b Loves(b, g) mean
different things. The second one states that the same girl is loved by every boy. For
it to be true, there needs to be a Marilyn Monroe sort of girl that all the boys love.
The first statement says that every boy loves some girl. A Marilyn Monroe sort of girl
will make this statement true. However, it is also true in a monogamous situation in
which every boy loves a different girl. Hence, the first statement can be true in more
different ways than the second one. In fact, the second statement implies the first
one, but not vice versa.

Definition of Free and Bound Variables: The statement ∃p2 Loves(Sam, p2)
means “Sam loves someone.” This is a statement about Sam. Similarly, the state-
ment ∃p2 Loves(p1, p2) means “p1 loves someone.” This is a statement about
person p1. Whether the statement is true depends on who p1 is referring to. The
statement is not about p2. The variable p2 is used as a local variable (similar to
for(i = 1; i <= 10; i + +)) to express “someone.” It could be a brother or a friend or a
dog. In this expression, we say that the variable p2 is bound, while p1 is free, because
p2 has a quantifier and p1 does not.
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Figure 22.2: ∀g∃b∃p (Loves(b, g) and Loves(b, p)
and g 
= p). On the left is an example of a situation
in which the statement is true, and on the right is
one in which it is false.

Defining Other Relations: You can define other relations by giving an expression
with free variables. For example, you can define the unary relation LovesSomeone
(p1) ≡ ∃p2 Loves(p1, p2).

Building Expressions: Suppose you wanted to state that every girl has been cheated
on, using the Loves relation. It may be helpful to break the problem into three steps.

Step 1. Assuming Other Relations: Suppose you have the relation Cheats(Sam,
Mary), indicating that Sam cheats on Mary. How would you express the state-
ment that every girl has been cheated on? The advantage of using this function
is that we can focus on this one part of the statement. We are not claiming that
every boy cheats. One boy may have broken every girl’s heart.

Given this, the answer is ∀g∃b Cheats(b, g).

Step 2. Constructing the Other Predicate: Here we do not have a Cheats function.
Hence, we must construct a sentence from the loves function stating that Sam
cheats on Mary.

Clearly, there must be someone else involved besides Mary, so let’s start
with ∃p. Now, in order for cheating to occur, who needs to love whom? (For
simplicity’s sake, let’s assume that cheating means loving more than one per-
son at the same time.) Certainly, Sam must love p. He must also love Mary.
If he did not love her, then he would not be cheating on her. Must Mary love
Sam? No. If Sam tells Mary he loves her dearly and then a moment later he
tells Sue he loves her dearly, then he has cheated on Mary regardless of how
Mary feels about him. Therefore, Mary does not have to love Sam. In conclusion,
we might define Cheats(Sam, Mary) ≡ ∃p (Loves(Sam, Mary) and Loves(Sam, p)).
However, we have made a mistake here. In our example, the other person
and Mary cannot be the same person. Hence, we must define the relation as
Cheats(Sam, Mary) ≡ ∃p (Loves(Sam, Mary) and Loves(Sam, p) and p 
= Mary).

Step 3. Combining the Parts: Combining the two relations together gives you
∀g∃b∃p (Loves(b, g) and Loves(b, p) and p 
= g). This statement expresses that ev-
ery girl has been cheated on. See Figure 22.2.

The Domain of a Variable: Whenever you state ∃g or ∀g, there must be an under-
stood set of values that the variable g might take on. This set is called the domain of
the variable. It may be explicitly given or implied, but it must be understood. Here
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the domain is “the” set of girls. You must make clear whether this means all girls in
the room, all the girls currently in the world, or all girls that have ever existed. For
example,

∀x∃y x × y = 1

states that every value has a reciprocal. It is certainly not true of the domain of in-
tegers, because two does not have an integer reciprocal. It seems to be true of the
domain of reals. Be careful, however: zero does not have a reciprocal. It would be
better to write

∀x 
= 0, ∃y x × y = 1

or equivalently

∀x∃y (x × y = 1 OR x = 0).

The Negation of a Statement: The negation of a statement is formed by putting a
negation sign on the left-hand side. (Brackets sometimes help.) A negated statement,
however, is best understood by moving the negation as deep (as far right) into the
statement as possible. This is done as follows.

Negating AND and OR : A negation on the outside of an AND or an OR statement
can be moved deeper into the statement using De Morgan’s law. Recall that the
AND is replaced by an OR and the OR is replaced with an AND.

¬(Loves(S, M ) AND Loves(S, A)) iff ¬Loves(S, M ) OR ¬Loves(S, A): The negat-
ion of “Sam loves Mary and Ann” is “Either Sam does not love Mary or he
does not love Ann.” He can love one of the girls, but not both.

A common mistake is to make the negation ¬Loves(Sam, Mary) AND
¬Loves(Sam, Ann). However, this says that Sam loves neither Mary nor Ann.

¬(Loves(S, M) OR Loves(S,A)) iff ¬Loves(S, M) AND ¬Loves(S, A): The negation
of “Sam either loves Mary or he loves Ann” is “Sam does not love Mary and
he does not love Ann.”

Negating Quantifiers: Similarly, a negation can be moved past one or more
quantifiers either to the right or to the left. However, you must then change these
quantifiers from existential to universal and vice versa. Suppose d is the set of
dogs. Then we have:

¬(∃d Loves(Sam, d )) iff ∀d ¬Loves(Sam, d ): The negation of “There is a dog
that Sam loves” is “There is no dog that Sam loves” or “All dogs are unloved
by Sam.” A common mistake is to state the negation as ∃d ¬Loves(Sam, d ).
However, this says that “There is a dog that is not loved by Sam.”

¬(∀d Loves(Sam, d )) iff ∃d ¬Loves(Sam, d ): The negation of “Sam loves ev-
ery dog” is “There is a dog that Sam does not love.”
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¬(∃b∀d Loves(b, d )) iff ∀b¬(∀d Loves(b, d )) iff ∀b∃d ¬Loves(b, d ): The nega-
tion of “There is a boy who loves every dog” is “There are no boys who love
every dog” or “For every boy, it is not the case that he loves every dog” or “For
every boy, there is some dog that he does not love.”

¬(∃d1∃d2 Loves(Sam, d1) AND Loves(Sam, d2) AND d1 �= d2) iff
∀d1∀d2 ¬(Loves(Sam, d1) AND Loves(Sam, d2) AND d1 �= d2) iff
∀d1∀d2 ¬Loves(Sam, d1) OR ¬Loves(Sam, d2) OR d1 = d2: The negation of
“There are two (distinct) dogs that Sam loves” is “Given any pair of (distinct)
dogs, Sam does not love both” or “Given any pair of dogs, either Sam does
not love the first or he does not love the second, or you gave me the same
dog twice.”

The Domain Does Not Change: The negation of ∃x ≥ 5, x + 2 = 4 is ∀x ≥ 5, x +
2 
= 4. The negation does not begin ∃x < 5 . . .. Both the statement and its nega-
tion are about numbers greater than 5. Is there or is there not a number with the
property such that x + 2 = 4?

Proving a Statement True: There are a number of seemingly different techniques
for proving that an existential or universal statement is true. The core of all these
techniques, however, is the same. Personally, I like to view the proof as a strategy for
winning a game against an adversary.

Techniques for Proving ∃d Loves(Sam,d ):

Proof by Example or by Construction: The classic technique to prove that
something with a given property exists is by example. You either directly pro-
vide an example, or you describe how to construct such an object. Then you
prove that your example has the property. For the above statement, the proof
would state “Let d be Fido” and then would prove that Sam loves Fido.

Proof by Adversarial Game: Suppose you claim to an adversary that there is
a dog that Sam loves. What will the adversary say? Clearly, he challenges, “Oh,
yeah? What dog?” You then meet the challenge by producing a specific dog
d and proving that Loves(Sam, d ), that is, that Sam loves d. The statement is
true if you have a strategy guaranteed to beat any adversary in this game.

� If the statement is true, then you can produce some dog d.
� If the statement is false, then you will not be able to.

Techniques for Proving ∀d Loves(Sam,d ):

Proof by Example Does Not Work: Proving that Sam loves Fido is interesting,
but it does not prove that he loves all dogs.
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Proof by Case Analysis: The laborious way of proving that Sam loves all dogs
is to consider each dog, one at a time, and prove that Sam loves it.

This method is impossible if the domain of dogs is infinite.

Proof by Arbitrary Example: The classic technique to prove that every ob-
ject from some domain has a given property is to let some symbol repre-
sent an arbitrary object from the domain and then to prove that that object
has the property. Here the proof would begin “Let d be any arbitrary dog.”
Because we don’t actually know which dog d is, we must either (1) prove
Loves(Sam, d ) simply from the properties that d has because d is a dog or
(2) go back to doing a case analysis, considering each dog d separately.

Proof by Adversarial Game: Suppose you claim to an adversary that Sam
loves every dog. What will the adversary say? Clearly he challenges, “Oh,
yeah? What about Fido?” You meet the challenge by proving that Sam loves
Fido. In other words, the adversary provides a dog d ′. You win if you can
prove that Loves(Sam, d ′).

The only difference between this game and the one for existential quan-
tifiers is who provides the example. Interestingly, the game only has one
round. The adversary is only given one opportunity to challenge you.

A proof of the statement ∀d Loves(Sam, d ) consists of a strategy for win-
ning the game. Such a strategy takes an arbitrary dog d ′, provided by the
adversary, and proves that “Sam loves d ′.” Again, because we don’t actually
know which dog d ′ is, we must either (1) prove that Loves(Sam, d ′) simply
from the properties that d ′ has because he is a dog or (2) go back to doing a
case analysis, considering each dog d ′ separately.

� If the statement ∀d Loves(Sam, d ) is true, then you have a strategy.
No matter how the adversary plays, no matter which dog d ′ he gives
you, Sam loves it. Hence, you can win the game by proving that
Loves(Sam, d ′).

� If the statement is false, then there is a dog d ′ that Sam does not love.
Any true adversary (not just a friend ) will produce this dog, and you will
lose the game. Hence, you cannot have a winning strategy.

Proof by Contradiction: A classic technique for proving the statement
∀d Loves(Sam, d ) is proof by contradiction. Except in the way that it is ex-
pressed, it is exactly the same as the proof by an adversary game.

By way of contradiction assume that the statement is false, that is,
∃d ¬Loves(Sam, d ) is true. Let d ′ be some such dog that Sam does not love.
Then you must prove that in fact Sam does love d ′. This contradicts the state-
ment that Sam does not love d ′. Hence, the initial assumption is false, and
∀d Loves(Sam, d ) is true.

Proof by Adversarial Game for More Complex Statements: The advantage to this
technique is that it generalizes into a nice game for arbitrarily long statements.
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The Steps of the Game:

Left to Right: The game moves from left to right, providing an object for
each quantifier.

Prover Provides ∃b: You, as the prover, must provide any existential ob-
jects.

Adversary Provides ∀d : The adversary provides any universal objects.

To Win, Prove the Relation Loves(b ′, d ′): Once all the objects have been
provided, you (the prover) must prove that the innermost relation is in
fact true. If you can, then you win. Otherwise, you lose.

A Proof Is a Strategy: A proof of the statement consists of a strategy such that
you win the game no matter how the adversary plays. For each possible move
that the adversary takes, such a strategy must specify what move you will
counter with.

Negations in Front: To prove a statement with a negation in the front of it,
first put the statement into standard form with the negation moved to the
right. Then prove the statement in the same way.

Examples:

∃b∀d Loves(b,d ): To prove “There is a boy that loves every dog,” you
must produce a specific boy b′. Then the adversary, knowing your boy
b′, tries to prove that ∀d Loves(b′, d ) is false. He does this by providing
an arbitrary dog d ′ that he hopes b′ does not love. You must prove “b′

loves d ′.”

¬(∃b∀d Loves(b,d )) iff ∀b∃d ¬Loves(b, d ): With the negation moved to
the right, the first quantifier is universal. Hence, the adversary first pro-
duces a boy b′. Then, knowing the adversary’s boy, you produce a dog d ′.
Finally, you prove that ¬Loves(b′, d ′).

Your proof of the statement could be viewed as a function G that
takes as input the boy b′ given by the adversary and outputs the dog
d ′ = D(b′) countered by you. Here, d ′ = D(b′) is an example of a dog that
boy b′ does not love. The proof must prove that ∀b¬Loves(b, D(b)).

EXERCISE 22.0.1 Let Loves(b, g) denote that boy b loves girl g. If Sam loves Mary and
Mary does not love Sam back, then we say that Sam loves in vain.

1. Express the following statements using universal and existential quantifiers. Move
any negations to the right.
(a) “Sam has loved in vain.”
(b) “There is a boy who has loved in vain.”
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(c) “Every boy has loved in vain.”
(d) “No boy has loved in vain.”

