
EECS3311 Introductory Tutorial:

Accompanying Notes

Jackie Wang

September 14, 2020

Video Tutorials

Each section in this set of notes:

• Summarizes main points discussed in the corresponding part of the following intro-
ductory tutorial on Eiffel (a programming language and a design method) and its
tool:

https://www.youtube.com/