2. For each of the above statements and each of the two relations below, prove either
that the statement is true for the relation or that it is false:

Sam

Bob

MarySam Mary

EXERCISE 22.0.2 (See solution in Part Five.) For each, prove whether true or not when
each variable is a real value. Be sure to play the correct game as to who is providing
what value:

1. ∀x ∃y x + y = 5.

2. ∃y ∀x x + y = 5.

3. ∀x ∃y x · y = 5.

4. ∃y ∀x x · y = 5.

5. ∀x ∃y x · y = 0.

6. ∃y ∀x x · y = 0.

7. [∀x ∃y P(x, y)] ⇒ [∃y ∀x P(x, y)].
8. [∀x ∃y P(x, y)] ⇐ [∃y ∀x P(x, y)].
9. ∀a ∃y ∀x x · (y + a) = 0.

10. ∃a ∀x ∃y [x = 0 or x · y = 5].

EXERCISE 22.0.3 The game ping has two rounds. Player A goes first. Let mA
1 denote

his first move. Player B goes next. Let mB
1 denote his move. Then player A goes mA

2 , and
player B goes mB

2 . The relation A Wins(mA
1 , mB

1 , mA
2 , mB

2 ) is true iff player A wins with
these moves.

1. Use universal and existential quantifiers to express the fact that player A has a
strategy with which he wins no matter what player B does. Use mA

1 , mB
1 , mA

2 , mB
2 as

variables.
2. What steps are required in the prover–adversary technique to prove this statement?
3. What is the negation of the above statement in standard form?
4. What steps are required in the prover–adversary technique to prove this negated

statement?

EXERCISE 22.0.4 Why does [∀n0, ∃n > n0, P(n)] imply that there are an infinite
number of values n for which the property P(n) is true?
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It is important to classify algorithms based whether they solve a
given computational problem and, if so, how quickly. Similarly, it
is important to classify computational problems based whether
they can be solved and, if so, how quickly.

23.1 The Time (and Space) Complexity of an Algorithm

Purpose:

Estimate Duration: To estimate how long an algorithm or program will run.

Estimate Input Size: To estimate the largest input that can reasonably be given
to the program.

Compare Algorithms: To compare the efficiency of different algorithms for solv-
ing the same problem.

Parts of Code: To help you focus your attention on the parts of the code that are
executed the largest number of times. This is the code you need to improve to
reduce the running time.

Choose Algorithm: To choose an algorithm for an application:
� If the input size won’t be larger than six, don’t waste your time writing an

extremely efficient algorithm.
� If the input size is a thousand, then be sure the program runs in polynomial,

not exponential, time.
� If you are working on the Gnome project and the input size is a billion, then

be sure the program runs in linear time.
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Time and Space Complexities Are Functions, T (n) and S(n): The time com-
plexity of an algorithm is not a single number, but is a function indicating how
the running time depends on the size of the input. We often denote this by T(n),
giving the number of operations executed on the worst case input instance of size
n. An example would be T(n) = 3n2 + 7n + 23. Similarly, S(n) gives the size of the
rewritable memory the algorithm requires.

Ignoring Details, �(T (n)) and O(T (n)): Generally, we ignore the low-order terms
in the function T(n) and the multiplicative constant in front. We also ignore the func-
tion for small values of n and focus on the asymptotic behavior as n becomes very
large. Some of the reasons are the following.

Model-Dependent: The multiplicative constant in front of the time depends on
how fast the computer is and on the precise definition of “size” and “operation.”

Too Much Work: Counting every operation that the algorithm executes in pre-
cise detail is more work than it is worth.

Not Significant: It is much more significant whether the time complexity is
T(n) = n2 or T(n) = n3 than whether it is T(n) = n2 or T(n) = 3n2.

Only Large n Matter: One might say that we only consider large input instances
in our analysis, because the running time of an algorithm only becomes an issue
when the input is large. However, the running time of some algorithms on small
input instances is quite critical. In fact, the size n of a realistic input instance
depends both on the problem and on the application. The choice was made to
consider only large n in order to provide a clean and consistent mathematical
definition.

See Chapter 25 on the Theta and BigOh notations.

Definition of Size: The formal definition of the size of an instance is the number
of binary digits (bits) required to encode it. More practically, the size could be con-
sidered to be the number of digits or characters required to encode it. Intuitively, the
size of an instance could be defined to be the area of paper needed to write down
the instance, or the number of seconds it takes to communicate the instance along
a narrow channel. These definitions are all within a multiplicative constant of each
other.

An Integer: Suppose that the input is the value N = 8,398,346,386,236,876. The
number of bits required to encode it is Size(N) = log2(N) = log2(8,398,346,
386,236,876) = 53, and the number of decimal digits is Size(N) = log10(8,398,
346,386,236,876) = 16. Chapter 24 explains why these are within a multiplica-
tive constant of each other. The one definition that you must not use is the value
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of the integer, Size(N) = N = 8,398,346,386,236,876, because it is exponentially
different than Size(N) = log2(N) = 53.

A Tuple: Suppose that the input is the tuple of b integers I = 〈x1, x2, . . . , xb〉.
The number of bits required to encode it is Size(I ) = log2(x1) + log2(x2) + · · · +
log2(xb) ≈ log2(xi ) · b. A natural definition of the size of this tuple is the number
of integers in it, Size(I ) = b. With this definition, it is a much stronger statement
to say that an algorithm requires only Time(b) integer operations independent of
how big the integers are.

A Graph: Suppose that the input is the graph G = 〈V, E〉 with |V | nodes and |E |
edges. The number of bits required to encode it is Size(G) = 2 Size(node) · |E | =
2 log2(|V |) · |E |. Another reasonable definition of the size of G is the number of
edges, G(n) = |E |. Often the time is given as a function of both |V | and |E |. This
is within a log factor of the other definitions, which for most applications is
fine.

Definition of an Operation: The definition of an operation can be any reasonable
operation on two bits, characters, nodes, or integers, depending on whether time is
measured in bits, characters, nodes, or integers. An operation could also be defined
to be any reasonable line of code or the number of seconds that the computation
takes on your favorite computer.

Which Input: T(n) is the number of operations required to execute the given algo-
rithm on an input of size n. However, there are 2n input instances with n bits. Here
are three possibilities:

A Typical Input: The problem with considering a typical input instance this is
that different applications will have very different typical inputs.

Average or Expected Case: The problem with taking the average over all input
instances of size n is that it assumes that all instances are equally likely to
occur.

Worst Case: The usual measure is to consider the instance of size n on which the
given algorithm is the slowest, namely, T(n) = maxI∈{I | |I |=n} Time(I ). This mea-
sure provides a nice clean mathematical definition and is the easiest to analyze.
The only problem is that sometimes the algorithm does much better than the
worst case, because the worst case is not a reasonable input. One such algorithm
is quick sort (see Section 9.1).

Time Complexity of a Problem: The time complexity of a problem is the running
time of the fastest algorithm that solves the problem.
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EXAMPLE 23.1 Polynomial Time vs Exponential Time

Suppose program P1 requires T1(n) = n4 operations and P2 requires T2(n) = 2n. Sup-
pose that your machine executes 106 operations per second. If n = 1,000, what is the
running time of these programs?

Answer:

1. T1(n) = (1,000)4 = 1012 operations, requiring 106 seconds, or 11.6 days.

2. T2(n) = 2(103) operations. The number of years is 2(103)

106×60×60×24×365
. This is too big

for my calculator. The log of this number is 103 × log10(2) − log10 106 − log10(60 ×
60 × 24 × 365) = 301.03 − 6 − 7.50 = 287.53. Therefore, the number of years is
10287.53 = 3.40 × 10287. Don’t wait for it.

EXAMPLE 23.2 Instance Size N vs Instance Value N

Two simple algorithms, summation and factoring.

The Problems and Algorithms:

Summation: The task is to sum the N entries of an array, that is, A (1) + A (2) +
A (3) + · · · + A (N).

Factoring: The task is to find divisors of an integer N. For example, on input N =
5917 we output that N = 97 × 61. (This problem is central to cryptography.) The
algorithm checks whether N is divisible by 2, by 3, by 4, . . . by N.

Time: Both algorithms require T = N operations (additions or divisions).

How Hard? The summation algorithm is considered to be very fast, while the factoring
algorithm is considered to be very time-consuming. However, both algorithms take
T = N time to complete. The time complexity of these algorithms will explain why.

Typical Values of N: In practice, the N for factoring is much larger than that for sum-
mation. Even if you sum all the entries on the entire 8-G byte hard drive, then N is
still only N ≈ 1010. On the other hand, the military wants to factor integers N ≈ 10100.
However, the measure of complexity of an algorithm should not be based on how it
happens to be used in practice.

Size of the Input: The input for summation contains is n ≈ 32N bits. The input for
factoring contains is n = log2 N bits. Therefore, with a few hundred bits you can write
down a difficult factoring instance that is seemingly impossible to solve.

Time Complexity: The running time of summation is T(n) = N = 1
32 n, which is linear

in its input size. The running time of factoring is T(N) = N = 2n, which is exponential
in its input size. This is why the summation algorithm is considered to be feasible, while
the factoring algorithm is considered to be infeasible.
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EXERCISE 23.1.1 (See solution in Part Five.) For each of the two programs considered
in Example 23.1, if you want it to complete in 24 hours, how big can your input be?

EXERCISE 23.1.2 In Example 23.1, for which input size, approximately, do the pro-
grams have the same running times?

EXERCISE 23.1.3 This problem compares the running times of the following two al-
gorithms for multiplying:

algorithm KindergartenAdd(a , b)

〈 pre-cond〉: a and b are integers.
〈 post-cond〉: Outputs a × b.

begin
c = 0
loop i = 1 . . .a

c = c + b
end loop
return(c)

end algorithm

algorithm GradeSchoolAdd(a , b)

〈 pre-cond〉: a and b are integers.
〈 post-cond〉: Outputs a × b.

begin
Let as−1 . . .a3a2a1a0 be the decimal digits of a, so that a = ∑s−1

i=0 ai × 10i .
Let bt−1 . . .b3b2b1b0 be the decimal digits of b, so that b = ∑t−1

j=0 b j × 10 j .
c = 0
loop i = 1 . . . s

loop j = 1 . . . t
c = c + aib j × 10i+ j .

end loop
end loop
return(c)

end algorithm

For each of these algorithms, answer the following questions.

1. Suppose that each addition to c requires time 10 seconds and every other operation
(for example, multiplying two single digits such as 9 × 8 and shifting by zero) is
free. What is the running time of each of these algorithms, either as a function of
a and b or as a function of s and t? Give everything for this entire question exactly,
i.e., not BigOh.



Time Complexity

371

2. Let a = 9,168,391 and b = 502. (Without handing it in, trace the algorithm.) With
10 seconds per addition, how much time (seconds, minutes, etc.) does the compu-
tation require?

3. The formal size of an input instance is the number n of bits needed to write it down.
What is n as a function of our instance 〈a , b〉?

4. Suppose your job is to choose the worst case instance 〈a , b〉 (i.e., the one that max-
imizes the running time), but you are limited in that you can only use n bits to
represent your instance. Do you set a big and b small, a small and b big, or a and
b the same size? Give the worst case a and b, or s and t , as a function of n.

5. The running time of an algorithm is formally defined to be a function T(n) from n
to the time required for the computation on the worst case instance of size n. Give
T(n) for each of these algorithms. Is this polynomial time?

EXERCISE 23.1.4 (See solution in Part Five.) Suppose that someone has developed an
algorithm to solve a certain problem, which runs in time T(n, k) ∈ �(f (n, k)), where
n is the size of the input, and k is a parameter we are free to choose (we can choose it
to depend on n). In each case determine the value of the parameter k(n) to achieve the
(asymptotically) best running time. Justify your answer. I recommend not trying much
fancy math. Think of n as being some big fixed number. Try some value of k, say k = 1,
k = na , or k = 2an for some constant a. Then note whether increasing or decreasing
k increases or decreases f . Recall that “asymptotically” means that we only need the
minimum to within a multiplicative constant.

1. You might want to first prove that g + h = �(max(g, h)).

2. f (n, k) = n+k
log k . This is needed for the radix–counting sort in Section 5.4.

3. f (n, k) = n3

k + k · n.

4. f (n, k) = log3 k + 2n

k .

5. f (n, k) = 8nn2

k + k · 2n + k2.

23.2 The Time Complexity of a Computational Problem

The Formal Definition of the Time Complexity of a Problem: As said, the time
complexity of a problem is the running time of the fastest algorithm that solves the
problem. We will now define this more carefully, using the existential and universal
quantifiers that were defined in Chapter 22.

The Time Complexity of a Problem: The time complexity of a computational
problem P is the minimum time needed by an algorithm to solve it.

Upper Bound: Problem P is said to be computable in time Tupper (n) if there is
an algorithm A that outputs the correct answer, namely A (I ) = P(I ), within
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the bounded time, namely Time(A , I ) ≤ Tupper (|I |), on every input instance
I . The formal statement is

∃A , ∀I, [A (I ) = P(I ) and Time(A , I ) ≤ Tupper(|I |)]

Tupper(n) is said to be only an upper bound on the complexity of the problem
P, because there may be another algorithm that runs faster. For example,
P = Sorting is computable in Tupper(n) = O(n2) time. It is also computable
in Tupper(n) = O(n log n).

Lower Bound of a Problem: A lower bound on the time needed to solve a
problem states that no matter how smart you are, you cannot solve the prob-
lem faster than the stated time Tlower(n), because such algorithm simply does
not exist. There may be algorithms that give the correct answer or run suffi-
ciently quickly on some input instances. But for every algorithm, there is at
least one instance I for which either the algorithm gives the wrong answer,
i.e., A (I ) 
= P(I ), or it takes too much time, i.e., Time(A , I ) ≥ Tlower(|I |). The
formal statement is the negation (except for ≥ vs >) of that for the upper
bound:

∀A , ∃I, [A (I ) 
= P(I ) or Time(A , I ) ≥ Tlower(|I |)]

For example, it should be clear that no algorithm can sort n values in only
Tlower = √

n time, because in that much time the algorithm could not even
look at all the values.

Proofs Using the Prover–Adversary Game: Recall the technique described in
Chapter 22 for proving statements with existential and universal quantifiers.

Upper Bound: We can use the prover–adversary game to prove the upper
bound statement ∃A , ∀I, [A (I ) = P(I ) and Time(A , I ) ≤ Tupper(|I |)] as fol-
lows: You, the prover, provide the algorithm A . Then the adversary provides
an input I . Then you must prove that your A on input I gives the correct out-
put in the allotted time. Note this is what we have been doing throughout the
book: providing algorithms and proving that they work.

Lower Bound: A proof of the lower bound ∀A , ∃I, [A (I ) 
= P(I ) or Time
(A , I ) ≥ Tlower(|I |)] consists of a strategy that, when given an algorithm A by
an adversary, you, the prover, study his algorithm and provide an input I .
Then you prove either that his A on input I gives the wrong output or that it
runs in more than the allotted time.

EXERCISE 23.2.1 (See solution in Part Five.) Let Wor ks(P, A , I ) to true if algorithm
A halts and correctly solves problem P on input instance I . Let P = Halting be the
halting problem that takes a Java program I as input and tells you whether or not it
halts on the empty string. Let P = Sorting be the sorting problem that takes a list of
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numbers I as input and sorts them. For each part, explain the meaning of what you
are doing and why you don’t do it another way.

1. Recall that a problem is computable if and only if there is an algorithm that halts
and returns the correct solution on every valid input. Express in first-order logic
that Sorting is computable.

2. Express in first-order logic that Halting is not computable.
3. Express in first-order logic that there are uncomputable problems.
4. Explain what the following means (not simply by saying the same in words), and

either prove or disprove it: ∀I, ∃A , Works(Halting, A , I ).
5. Explain what the following means, and either prove or disprove it: ∀A , ∃P, ∀I,

Works(P, A , I ). (Hint: An algorithm A on an input I can either halt and give the
correct answer, halt and give the wrong answer, or run forever.)
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Logarithms log2(n ) and exponentials 2n arise often when analyzing algorithms.

Uses: These are some of the places that you will see them.

Divide a Logarithmic Number of Times: Many algorithms repeatedly cut the in-
put instance in half. A classic example is binary search (Section 1.4): You take
something of size n and you cut it in half, then you cut one of these halves in
half, and one of these in half, and so on. Even for a very large initial object, it
does not take very long until you get a piece of size below 1. The number of divi-
sions required is about log2(n ). Here the base 2 is because you are cutting them
in half. If you were to cut them into thirds, then the number of times to cut would
be about log3(n ).

A Logarithmic Number of Digits: Logarithms are also useful because writing
down a given integer value n requires �log10(n + 1)� decimal digits. For example,
suppose that n = 1,000,000 = 106. You would have to divide this number by 10 six
times to get to 1. Hence, by definition, log10(n ) = 6. This, however, is the num-
ber of zeros, not the number of digits. We forgot the leading digit 1. The formula
�log10(n + 1)� = 7 does the trick. For the value n = 6,372,845, the number of dig-
its is given by log10(6,372,846) = 6.804333, rounded up to 7. Being in computer
science, we store our values using bits. Similar arguments give that �log2(n + 1)�
is the number of bits needed.

Height and Size of Binary Tree: A complete balanced binary tree of height h has
2h leaves and n = 2h+1 − 1 nodes. Conversely, if it has n nodes, then its height is
h ≈ log2 n.

Exponential Search: Suppose a solution to your problem is represented by n dig-
its. There are 10n such strings of n digits. Doing a blind search through them all
would take too much time.
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Rules: There are lots of rules about logs and exponentials that one might learn. Per-
sonally, I like to confine them to the following:

bn =
n︷ ︸︸ ︷

b× b× b× · · · × b: This is the definition of exponentiation. bn is n b’s mul-
tiplied together.

bn × bm = bn+m : This is proved simply by counting the number of b’s being
multiplied:

(

n︷ ︸︸ ︷
b × b × b × · · · × b) × (

m︷ ︸︸ ︷
b × b × b × · · · × b) =

n+m︷ ︸︸ ︷
b × b × b × · · · × b .

b0 = 1: One might guess that zero b’s multiplied together is zero, but it needs to
be one. One argument for this is as follows. bn = b0+n = b0 × bn. For this to be
true, b0 must be one.

b
1
2 = √

n : By definition,
√

n is the positive number that when multiplied by itself
gives n. b

1
2 meets this definition because b

1
2 × b

1
2 = b

1
2 + 1

2 = b1 = b.

b−n = 1/bn : The fact that this needs to be true can be argued in a similar way.
1 = bn+(−n ) = bn × b−n. For this to be true, b−n must be 1/bn.

(bn)m = bn×m : Again we count the number of b’s:
m︷ ︸︸ ︷

(

n︷ ︸︸ ︷
b × b × b × · · · × b) × (

n︷ ︸︸ ︷
b × b × b × · · · × b) × · · · × (

n︷ ︸︸ ︷
b × b × b × · · · × b)

=
n×m︷ ︸︸ ︷

b × b × b × · · · × b .

If x = logb(n) then n = b x: This is the definition of logarithms.

logb(1) = 0: This follows from b0 = 1.

logb(b x) = x and blogb(n) = n : Substituting n = bx into x = logb(n ) gives the first,
and substituting x = logb(n ) into n = bx gives the second.

logb(n × m) = logb(n) + logb(m): The number of digits to write down the prod-
uct of two integers is the number to write down each of them separately (up
to rounding errors). We prove it by applying the definition of logarithms and
the above rules: blogb (n×m ) = n × m = blogb (n ) × blogb (m ) = blogb (n )+logb (m ). It follows
that logb(n × m) = logb(n ) + logb(m).

logb(nd) = d × logb(n): This is an extension of the above rule.

logb(n) − logb(m) = logb(n) + logb( 1
m) = logb( n

m): This is another extension of the
above rule.

d c log2(n) = nc log2(d): This rule states that you can move things between the base
and the exponent as long as you insert or remove a log. The proof is as follows.
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dc log2(n ) = (2log2(d))c log2(n ) = 2log2(d)×c log2(n ) = 2log2(n )×c log2(d) = (2log2(n ))c log2(d) =
nc log2(d).

log2(n) = 3.32 . . . × log10(n): The number of bits needed to express the integer n
is 3.32. . . times the number of decimal digits needed. This can be seen as follows.
Suppose x = log2 n. Then n = 2x , giving log10 n = log10(2x ) = x · log10 2. Finally,

x = 1
log10 2

log10(n ) = 3.32 . . . log10 n

Which Base: We will write �(log(n )) without giving an explicit base. A high school
student might use base 10 as the default, a scientist base e = 2.718 . . . , and a com-
puter scientist base 2. My policy is to exclude the base when it does not matter. As
seen above, log10(n ), log2(n ), and loge(n ) differ only by multiplicative constants. In
general, we ignore multiplicative constants, and hence the base used is irrelevant. I
only include the base when the base matters. For example, 2n and 10n differ by much
more than a multiplicative constant.

The Ratio log a
log b: When computing the ratio between two logarithms, the base used

does not matter, because changing the base will introduce the same constant on both
the top and the bottom, which will cancel. Hence, when computing such a ratio, you
can choose whichever base makes the calculation the easiest. For example, to comp-
ute log 16

log 8 , the obvious base to use is 2, because log2 16
log2 8 = 4

3 . On the other hand, to com-

pute log 9
log 27 , the obvious base to use is 3, because log3 9

log3 27 = 2
3 .

EXERCISE 24.0.1 (See solution in Part Five.) Simplify the following exponentials: a 3 ×
a 5, 3a × 5a , 3a + 5a , 26 log4 n+7, n3/ log2 n.
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Classes of Growth Rates: It is important to be able to classify functions f (n ) based
on how quickly they grow: The following table outlines the few easy rules with which
to classify functions with the basic form f (n) = �(ban · nd · logen).

c ba d e Class � Examples

> 0 > 1 Any Any Exponentials 2�(n ) 2n, 30.001n

n100

= 1 > 0 Any Polynomials: n�(1) n4, 5n0.0001

log100(n )

= 2 Any � Quadratic �(n2) 5n2, 2n2 + 7n + 8

= 1 = 1 � Sorting time �(n log n ) 5n log n + 3n

= 1 = 0 � Linear �(n ) 5n + 3

= 0 > 0 Polylogarithms: log�(1)(n ) 5 log3(n )

= 1 � Logarithms �(log n ) 5 log(n )

= 0 Constants �(1) 5, 5 + sin n

< 0 Any Decreasing polynomials 1
n�(1)

1
n4 , 5 log100(n )

n0.0001

< 1 Any Any Decreasing exponentials 1
2�(1)

1
2n , n100

30.001n

Asymptotic Notation: When we want to bound the growth of a function while
ignoring multiplicative constants, we use the following notation:

Name Standard Notation My Notation Meaning

Theta f (n ) = �(g(n )) f (n ) ∈ �(g(n )) f (n ) ≈ c · g(n )
BigOh f (n ) = O(g(n )) f (n ) ≤ O(g(n )) f (n ) ≤ c · g(n )
Omega f (n ) = �(g(n )) f (n ) ≥ �(g(n )) f (n ) ≥ c · g(n )
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Purpose:

Time Complexity: Generally, the functions that we will be classifying will be the
time or space complexities of programs. On the other hand, these ideas can also
be used to classify any function.

Function Growth: The purpose of classifying a function is to give an idea of how
fast it grows without going into too much detail.

Asymptotic Growth Rate: When classifying animals, Darwin decided not to con-
sider whether the animal sleeps during the day, but to consider whether it has hair.
When classifying functions, complexity theorists decided to not consider its behav-
ior for small values of n or even whether it is monotone increasing, but how quickly
it grows when its input n grows really big. This is referred to as the asymptotics of the
function. Here are some examples of different growth rates:

Approximate value of T (n) for n =
Function
T (n) 10 100 1,000 10,000 Animal

5 5 5 5 5 Virus
log2 n 3 6 9 13 Amoeba√

n 3 10 31 100 Bird
n 10 100 1,000 10,000 Human
n log n 30 600 9,000 130,000 Giant
n2 100 10,000 106 108 Elephant
n3 1,000 106 109 1012 Dinosaur
2n 1,024 1030 10300 103000 The universe

Note: The universe contains approximately 1080 particles.

Exponential vs Polynomial: The table shows that an exponential function like
f (n ) = 2n grows extremely quickly. In fact, for sufficiently big n, this exponential
2n grows much faster than any polynomial, even n1,000,000. To take this to an ex-
treme, the function f (n ) = 20.001n is also an exponential. It too grows much faster
than n1,000,000 for sufficiently large n.

Polynomial vs Logarithmic: The table also shows that a logarithmic function like
f (n ) = log2 n grows, but very slowly. Hence, for sufficiently large n, it is bigger
than any constant, but smaller than any polynomial.

EXERCISE 25.0.1 Give a value of n for which n1,000,000 < 10n.
Give a value of n for which n1,000 < 100.001n.

EXERCISE 25.0.2 Give a value of n for which (log10 n )1,000,000 < n.
Give a value of n for which (log10 n )1,000 < n0.001.
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25.1 Steps to Classify a Function

Given a function f (n ), we will classify it according to its growth using the following
steps.

1) Put f (n) into Basic Form: Though there are strange functions out there, most
functions f (n ) can be put into a basic form consisting of the sum of a number of
terms, where each term has the basic form c · ban · nd · (log n )e, where a , b, c, d, and e
are real constants.

Examples:
� If f (n ) = 3 · 24n · n7 · (log n )5, then a = 4, b = 2, c = 3, d = 7, and e = 5.
� Suppose f (n ) = n2. This has no exponential part ban, but can be viewed as

having a = 0, or b = 1, or ab = 1. (Recall x0 = 1 and 1x = 1.) The exponent
on the polynomial n is d = 2. There is no logarithmic factor, so we have e = 0.
Finally, the constant in front is c = 1.

� In f (n ) = 1/n6 = n−6, it is also useful to see that d = −6.
� If f (n ) = n2/ log n + 5, then the function has two terms. In the first, ab = 1,

c = 1, d = 2, and e = −1. In the second, ab = 1, c = 5, d = 0, and e = 0.

2) Get the Big-Picture Growth: We classify the set of all vertebrate animals into
mammals, birds, reptiles, and so on. Similarly, we will classify functions into the ma-
jor groups exponentials 2�(n ), polynomials n�(1), polylogarithms log�(1)(n ), and con-
stants �(1).

Exponentials 2�(n): If the function f (n ) is the sum of a bunch of things, one of
which is c · ban · nd · (log n )e, where ba > 1, then f (n ) is considered to be an ex-
ponential.

Examples Included:
� f (n ) = 2n and f (n ) = 35n

� f (n ) = 2n · n2 log2 n − 7n8 and f (n ) = 2n

n2

Examples Not Included:
� f (n ) = 1n = 20·n = 1, f (n ) = 2−1·n = (

1
2

)n
, and f (n ) = n1,000,000 (too

small)
� f (n ) = n! ≈ nn = 2n log2 n and f (n ) = 2n2

(too big)

Definition of an Infeasible Algorithm: An algorithm is considered to be in-
feasible if it runs in exponential time. This is because such functions grow
extremely quickly as n gets larger.

(ba)n: We require b a > 1 because ban = (ba )n, which grows as long as the
base ba is at least one.

The Notation 2�(n): We will see later that �(1) denotes any constant greater
than zero. The notation 2�(n ) = 2�(1)·n is used to represent the class of
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exponentials, because ban = 2(a log2 b)·n and the constant a log2 b = log2(ba ) is
greater than zero as long as ba is greater than 1. Recall log2 1 = 0.

Bounded Between: By these rules, f (n ) = c · ban · nd · (log n )e is exponential
if ba > 1, no matter what the constants c, d, e, and f are. Consider f (n ) =
2n/n100. The rule states that it is an exponential because ba = 21 > 1 and d =
−100. We might question this, thinking that dividing by n100 would not let it
grow faster enough to be considered to be an exponential. We see that it does
grow fast enough by proving that it is bounded between the two exponential
functions 20.5n and 2n.

Polynomial n�(1): If f (n ) = c · ban · nd · (log n )e is such that ba = 1, then we can
ignore ban, giving f (n ) = c · nd · (log n )e. If d > 0, then the function f (n ) is con-
sidered to be a polynomial.

Examples Included:
� f (n ) = 3n2 and f (n ) = 7n2 − 8n log n + 2n − 17
� f (n ) = √

n = n1/2 and f (n ) = n3.1

� f (n ) = n2 log2 n and f (n ) = n2

log2 n

� f (n ) = 7n3 log7 n − 8n2 log n + 2n − 17

Examples Not Included:
� f (n ) = n0 = 1, f (n ) = n−1 = 1

n , and f (n ) = log n (too small)
� f (n ) = nlog n and f (n ) = 2n (too big)

Definition of a Feasible Algorithm: An algorithm is considered to be feasible
if it runs in polynomial time. (This is not actually true if f (n ) = n1,000,000.)

The Notation n�(1): �(1) denotes any constant greater than zero, and hence
n�(1) represents any function f (n ) = nd where d > 0.

Bounded Between: Though it would not be considered one in a mathemat-
ical study of polynomials, we also consider f (n ) = 3n2 log n to be a poly-
nomial, because it is bounded between n2 and n3, which clearly are poly-
nomials.

Polylogarithms log�(1)(n): Powers of logs like (log n)3 are referred to as poly-
logarithms. These are often written as log3 n = (log n)3. This is different than
log(n3) = 3 log n.

Example Included:
� f (n ) = 7(log2 n )5, f (n ) = 7 log2 n, and f (n ) = 7

√
log2 n

� f (n ) = 7(log2 n )5 + 6(log2 n )3 − 19 + 7(log2 n )2/n
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Example Not Included:
� f (n ) = n (too big)

Constants �(1): A constant function is one whose output does not depend on
its input, for example, f (n ) = 7. One algorithm for which this function arises is
popping an element off a stack that is stored as a linked list. This takes maybe
seven operations, independent of the number n of elements in the stack.

The Notation n�(1): We use the notation �(1) to replace any constant when
we do not care what the actual constant is because determining whether it
is 7, 9, or 8.829 may be more work and more detail than we need. On the
other hand, in most applications being negative [ f (n ) = −1] or zero [f (n ) =
0] would be quite a different matter. Hence, these are excluded.

Bounded Between: A function like f (n ) = 8 + sin n changes continuously
between 7 and 9, and f (n ) = 8 + 1

n changes continuously on approaching
8. However, if we don’t care whether it is 7, 9, or 8.829, why should we care if
it is changing between them? Hence, both of these functions are included in
�(1). On the other hand, the function f (n ) = 1

n is not included, because the
only constant that it is bounded below by is zero and the zero function is not
included.

Examples Included:
� f (n ) = 7 and f (n ) = 8.829
� f (n ) = 8 + sin n, f (n ) = 8 + 1

n

Examples Not Included:
� f (n ) = −1 and f (n ) = 0 (fails c > 0)
� f (n ) = sin n (fails c > 0)
� f (n ) = 1

n (too small)
� f (n ) = log2 n (too big)

3) Determine �( f (n)): We further classify mammals into humans, cats, dogs, and so
on. Similarly, we further classify the polynomials n�(1) into linear functions �(n ), the
time for sorting �(n log n ), quadratics �(n2), and so on. These are classes that ignore
the multiplicative constant.

Steps: One “takes the Theta” of a function f (n ) by dropping the low-order terms
and then dropping the multiplicative constant c in front of the largest term.

Dropping Low-Order Terms: If f (n ) is a set of things added or subtracted to-
gether, then each of these things is called a term. We determine which of the
terms grows fastest as n gets large. The slower-growing terms are referred to
as low-order terms. We drop them because they are not significant.
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Ordering Terms: The fastest-growing term is determined by first taking
the term c · ban · nd · (log n )e with the largest ba value. If the ba ’s of terms
are equal, then we take the term with the largest d value. If the d’s are
also equal, then we take the term with the largest e value.

Dropping the Multiplicative Constant: The running time of an algorithm
might be f (n ) = 3n2 or f (n ) = 100n2. We say it is �(n2) when we do not
care what the multiplicative constant c is. The function f (n ) = c · ban · nd ·
(log n )e is in the class of functions denoted �(ban · nd · (log n )e).

Examples of Functions:
� f (n ) = 3n3 log n − 1000n2 + n − 29 is in the class �(n3 log n).
� f (n ) = 7 · 4n · n2/ log3 n + 8 · 2n + 17 · n2 + 1000 · n is in the class �(4n · n2/

log3 n ).
� 1

n + 18 is in the class �(1). Since 1
n is a lower-order term than 18, it is dropped.

� 1
n2 + 1

n is in the class �( 1
n ), because 1

n2 is a smaller term.

Examples of Classes:

Linear Functions �(n): The classic linear function is f (n ) = c · n + b. The
notation �(n ) excludes any with c ≤ 0 but includes any function that is
bounded between two such functions.

What Can Be Done in �(n) Time: Given an input of n items, it takes �(n )
time simply to look at the input. Looping over the items and doing a
constant amount of work for each takes another �(n ) time. Say we take
t1(n ) = 2n and t2(n ) = 4n for a total of 6n time. Now if you do not want
to do more than linear time, are you allowed to do any more work? Sure.
You can do something that takes t3(n ) = 3n time and something else that
takes t4(n ) = 5n time. You are even allowed to do a few things that take
a constant amount of time, totaling say t5(n ) = 13. The entire algorithm
then takes the sum of these, t (n ) = 14n + 13 time. This is still considered
to be linear time.

Examples Included:
� f (n ) = 7n and f (n ) = 8.829n
� f (n ) = (8 + sin n )n and f (n ) = 8n + log10 n + 1

n − 1,000,000

Examples Not Included:
� f (n ) = −n and f (n ) = 0n (fails c > 0)
� f (n ) = n

log2 n (too small)
� f (n ) = n log2 n (too big)

Quadratic Functions �(n2): Two nested loops from 1 to n take �(n2) time if
each inner iteration takes a constant amount of time. An n × n matrix re-
quires �(n2) space if each element takes constant space.
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Time for Sorting, �(n log n): Another running time that arises often in algo-
rithms is �(n log n ). For example, this is the number of comparisons needed
to sort n elements.

Not Linear: The function f (n ) = n log n grows slightly too quickly to be
in the linear class of functions �(n ). This is because n log n is log n times
n, and log n is not constant.

A Polynomial: The classes �(n ), �(n log n ), and �(n2) are subclasses of
the class of polynomial functions n�(1). For example, though the func-
tion f (n ) = n log n is too big for �(n ) and too small �(n2), it is in n�(1)

because it is bounded between n1 and n2, both of which are in n�(1).

Logarithms �(log(n)): See Chapter 24 for how logarithmic functions like
log2(n ) arise and for some of their rules.

Which Base: We write �(log(n )) without giving an explicit base. As
shown in the list of rules about logarithms, log10(n ), log2(n ), and loge(n )
differ only by a multiplicative constant. Because we are ignoring mul-
tiplicative constants anyway, which base is used is irrelevant. The rules
also indicate that 8 log2(n5) also differs only by a multiplicative constant.
All of these functions are include in �(log(n )).

EXERCISE 25.1.1 Which grows faster, 34n or 43n?

EXERCISE 25.1.2 Does the notation (�(1))n mean the same thing as 2θ(n )?

EXERCISE 25.1.3 Prove that 20.5n ≤ 2n/n100 ≤ 2n for sufficiently big n.

EXERCISE 25.1.4 (See solution in Part Five.) Prove that n2 ≤ 3n2 log n ≤ n3 for suffi-
ciently big n.

EXERCISE 25.1.5 (See solution in Part Five.) Sort the terms in f (n ) = 100n100 + 34n +
log1,000 n + 43n + 20.001n/n100.

EXERCISE 25.1.6 For each of the following functions, sort its terms by growth rate.
Get the big picture growth by classifying it into 2�(n ), n�(1), log�(1)(n ), �(1) or into a
similar and appropriate class. Also give its Theta approximation.

1. f (n ) = 5n3 − 17n2 + 4
2. f (n ) = 5n3 log n + 8n3

3. f (n ) = 225n

4. f (n ) = 73 log2 n

5. f (n ) = { 1 if n is odd, 2 if n is even }
6. f (n ) = 2 · 2n · n2 log2 n − 7n8 + 7 3n

n2
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7. f (n ) = 100n100 + 34n + log1,000(n ) + 43n

8. f (n ) = 6 n4

log3 n
+ 8n1002−5n + 17

9. f (n ) = 1
n2 + 5 log n

n

10. f (n ) = 7 5
√

n + 6 3
√

n

11. f (n ) = 6n5.2+7n7.5

2n3.1+7n2.4

12. f (n ) = −2n
13. f (n ) = 5nlog3 n

EXERCISE 25.1.7 For each pair of classes of functions, how are they similar? How are
they different? If possible, give a function that is included in the first of these but not
included in the second. If possible, do the reverse, giving a function that is included in
the second but not in the first.

1. �(22n) and �(23n)
2. �(2n ) and 3�(n )

25.2 More about Asymptotic Notation

Other Useful Notations:

Name Standard Notation My Notation Meaning

Theta f (n ) = �(g(n )) f (n ) ∈ �(g(n )) f (n ) ≈ c · g(n )
BigOh f (n ) = O(g(n )) f (n ) ≤ O(g(n )) f (n ) ≤ c · g(n )
Omega f (n ) = �(g(n )) f (n ) ≥ �(g(n )) f (n ) ≥ c · g(n )
Little Oh f (n ) = o(g(n )) f (n ) << o(g(n )) f (n ) << g(n )
Little Omega f (n ) = ω(g(n )) f (n ) >> ω(g(n )) f (n ) >> g(n )
Tilde f (n ) = ~

�(g(n )) f (n ) ∈ ~
�(g(n )) f (n ) ≈ log�(1) ·g(n )

Same: 7 · n3 is within a constant of n3. Hence, it is in �(n3), O(n3), and �(n3).
However, because it is not much smaller than n3, it is not in o(n3), and because it
is not much bigger, it not in ω(n3).

Smaller: 7 · n3 is asymptotically much smaller than n4. Hence, it is in O(n4) and
in o(n4), but it is not in �(n4), �(n4), or ω(n4).

Bigger: 7 · n3 is asymptotically much bigger than n2. Hence, it is in �(n2) and in
ω(n2), but it is not in �(n2), O(n2), or o(n2).

Log Factors: 7n3 log2 n = ~
�(n3) ignores the logarithmic factors.

Notation Considerations:

“∈” vs “=”: I consider �(n ) to be a class of functions, so I ought to use the set
notation, f (n ) ∈ �(g(n )), to denote membership.
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On the other hand, ignoring constant multiplicative factors, f (n ) has the
same asymptotic growth as g(n ). Because of this, the notation 7n = �(n ) makes
sense. This notation is standard.

Even the statements 3n2 + 5n − 7 = n�(1) and 23n = 2�(n ) make better sense
when you think of the symbol � to mean “some constant.” However, be sure to
remember that 4n · n2 = 2�(n ) is also true.

“=” vs “≤”: 7n = O(n2) is also standard notation. This makes less sense to me.
Because it means that 7n is at most some constant times n2, a better notation
would be 7n ≤ O(n2). The standard notation is even more awkward, because
O(n ) = O(n2) should be true, but O(n2) = O(n ) should be false. What sense does
that make?

More Details: You can decide how much information about a function you want to
reveal. If f (n ) = 5n2 + 3n, you could say

� f (n ) ∈ n�(1), i.e., a polynomial
� f (n ) ∈ �(n2), i.e., a quadratic
� f (n ) ∈ (5 + o(1))n2 = 5n2 + o(n2), i.e., 5n2 plus some low-order terms.
� f (n ) ∈ 5n2 + O(n ), i.e., 52 plus at most some linear terms.

The Formal Definitions of Theta and BigOh:

f (n ) ∈ �(g(n )) iff ∃c1, c2 > 0 ∃n0 ∀n ≥ n0, c1 · g(n ) ≤ f (n ) ≤ c2 · g(n )
f (n ) ∈ O(g(n )) iff ∃c > 0 ∃n0 ∀n ≥ n0, 0 ≤ f (n ) ≤ c · g(n )
f (n ) ∈ �(g(n )) iff ∃c > 0 ∃n0 ∀n ≥ n0, c · g(n ) ≤ f (n )
f (n ) ∈ n�(1) iff ∃c1, c2 > 0 ∃n0 ∀n ≥ n0, nc1 ≤ f (n ) ≤ nc2

f (n ) ∈ 2�(n ) iff ∃c1, c2 > 0 ∃n0 ∀n ≥ n0, 2c1n ≤ f (n ) ≤ 2c2n

f (n ) 
∈ �(g(n )) iff ∀c1, c2 > 0 ∀n0 ∃n ≥ n0, [c1 · g(n ) > f (n ) or f (n ) > c2 · g(n )]

Bounded Between: The statement f (n) ∈ �(g(n)) means that the function f (n ) is
bounded between c1 · g(n ) and c2 · g(n ). See Figure 25.1.

Requirements on c1 and c2: The only requirements on the constants are that c1

be sufficiently small (e.g., 0.001) but positive and c2 be sufficiently large (e.g.,
1,000) to work, and that they be fixed (that is, do not depend on n). We allow un-
reasonably extreme values like c2 = 10100, to make the definition mathematically
clean and not geared to a specific application.

Sufficiently Large n: Given fixed c1 and c2, the statement c1g(n ) ≤ f (n ) ≤ c2g(n )
should be true for all sufficiently large values of n, (i.e., ∀n ≥ n0).

Definition of Sufficiently Large n0: Again to make the mathematics clean and
not geared to a specific application, we will simply require that there exist some
definition of sufficiently large n0 that works. Exercise 25.0.2 gives an example in
which n0 needs to be unreasonably large.
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c2

1c

f(n)

c  g(n) 2

c1g(n) 
f(n)

g(n)

Figure 25.1: f (n ) ∈ �(1) and f (n ) ∈ �(g(n )).

Proving f (n) ∈ �(g(n)): Use the prover–adversary game.
� You as the prover provide c1, c2, and n0.
� Some adversary gives you an n that is at least your n0.
� You then prove that c1g(n ) ≤ f (n ) ≤ c2g(n ).

Example: For example, 2n2 + 100n = �(n2). Let c1 = 2, c2 = 3, and n0 = 100.
Then, for all n ≥ 100, we have c1g(n ) = 2n2 ≤ 2n2 + 100n = f (n ) and f (n ) =
2n2 + 100n ≤ 2n2 + n · n = 3n2 = c2g(n ). The values of c1, c2, and n0 are not
unique. For example, n0 = 1, c2 = 102, and n0 = 1 also work, because for all n ≥ 1
we have f (n ) = 2n2 + 100n ≤ 2n2 + 100n2 = 102n2 = c2g(n ).

The Formal Definitions of Little Oh and Little Omega:

Class limn→∞ f (n)
g(n) = A practically equivalent definition

f (n ) = �(g(n )) Some constant f (n ) = O(g(n )) and f (n ) = �(g(n ))
f (n ) = o(g(n )) Zero f (n ) = O(g(n )), but f (n ) 
= �(g(n ))
f (n ) = ω(g(n )) ∞ f (n ) 
= O(g(n )), but f (n ) = �(g(n ))

Examples:
� 2n2 + 100n = �(n2) and limn→∞ 2n2+100n

n2 = 2
� 2n + 100 = o(n2) and limn→∞ 2n+100

n2 = 0
� 2n3 + 100n = ω(n2) and limn→∞ 2n3+100n

n2 = ∞

EXERCISE 25.2.1 As in Exercise 25.1.7, compare the classes (5 + o(1))n2 and 5n2 +
O(n ).

EXERCISE 25.2.2 (See solution in Part Five.) Formally prove or disprove the following:

1. 14n9 + 5,000n7 + 23n2 log n ∈ O(n9)
2. 2n2 − 100n ∈ �(n2)
3. 14n8 − 100n6 ∈ O(n7)
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4. 14n8 + 100n6 ∈ �(n9)
5. 2n+1 ∈ O(2n )
6. 22n ∈ O(2n )

EXERCISE 25.2.3 Prove that if f1(n ) ∈ �(g1(n )) and f2(n ) ∈ �(g2(n )), then f1(n ) +
f2(n ) ∈ max(�(g1(n )), �(g2(n ))).

EXERCISE 25.2.4 Prove that if f1(n ), f2(n ) ∈ n�(1), then f1(n ) · f2(n ) ∈ n�(1).

EXERCISE 25.2.5 Let f (n ) be a function. As you know, �(f (n )) drops low-order terms
and the leading coefficient. Explain what each of the following does: 2�(log2 f (n )) and
log2(�(2f (n ))). For each, explain to what extent the function is approximated.

EXERCISE 25.2.6 Let x be a real value. As you know, �x� rounds it down to the next
integer. Explain what each of the following does: 2 · � x

2 �, 1
2 · �2 · x�, and 2�log2 x�.

EXERCISE 25.2.7 Suppose that y = �(log x). Which of the following are true: x =
�(2y ) and x = 2�(y)? Why?

EXERCISE 25.2.8 (See solution in Part Five.) It is impossible to algebraically solve the
equation x = 7y3(log2 y)18 for y.

1. Approximate 7y3(log2 y)18 and then solve for y. This approximates the value of y.
2. Get a better approximation as follows. Plug in your above approximation for y to

express (log2 y)18 in terms of x. Plug this into x = 7y3(log2 y)18. Now solve for y
again. (You could repeat this step for better and better approximations.)

3. Observe how a similar technique was used in Exercises 25.0.1 and 25.0.2 to ap-
proximate a solution for (log10 n )1,000,000 = n.
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algorithm Eg(n)
loop i = 1..n

loop j = 1..i
loop k = 1.. j

put “Hi”
end loop

end loop
end loop

end algorithm

The inner loop requires time
∑ j

k=1 1 = j .
The next requires

∑i
j=1

∑ j
k=1 1 = ∑i

j=1 j = �(i2).

The total is
∑n

i=1

∑i
j=1

∑ j
k=1 1 = ∑n

i=1 �(i2) = �(n3).

Sums arise often in the study of computer algorithms.
For example, if the ith iteration of a loop takes time
f (i) and it loops n times, then the total time is f (1) +
f (2) + f (3) + · · · + f (n). This we denote as

∑n
i=1 f (i). It

can be approximated by the integral
∫ n

x=1 f (x) δx, be-
cause the first is the area under the stairs of height f (i)
and the second under the curve f (x). (In fact, both

∑
(from the Greek letter sigma) and

∫
(from the old long

S ) are S for sum.) Note that, even though the individual
terms are indexed by i (or x), the total is a function of
n. The goal now is to approximate

∑n
i=1 f (i) for various

functions f (i).

n

f(i)

i
1

f(x)

m

f(n)

Beyond learning the classic techniques for computing
∑n

i=1 2i ,
∑n

i=1 i, and∑n
i=1

1
i , we do not study how to evaluate sums exactly, but only how to approximate

them to within a constant factor. We develop easy rules that most computer scien-
tists use but for some reason are not usually taught, partly because they are not al-
ways true. We have formally proven when they are true and when not. We call them
collectively the adding-made-easy technique.
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26.1 The Technique

The following table outlines the few easy rules with which you will be able to compute
�(

∑n
i=1 f (i)) for functions with the basic form f (n) = �(ban · nd · loge n). (We consider

more general functions at the end of this section.)

b a d e Type of Sum
∑n

i=1 f (i) Examples
> 1 Any Any Geometric Increase

(dominated by
last term)

�(f (n))
∑n

i=0 22i ≈ 1 · 22n∑n
i=0 bi = �(bn)∑n
i=0 2i = �(2n)

= 1 > −1 Any Arithmetic-like
(half of terms
approximately
equal)

�(n · f (n))
∑n

i=1 id = �(n · nd ) = �(nd+1)∑n
i=1 i2 = �(n · n2) = �(n3)∑n
i=1 i = �(n · n) = �(n2)∑n
i=1 1 = �(n · 1) = �(n)∑n
i=1

1
i0.99 = �(n · 1

n0.99 ) = �(n0.01)

= −1 =0 Harmonic �(ln n)
∑n

i=1
1
i = loge(n) + �(1)

< −1 Any Bounded tail
(dominated by
first term)

�(1)
∑n

i=1
1

i1.001 = �(1)∑n
i=1

1
i2 = �(1)

< 1 Any Any
∑n

i=1( 1
2 )i = �(1)∑n

i=0 b−i = �(1)

Four Different Classes of Solutions: All of the sums that we will consider have
one of four different classes of solutions. The intuition for each is quite straightfor-
ward.

Geometrically Increasing: If the terms grow very quickly, the total is dominated
by the last and biggest term f (n). Hence, one can approximate the sum by only
considering the last term:

∑n
i=1 f (i) = �(f (n)).

Examples: Consider the classic sum in which each of the n terms is twice
the previous, 1 + 2 + 4 + 8 + 16 + · · · + 2n. Either by examining areas within
Figure 26.1.a or 26.1.b or using simple induction, one can prove that the total
is always one less than twice the biggest term:

∑n
i=0 2i = 2 × 2n − 1 = �(2n).

More generally,
∑n

i=0 bi ≈ b
b−1 · bn, which can be approximated by �(f (n)) =

�(bn). (Similarly,
∫ n

x=0 bx δx = 1
ln b bn.) The same is true for even fastergrowing

functions like
∑n

i=0 22i ≈ 1 × 22n
.

Basic-Form Exponentials: The same technique,
∑n

i=1 f (i) = �(f (n)), works
for all basic-form exponentials, i.e., for f (n) = �(ban · nd · loge n) with b a >

1, we have that
∑n

i=1 f (i) = �(ban · nd · loge n).



Appendix

390 1
4

16

8

3264

4 2
8

16

32

2

1+2+4+8+16+32+64 = 2×64 –1  
1

64

n+1

n=10
= 2 –1/64 

1+1/2+1/4+1/8+1/16+1/32+1/64

1/32

1/64
1/32

1

1/2

1/4
1/8

1 1/2

1/4

1/8
1/16

1/64

1/16

(a) (b) (c) (d) (e)

Figure 26.1: Examples of geometrically increasing, arithmetic-like, and bounded-tail function.

Arithmetic-like: If half of the terms are roughly the same size, then the total is
roughly the number of terms times the last term, namely

∑n
i=1 f (i) = �(n · f (n)).

Examples:

Constant: Clearly the sum of n ones is n, i.e.,
∑n

i=1 1 = n. This is �(n ·
f (n)).

Linear: The classic example is the sum in which each of the n terms
is only one bigger than the previous,

∑n
i=1 i = 1 + 2 + 3 + 4 + 5 + · · · +

n = n(n+1)
2 . This can be approximated using �(n · f (n)) = �(n2). See Fig-

ure 26.1.

Polynomials: Both
∑n

i=1 i2 = 1
3n3 + 1

2n2 + 1
6n and more gen-

erally
∑n

i=1 id = 1
d+1nd+1 + �(nd ) can be approximated with

�(n · f (n)) = �(n · nd ) = �(nd+1). (Similarly,
∫ n

x=0 xd δx = 1
d+1nd+1.)

Above Harmonic:
∑n

i=1
1

n0.999 ≈ 1,000 n0.001 can be approximated with
�(n · f (n)) = �(n · n−0.999) = �(n0.001).

Basic-Form Polynomials: The same technique,
∑n

i=1 f (i) = �(n · f (n)),
works for all basic-form polynomials, constants, and slowly decreasing
functions, i.e., for f (n) = �(nd · loge n) with d > 1 we have that

∑n
i=1 f (i) =

�(nd+1 · loge n).

Bounded Tail: If the terms shrink quickly, the total is dominated by the first and
biggest term f (1), which is assumed here to be �(1), i.e.,

∑n
i=1 f (i) = �(1).

Examples: The classic sum here is when each term is half of the previ-
ous, 1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · + 1

2n . See Figure 26.1.d and 26.1.e. The total ap-
proaches but never reaches 2, so that

∑n
i=0( 1

2 )i = 2 − ( 1
2 )n = �(1). Similarly,∑n

i=1
1

n1.001 ≈ 1, 000 = �(1) and
∑n

i=1
1

n2 ≈ �
6 ≈ 1.5497 = �(1).

Basic-Form with Bounded Tail: The same technique,
∑n

i=1 f (i) = �(1),
works for all basic-form polynomially or exponentially decreasing func-
tions, i.e., for f (n) = �(ban · nd · loge n) with b a = 1 and d < 1 or with
b a < 1.
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The Harmonic Sum: The sum
∑n

i=1
1
i is referred to as the harmonic sum because

of its connection to music. It arises surprisingly often and it has an unexpected
total:

(1)Σ
f(i) = 1/i1/3

1 = n  Σ

11

f(i) = 1/i

1

f(i) = 1 

1

ΘΘ(n    )  1/i    = 
1/3Σ Θ . 1/i = ln n  +(n f(n))  =

f(i) = 1/2

2

2
1/2    = (1)Σ Θ

2/3

On the Boundary: The boundary between those sums for which
∑n

i=1 f (i) =
�(n · f (n)) and those for which

∑n
i=1 f (i) = �(1) occurs when these approx-

imations meet, i.e., when �(n · f (n)) = �(1). This occurs at the harmonic
function f (n) = 1

n . Given that both approximations say the total is
∑n

i=1
1
i =

�(1), it is reasonable to think that this is the answer, but it is not.

The Total: It turns out that the total is within 1 of the natural logarithm,∑n
i=1

1
i = loge n + �(1). (Similarly,

∫ n+1
x=1

1
x δx = loge n + �(1).) See Figure 26.2.

More Examples:

Geometric Increasing:
�

∑n
i=1 8 2i

i100 + i3 = �( 2n

n100 )
�

∑n
i=1 3i log i + 5i + i100 = �(3n log n)

�
∑n

i=1 2i2 + i2 log i = �(2n2
)

�
∑n

i=1 22i −i2 = �(22n−n2
)

Arithmetic (Increasing):
�

∑n
i=1 i4 + 7i3 + i2 = �(n5)

�
∑n

i=1 i4.3 log3 i + i3 log9 i = �(n5.3 log3 n)

Arithmetic (Decreasing):
�

∑n
i=2

1
log i = �( n

log n )

�
∑n

i=1
log3 i
i0.6 = �(n0.4 log3 n)

Bounded Tail:
�

∑n
i=1

log3 i
i1.6+3i = �(1)

�
∑n

i=1
i100

2i = �(1)
�

∑n
i=1

1
22i = �(1)

Stranger Examples:
� A useful fact is

∑n
i=m f (i) = ∑n

i=1 f (i) − ∑m−1
i=1 f (i). Hence,

∑n
i=m

1
i = �(log n) −

�(log m) = �(log n
m ).
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f(n) is an exponential,

Geometric:

–1n
–1.0001n

–0.9999n

(1.0001)
n

n10,000

Arithmetic:
f(n) is a polynomial or slowly decreasing,

 

(nf(n))Σ f(n) = Θ 

Σ f(n) = (1)Θ

Bounded tail:

f(n) is quickly decreasing,
Θf(n) = Σ (log n)

f(n) = 1/n,
Harmonic:

Σ f(n) = (f(n))Θ

f(n) 

Figure 26.2: Boundaries between geometric, arithmetic, harmonic, and bounded tail.

� If the sum is arithmetic, then the sum is the number of terms times the largest
term. This gives

∑m+n
i=m i2 = �(n · (m + n)2).

� To solve
∑5n2+n

i=1 i3 log i, let N = 5n2 + n denote the number of terms. Then
∑N

i=1

i3 log i = �(N · f (N )) = �(N 4 log N ). Substituting back in for N gives
∑5n2+n

i=1

i3 log i = �((5n2 + n)4 log(5n2 + n)) = �(n8 log n).
� Between terms, i changes, but n does not. Hence, n can be treated like a constant.

For example,
∑n

i=1 i · n · m = nm · ∑n
i=1 i = nm · �(n2) = �(n3m).

� In
∑n

i= n
2

1
i2 , the terms are decreasing fast enough to be bounded by the first term.

Here, however, the first term is not �(1), but is

�

(
1

( n
2 )2

)
= �

(
1

n2

)
� When in doubt, start by determining the first term, the last term, and the num-

ber of terms. In
∑log2 n

i=1 2log2 n−i · i2, the first term is f (1) = 2log n−1 · 12 = �(n), and
the last term is f (log n) = 2log n−log n · (log n)2 = �(log2 n). The terms decrease ge-
ometrically in i. The total is then �(f (1)) = �(n).

�
∑n

i=1

∑n
j=0 i2 j 3 = ∑n

i=1 i2[
∑n

j=0 j 3] = ∑n
i=1 i2�(n4) = �(n4)[

∑n
i=1 i2] =

�(n4)�(n3) = �(n7).

EXERCISE 26.1.1 Give the � approximation of the following sums. Indicate which
rule you use, and show your work.

1.
∑n

i=0 7i3 − 300i2 + 16

2.
∑n

i=0 i8 + 23i

i2

3.
∑n

i=0
1

i1.1
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4.
∑n

i=0
1

i0.9

5.
∑n

i=0 7 i3.72

log2 i
− 300i2 log9 i

6.
∑n

i=1
loge i

i

7.
∑log n

i=1 n · i2

8.
∑n

i=0

∑m
j=0

j
i

9.
∑n

i=1

∑i
j=1 j i

10.
∑n

i=1

∑i2

j=1 ij log(i)

26.2 Some Proofs for the Adding-Made-Easy Technique

This section presents a few of the classic techniques for summing and sketches the
proof of the adding-made-easy technique.

Simple Geometric Sums:

Theorem: When b > 1,
∑n

i=1 bi = �(f (n)) and when b < 1,
∑n

i=1 f (i) = �(1).

Proof:

S = 1 + b + b2 + · · · bn

b · S = b + b2 + b3 + · · · bn+1.

Subtracting those two equations gives

(1 − b) · S = 1 − bn+1

S = 1 − bn+1

1 − b
or

bn+1 − 1
b − 1

= �(max(f (0), f (n)))

Ratio between Terms: To prove that a geometric sum is not more than a constant
times the biggest term, we must compare each term f (i) with this biggest term. One
way to do this is to first compare each consecutive pairs of terms f (i) and f (i + 1).

Theorem: If for all sufficiently large i, the ratio between terms is bounded away
from one, i.e., ∃b > 1, ∃n0, ∀i ≥ n0, f (i + 1)/f (i) ≥ b, then

∑n
i=1 f (i) = �(f (n)).

Conversely, if ∃b < 1, ∃n0, ∀i ≥ n0, f (i+1)
f (i) ≤ b, then

∑n
i=1 f (i) = �(1).

Examples:

Typical: With f (i) = 2i/i, the ratio between consecutive terms is

f (i + 1)
f (i)

= 2i+1

i + 1
· i

2i
= 2 · i

i + 1
= 2 · 1

1 + 1
i

which is at least 1.99 for sufficiently large i. Similarly for any f (n) = �(ban ·
nd · loge n) with b a > 1.
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n

f(i)
i − n0b

f(n )
0

f(n)

n − i
1/b     f(n)

n

= Θ(1)

f(i) = Θ(n0f(n0))  

f(i) = Θ(n0f(n0))  

f(i)
f(n)

Σ
n

(1) f(i)  = Θ
n0 n0

f(n0) 
Θ

1Σ

= Θ(1)
1
n0

n0

n0

Σ
n
n0

Σ

f(n0) 

f(i)  = (f(n)) 

Figure 26.3: In both pictures, the total before n gets sufficiently large is some constant. On
the left, the total for large n is bounded by an growing exponential, and on the right by a
decreasing exponential.

Not Bounded Away: On the other hand, the arithmetic function f (i) = i has
a ratio between the terms of i+1

i = 1 + 1
i . Though this is always bigger than

one, it is not bounded away from one by any constant b > 1.

Proof: If ∀i ≥ n0, f (i + 1)/f (i) ≥ b > 1, then it follows either by unwinding or in-
duction that

f (i) ≤
(

1
b

)1

f (i + 1) ≤
(

1
b

)2

f (i + 2) ≤
(

1
b

)3

f (i + 3) ≤ · · · ≤
(

1
b

)n−i

f (n)

See Figure 26.3. This gives that

n∑
i=1

f (i) =
n0∑

i=1

f (i) +
n∑

i=n0

f (i) ≤ �(1) +
n∑

i=n0

(
1
b

)n−i

f (n) ≤ �(1) + f (n) ·
n∑

j=0

(
1
b

) j

which we have already proved is �(f (n)).

A Simple Arithmetic Sum: We prove as follows that
∑n

i=1 i = �(n · f (n)) = �(n2):

S = 1 + 2 + 3 + · · · + n − 2 + n − 1 + n
S = n + n − 1 + n − 2 + · · · + 3 + 2 + 1

2S = n + 1 + n + 1 + n + 1 + · · · + n + 1 + n + 1 + n + 1
= n · (n + 1)

S = 1
2n · (n + 1)

Arithmetic Sums: We will now justify the intuition that if half of the terms are
roughly the same size, then the total is roughly the number of terms times the last
term, namely

∑n
i=1 f (i) = �(n · f (n)).

Theorem: If for sufficiently large n, the function f (n) is nondecreasing, and
f ( n

2 ) = �(f (n)), then
∑n

i=1 f (i) = �(n · f (n)).
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Examples:

Typical: The function f (n) = nd for d ≥ 0 is non-
decreasing and f ( n

2 ) = (
n
2

)d = 1
2d f (n). Similarly

for f (n) = �(nd · loge n). We consider −1 < d <

0 later.

Without the Property: The function f (n) = 2n

does not have this property, because f ( n
2 ) =

2n/2 = 1
2n/2 f (n).

Proof: Because f (i) is nondecreasing, half of the
terms are at least the middle term f ( n

2 ), and all
of the terms are at most the biggest term f (n). Hence,

f(i)

n/2

f(n/2)

n

f(n)

n
2 · f ( n

2 ) ≤ ∑n
i=1 f (i) ≤ n · f (n). Because f ( n

2 ) = �(f (n)), these bounds match, giv-
ing

∑n
i=1 f (i) = �(n · f (n)).

The Harmonic Sum: The harmonic sum is a famous sum that arises surprisingly
often. The total

∑n
i=1

1
i is within 1 of loge n. However, we will not bound it quite so

closely.

Theorem:
∑n

i=1
1
i = �(log n).

Proof: One way of approximating the harmonic sum is to break it into log2 n
blocks with 2k terms in the kth block, and then to prove that the total for each
block is between 1

2 and 1:

n∑
i=1

1
i

=

≥1· 1
2 = 1

2︷︸︸︷
1
1︸ ︷︷ ︸

≤1·1=1

+

≥2· 1
4 = 1

2︷ ︸︸ ︷
1
2

+ 1
3︸ ︷︷ ︸

≤2· 1
2 =1

+

≥4· 1
8 = 1

2︷ ︸︸ ︷
1
4

+ 1
5

+ 1
6

+ 1
7︸ ︷︷ ︸

≤4· 1
4 =1

+

≥8· 1
16 = 1

2︷ ︸︸ ︷
1
8

+ · · · + 1
15︸ ︷︷ ︸

≤8· 1
8 =1

+ · · ·

From this, it follows that 1
2 · log2 n ≤ ∑n

i=1
1
i ≤ 1 · log2 n.

Close to Harmonic: We will now use a similar technique to prove the remaining two
cases of the adding-made-easy technique.

Theorem:
∑n

i=1 1/id ′
is �(1) if d ′ > 1 and is �(n · f (n)) if d ′ < 1. (Similarly for

f (n) = �(nd · loge n) with d < −1 or > −1.)

Proof: As we did with the harmonic sum, we break the sum
∑n

i=1 f (n) into blocks
where the kth block has the 2k terms

∑2k+1−1
i=2k f (i). Because the terms are decreas-

ing, the total for the block is at most F (k) = 2k · f (2k ). The total overall is then at
most

log2 n∑
k=0

F (k) =
log2 n∑
k=0

2k · f (2k ) =
log2 n∑
k=0

2k

(2k )d ′ =
N∑

k=0

1
2k·(d ′−1)

.
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If d ′ > 1, then this sum is exponentially decreasing and converges to �(1). If d ′ <

1, then this sum is exponentially increasing and diverges to �(F (N )) = �(2log2 n ·
f (n)) = �(n · f (n))).

Functions without the Basic Form: (Warning: This topic may be a little hard.)
Until now we have only considered functions with the basic form f (n) = �(ban · nd ·
loge n). We would like to generalize the adding-made-easy technique as follows:

Geometric
Increasing Arithmetic Harmonic Bounded Tail

If f (n) ≥ 2�(n) f (n) = n�(1)−1 f (n) = �( 1
n ) f (n) ≤ n−1−�(1)

then
∑n

i=1 f (i) = �(f (n))
∑n

i=1 f (i) = �(n · f (n))
∑n

i=1 f (i) = �(log n)
∑n

i=1 f (i) = �(1)

Example: Consider f (n) = n8+ 1
n or f (n) = n− 1

n . They are bounded between nd1

and nd2 for constants d2 ≥ d1 > 0 − 1, and hence for both we have f (n) ∈ n�(1)−1.
Adding made easy then gives that

∑n
i=1 f (i) = �(n · f (n)), so that

∑n
i=1 i8+ 1

i =
�(n9+ 1

n ) and
∑n

i=1 i− 1
i = �(n1− 1

n ).

Counterexample: The goal here is to predict the sum
∑n

i=1 f (i) from the value
of the last term f (n). We are unable to do this if the terms oscillate like those
created with sines, cosines, floors, and ceilings. Exercise 26.2.4 proves that f (n) =
22�log2 n�

and f (n) = 2[ 1
2 cos(π log2 n)+1.5]·n are counterexamples for the geometric case

and that f (n) = 22�log log n�
is one for the arithmetic case.

2
n

2
2n

n/2 n

(Not to scale)

f(n)

n

n

n

f(n)

(Not to scale)
n

Simple Analytical Functions: We can prove that the adding-made-easy technique
works for all functions f (n) that can be expressed with n, real constants, plus, minus,
times, divide, exponentiation, and logarithms. Such functions are said to be simple
analytical.

Proof Sketch: I will only give a sketch of the proof here. For the geometric case,
we must prove that if f (n) is simple analytical and f (n) ≥ 2�(n), then ∃b > 1,
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∃n0, ∀n ≥ n0, f (n + 1)/f (n) ≥ b. From this, the ratio-between-terms theorem
above gives that

∑n
i=1 f (i) = �(f (n)).

Because the function is growing exponentially, we know that generally
it grows at least as fast as fast as bn for some constant b > 1 and hence
f (n + 1)/f (n) ≥ b, or equivalently h(n) = log f (n + 1) − log f (n) − log b > 0 for
an infinite number of values for n.

A deep theorem about simple analytical functions is that they cannot os-
cillate forever and hence can change sign at most a finite number of places. It
follows that there must be a last place n0 at which the sign changes. We can con-
clude that ∀n ≥ n0, h(n) > 0 and hence f (n + 1)/f (n) ≥ b.

The geometrically decreasing case is the same except f (n + 1)/f (n) ≤ b. The
arithmetic case is similar except that it proves that if f (n) is simple analytical and
f (n) = n�(1)−1, then f ( n

2 ) = �(f (n)).

EXERCISE 26.2.1 (See solution in Part Five.) Zeno’s classic paradox is that Achilles is
traveling 1 km/hr and has 1 km to travel. First he must cover half his distance, then half
of his remaining distance, then half of this remaining distance, . . . . He never arrives. By
Bryan Magee states, “People have found it terribly disconcerting. There must be a fault
in the logic, they have said. But no one has yet been fully successful in demonstrating
what it is.” Resolve this ancient paradox by adding up the time required for all steps.

EXERCISE 26.2.2 Prove that if ∃b < 1, ∃n0, ∀i ≥ n0, f (i + 1)/f (i) ≤ b, then∑n
i=n0

f (i) = �(f (n0)) = �(1).

EXERCISE 26.2.3 A seeming paradox is how one could have a vessel that has finite
volume and infinite surface area. This (theoretical) vessel could be filled with a small
amount of paint but require an infinite amount of paint to paint. For h ∈ [1, ∞), its
cross section at h units from its top is a circle with radius r = 1

hc for some constant c.
Integrate (or add up) its cross-sectional circumference to compute its surface area, and
integrate (or add up) its cross-sectional area to compute its volume. Give a value for c
such that its surface area is infinite and its volume is finite.

EXERCISE 26.2.4 (See solution in Part Five.)

1. For f (n) = 22�log2 n�
, prove that f (n) ≥ 2�(n)

2. and that
∑n

i=1 f (i) 
= �(f (n)).
3. For f (n) = 22�log log n�

, prove that f (n) = n�(1)−1

4. and that
∑n

i=1 f (i) 
= �(n · f (n)).
5. Plot f (n) = 2[ 1

2 cos(π log2 n)+1.5]·n, and prove that it is also a counterexample for the
geometric case.
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A wise man told the king to give him one grain of rice one for the first square of a
chessboard and for the each remaining square to give him twice the number for the
previous square. Thirty-two days later, the king realized that there is not enough rice
in all of world to reward him. The number of grains on the nth square is given by the
recurrence relation T(1) = 1 and T(n ) = 2T(n − 1).

The algebraic equation x2 = x + 2 specifies the value of an unknown real that
must be found. The differential equation δf (x)

δx = f (x) specifies functions from reals
to reals that must be found. Similarly, a recurrence relations like T(n ) = 2 × T(n − 1)
specifies functions from integers to reals. One way to solve each of these is to guess a
solution and check to see if it works. Here T(n ) = 2n works, i.e., 2n = 2 × 2n−1. How-
ever, T(n ) = c · 2n also works for each value of c. Making the further requirement that
T(1) = 1 narrows the solution set to only T(n ) = 1

2 · 2n = 2n−1.

27.1 The Technique

Timing of Recursive Programs: Recursive relations are used to determine the
running time of recursive programs. (See Chapter 8.) For example, if a routine, when
given an instance of size n, does f (n ) work itself and then recurses a times on subin-
stances of size n

b , then the running time is T(n ) = a · T
(

n
b

) + f (n ).
See Section 8.6 to learn more about the tree of stack frames. Each stack frame

consists of one execution of the routine on a single instance, ignoring subroutine
calls. The top-level stack frame is called by the user on the required input instance.
It recurses on a number of subinstances, creating the next level of stack frames.
These in turn recurse again until the instance is sufficiently small that the stack
frame returns without recursing. These final stack frames are referred to as base
cases.

Let T(n ) denote the number of “Hi”s that the entire tree of stack frames, given the
following code, prints on an instance of size n. The top level stack frame prints “Hi”
f (n ) times. It then recurses a times on subinstances of size n

b . If T(n ) is the number of
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“Hi”s for instances of size n, then it follows that T
(

n
b

)
is the number for instances of

size n
b . Repeating this a times will take time a · T

(
n
b

)
. It follows that the total number

satisfies the recursive relation T(n ) = a · T
(

n
b

) + f (n ). The goal of this section is to
determine which function T(n ) satisfies this relation.

If instead the routine recurses a times on instances of size n − b, then the related
recurrence relation will be T(n ) = a · T (n − b) + f (n ).

algorithm Eg(In )

〈 pre-cond〉: In is an instance of size n.
〈 post-cond〉: Prints T(n ) “Hi”s.

begin
n = |In|
if( n ≤ 1) then

put “Hi”
else

loop i = 1..f (n )
put “Hi”

end loop
loop i = 1..a

I n
b

= an input of size n
b

Eg(I n
b

)
end loop

end if
end algorithm

When the input has size zero or one, only one “Hi” is printed. In general, we
will assume that recursive programs spend �(1) time for instances of size �(1). We
express this as T(1) = 1, or more generally as T(�(1)) = �(1).

Solving Recurrence Relations: Consider T(n ) = a · T
(

n
b

) + f (n ), where f (n ) =
�(nc · logd n ) or f (n ) = 0.

log a
log b vs c d Dominated by T (n) Example

(
log3 9
log3 3 = 2

)
Solution

< Any Top level �(f (n )) T(n ) = 9 · T
(

n
3

) + n4 �(n4)

= > −1 All levels �(f (n ) log n ) T(n ) = 9 · T
(

n
3

) + n 2 �(n 2 log n )

< −1 Base cases �

(
n

log a
log b

)
T(n ) = 9 · T

(
n
3

) + n 2

log2n
�(n 2)

> Any t (n ) = 9 · T
(

n
3

)
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Consider T(n ) = a · T (n − b) + f (n ), where f (n ) = �(nc · logd n ) or f (n ) = 0.

a f (n) Dominated by T (n) Example Solution
> 1 Any Base cases �(a

n
b ) T(n ) = 9 · T (n − 3) + n4 �(9

n
3 )

= 1 ≥ 1 All levels �(n · f (n )) T(n ) = T (n − 3) + n4 �(n5)

= 0 Base cases �(1) T(n ) = T (n − 3) �(1)

A Growing Number of Subinstances of Shrinking Size: Each instance having a
subinstances means that the number of subinstances grows exponentially by a factor
of a . On the other hand, the sizes of the subinstances shrink exponentially by a factor
of b. The amount of work that the instance must do is the function f of this instance
size. Whether the growing or the shrinking dominates this process depends upon the
relationship between a , b, and f (n ).

Dominated By: When total work T(n ) done in the tree of stack frames is dominated
by the work f (n ) done by the top stack frame, we say that the work is dominated by the
top level of the recursion. The solution in this case will be T(n ) = �(f (n )). Conversely,
we say that it is dominated by the base cases when the total is dominated by the sum
of the work done by the base cases. Because each base case does only a constant
amount of work, the solution will be T(n ) = �(# of base cases), which is �(nlog a/ log b),
�(a

n
b ), or �(1) in the above examples. Finally, if the amounts of work at the different

levels of recursion are sufficiently close to each other, then we say that the total work
is dominated by all the levels and the total is the number of levels times this amount
of work, namely T(n ) = �(log n · f (n )) or �(n · f (n )).

The Ratio log a
log b: See Chapter 24 for a discussion about logarithms. One trick that it

gives us is that when computing the ratio between two logarithms, the base used
does not matter, because changing the base will introduce the same constant both
on the top and the bottom, which will cancel. Hence, when computing such a ratio,
you can choose whichever base makes the calculation the easiest. For example, to
compute log 16

log 8 , the obvious base to use is 2, because log2 16
log2 8 = 4

3 . This is useful in giving

that T(n ) = 16 · T( n
8 ) + f (n ) = �(nlog 16/ log 8) = �(n4/3). On the other hand, to com-

pute log 9
log 27 , the obvious base to use is 3, because log3 9

log3 27 = 2
3 , and hence we have T(n ) =

9 · T( n
27 ) + f (n ) = �(n2/3). Another interesting fact given is that log 1 = 0, which gives

that T(n ) = 1 · T( n
2 ) + f (n ), T(n ) = �(nlog 1/ log 2) = �(n0) = �(1).

EXERCISE 27.1.1 (See solution in Part Five.) Give solutions for the following examples:

1. T(n ) = 2T( n
2 ) + n

2. T(n ) = 2T( n
2 ) + 1

3. T(n ) = 4T( n
2 ) + �( n3

log3 n
)
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4. T(n ) = 32T( n
4 ) + �(log n )

5. T(n ) = 27T( n
3 ) + �(n3 log4 n )

6. T(n ) = 8T( n
4 ) + �(( n

log n )1.5)

7. T(n ) = 4T( n
2 ) + �( n 2

log n )

EXERCISE 27.1.2 Give solutions for the following stranger examples:

1. T(n ) = 4T( n
2 ) + �(n3 log log n )

2. T(n ) = 4T( n
2 ) + �(2n )

3. T(n ) = 4T( n
2 ) + �(log log n )

4. T(n ) = 4T( n
2 − √

n + log n − 5) + �(n3)

27.2 Some Proofs

I now present a few of the classic techniques for computing recurrence relations. As
our example we will solve T(n ) = GT(n/0) + f (n ), for f (n ) = nc.

Guess and Verify: To begin consider the example T(n ) = 4T
(

n
2

) + n and T(1) = 1.

Plugging In: If we can guess T(n ) = 2n 2 − n, the first way to verify that this is the
solution is to simply plug it into the two equations and make sure that they are
satisfied:

Left Side Right Side

T(n ) = 2n 2 − n 4T( n
2 ) + n = 4

[
2

(
n
2

)2 − (
n
2

)] − n = 2n 2 − n

T(1) = 2n 2 − n = 1 1

Proof by Induction: Similarly, we can use induction to prove that this is the solu-
tion for all n (at least for n = 2i ).

Base Case: Because T(1) = 2(1)2 − 1 = 1, it is correct for n = 20.

Induction Step: Let n = 2i . Assume that it is correct for 2i−1 = n
2 . Because

T(n ) = 4T( n
2 ) + n = 4

[
2

(
n
2

)2 − (
n
2

)] + n = 2n 2 − n, it is also true for n.

Calculate Coefficients: Suppose that instead we are only able to guess that the
formula has the form T(n ) = an 2 + bn + c for some constants a , b, and c:

Left Side Right Side

T(n ) = an 2 + bn + c 4T( n
2 ) + n = 4

[
a

(
n
2

)2 + b
(

n
2

) + c
]

− n = an 2 + (2b + 1)n + 4c

T(1) = a + b + c 1
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These left and right sides must be equal for all n. Both have a as the coefficient
of n 2, which is good. To make the coefficient in front n be the same, we need that
b = 2b + 1, which gives b = −1. To make the constant coefficient be the same, we
need that c = 4c, which gives c = 0. To make T(1) = a(1)2 + b(1) + c = a(1)2 −
(1) + 0 = 1, we need that a = 2. This gives us the solution T(n ) = 2n 2 − n that
we had before.

Calculate Exponent: If we were to guess that a · T
(

n
b

)
is much bigger than f (n ),

then T(n ) = a · T
(

n
b

) + f (n ) ≈ a · T
(

n
b

)
. Further we guess that T(n ) = nα for

some constant α. Plugging this into T(n ) = a · T
(

n
b

)
gives nα = a · (

n
b

)α
, or bα =

a . Taking the log gives α · log b = log a , and solving gives α = log a
log b . In conclusion,

T(n ) = �(nlog a/ log b) = �(nlog 4/ log 2) = �(n 2).

Unwinding: A useful technique is to unwind a recursive relation for a few steps and
to look for a pattern:

T(n ) = f (n ) + a · T
(n

b

)
= f (n ) + a ·

[
f
(n

b

)
+ a · T

( n
b 2

)]
= f (n ) + af

(n
b

)
+ a 2 · T

( n
b 2

)
= f (n ) + af

(n
b

)
+ a 2 ·

[
f
( n

b 2

)
+ a · T

( n
b3

)]
= f (n ) + af

(n
b

)
+ a 2 f

( n
b 2

)
+ a 3 · T

( n
b3

)
= · · ·

=
h−1∑
i=0

ai · f
( n

bi

)
+ a h · T(1) = �

(
h∑

i=0

ai · f
( n

bi

))
.

Filling the Table: My recommended way to evaluate recursive relations is to fill out
a table like that in Figure 27.1.

(a) Number of Stack Frames at the ith Level: Level 0 contains the one initial
stack frame at the top of the tree of stack frame. It recursively calls a times. Hence,
level 1 has a stack frames. Each of these recursively calls a times, giving a 2 stack
frames at level 2. Each successive level, the number of stack frames goes up by a
factor of a , giving ai at level i.

(b ) Size of Instance at the ith Level: The top stack frame at level 0 is given an in-
stance of size n. It recurses on a subinstances of size n

b . Stack frames at level 1,
given instances of size n

b , recurse on subinstance of size n/b 2. Each successive
level decreases the instance size by a factor of b, giving size n/bi at level i.

(c) Time within One Stack Frame: On an instance of size n, a single stack frame
requires f (n ) time. Hence, a stack frame at the ith level, with an instance of size
n/bi , requires f (n/bi ) time.

(d) Number of Levels: The recursive program stops recursing when the instance
becomes sufficiently small, say of size 0 or 1. Let h denote the level at which this
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occurs. We have seen that the instances at level h have size n/bh. Setting n/bh = 1
and solving for h gives h = log n

log b .

(e) Number of Base Case Stack Frames: The number of stack frames at level i
is ai . Hence, the number of base case stack frames is a h = a log n/ log b . Though
this looks ugly, Chapter 24 gives a log n/ log b = (2log a )log n/ log b = 2log a ·log n/ log b =
(2log n)log a/ log b = nlog a/ log b . Given that log a

log b is simply some constant, nlog a/ log b is a
simple polynomial in n.

(f) T (n) as a Sum: There are ai stack frames at level i, and each requires f (n/bi )
time, for a total of ai · f (n/bi ) at the level. We obtain the total time T(n ) for the
recursion by summing the times at all of these levels. This gives

T(n ) =
[

h−1∑
i=0

ai · f
( n

bi

)]
+ a h · T(1) = �

(
h∑

i=0

ai · f
( n

bi

))
.

Plugging in f (n ) = nc gives

T(n ) = �

(
h∑

i=0

ai ·
( n

bi

)c
)

= �

(
nc ·

h∑
i=0

( a
bc

)i
)

(g) Dominated By: The key things to remember about this sum are that it has
�(log n ) terms, the top term being a◦ f (n/b◦) = f (n ) and the base case term being
an f (n/bn ) = a log n/ log b f (n ) = nlog a/ log b �(nlog a/ log b). According to the adding-
made-easy approximations given in Chapter 26, if either the top term or the base
case term is sufficiently bigger then the other, then the total is dominated by this
term. On the other hand, if they are roughly the same, then the total is approxi-
mately the number of terms times a typical term.

(h) Evaluating the Sum: If log a
log b < c, then a/bc < 1, giving that the terms in

T(n ) =
�(nc · ∑h

i=0( a
bc )i ) decrease exponentially, giving T(n ) = �(top term) = �(f (n )).

Similarly, if log a
log b > c, then the terms increase exponentially, giving T(n ) =

�(base case term) = �(nlog a/ log b). If log a
log b = c, then a

bc = 1, giving T(n ) =
�(nc · ∑h

i=0( a
bc )i ) = �(nc · ∑h

i=0 1) = �(nc · h) = �(f (n ) log n).

EXERCISE 27.2.1 (See solution in Part Five.) Solve the famous Fibonacci recurrence
relation Fib(0) = 0, Fib(1) = 1, and Fib(n ) = Fib(n − 1) + Fib(n − 2) by plugging in
Fib(n ) = αn and solving for α.

EXERCISE 27.2.2 (See solution in Part Five.) Solve the following by unwinding them:

1. T(n ) = T(n − 1) + n
2. T(n ) = 2 · T(n − 1) + 1
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EXERCISE 27.2.3 Does setting the size of the base case to 5 have any practical effect?
How about setting the size to zero, i.e., n/bh = 0?

Why does this happen? If instead instances at the ith level had size n − itshape AB,
would an instance size of 0, 1, or 2 be better? How many levels h are there?

EXERCISE 27.2.4 (See solution in Part Five.) Section 27.2 solves T(n ) = a T(n/b ) +
f (n ) for f (n ) = nc. If f (n ) = nc logd n and log a

log b = c, then the math is harder. Compute
the sum for d > −1, d = −1, d < −1. (Hint: Reverse the order of the terms.)

EXERCISE 27.2.5 Use the method in Figure 27.2 to compute each of the following
recursive relations.

1. T(n ) = nT(n − 1) + 1
2. T(n ) = 2T(

√
n) + n

3. T(n ) = T(u · n ) + T(v · n ) + �(n ) where u + v = 1.

EXERCISE 27.2.6 Running time:

algorithm Careful(n)

〈 pre-cond〉: n is an integer.
〈 post-cond〉: Q(n ) “Hi”s are printed for some odd function Q

begin
if( n ≤ 1 )

PrintHi(1)
else

loop i = 1 . . .n
PrintHi(i)

end loop
loop i = 1 . . . 8

Careful( n
2 )

end loop
end if

end algorithm

algorithm PrintHi(n)

〈 pre-cond〉: n is an integer.
〈 post-cond〉: n 2 “Hi”s are printed

begin
loop i = 1 . . .n 2

Print(“Hi”)
end loop

end algorithm
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1. Give and solve the recurrence relation for the number of “Hi”s, Q(n ). Show your
work. Give a sentence or two giving the intuition.

2. What is the running time (time complexity) of this algorithm as a function of the
size of the input?
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Though I mean is not to be too formal, it is useful to at least understand the required
steps in a formal proof of correctness.

Specifications: Before we prove that an algorithm is correct, we need to know pre-
cisely what it is supposed to do.

Preconditions: Assertions that are promised be true about the input instance.

Postconditions: Assertions that must be true about the output.

Correctness: Consider some instance. If this instance meets the preconditions, then
after the code has been run, the output must meet the postconditions:

〈pre-cond〉 & codealg ⇒ 〈post-cond〉
The correctness of an algorithm is only with respect to the stated specifications. It
does not guarantee that it will work in situations that are not taken into account by
this specification.

Breaking the Computation Path into Fragments: The method to prove that an
algorithm is correct is as follows. Assertions are inserted into the code to act as check-
points. Each assertion is a statement about the current state of the computation’s
data structures that is either true or false. If it is false, then something has gone wrong
in the logic of the algorithm. These assertions break the path of the computation into
fragments. For each such fragment, we prove that if the assertion at the beginning
of the fragment is true and the fragment gets executed, then the assertion at the end
of the fragment will be true. Combining all these fragments back together gives that
if the first assertion is true and the entire computation is executed, then the last as-
sertion will be true.

A Huge Number of Paths: There are likely an exponential number or even an in-
finite number of different paths that the computation might take, depending on the
input instance and the tests that occur along the way. In contrast, there are not many
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different computation path fragments. Hence, it is much easier to prove the correct-
ness of each fragment than of each path.

The following table outlines the computational path fragments that need to be
tested for different code structures.

Single Line of Code:

〈pre-assignment-cond 〉: The variables x and y have meaningful values.
z = x + y
〈post-assignment-cond 〉: The variable z takes on the sum of the value of x and

the value of y . The previous value of z is lost.

Blocks of Code:

〈assertion0〉
code1

〈assertion1〉
code2

〈assertion2〉

[〈assertion0〉 & code1 ⇒ 〈assertion1〉]
[〈assertion1〉 & code2 ⇒ 〈assertion2〉]

}
⇒ [〈assertion0〉 & code1&2 ⇒ 〈assertion2〉]

If Statements:

〈pre-if -cond 〉
if( 〈test〉 ) then
codetrue

else
codefalse

end if
〈post-if -cond 〉

[〈pre-if -cond 〉 & 〈test〉 & codetrue ⇒ 〈post-if -cond 〉]
[〈pre-if -cond 〉 & ¬〈test 〉 & codefalse ⇒ 〈post-if -cond 〉]

}
⇒ [〈pre-if -cond 〉 & code ⇒ 〈post-if -cond 〉]

Loops:

〈pre-loop-cond 〉
loop
〈loop-invar〉
exit when 〈exit-cond 〉
codeloop

end loop
〈post-loop-cond 〉

[〈pr e-loop-cond〉 ⇒ 〈loop-invar〉]
[〈loop-invar′〉 & ¬〈exit-cond〉 & codeloop ⇒ 〈loop-invar′′〉]
[〈loop-invar〉 & 〈exit-cond〉 ⇒ 〈post-loop-cond〉]
Termination

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ [〈pr e-loop-cond〉 & code ⇒ 〈post-loop-cond 〉]

Function Call:

〈pre-call-cond〉
output = Func(input)
〈post-call-cond 〉

[〈pre-call-cond〉 ⇒ 〈pre-cond〉Func]
[〈post-cond〉Func ⇒ 〈post-call-cond〉]

}
⇒ [〈pre-call-cond 〉 & code ⇒ 〈post-call-cond〉]


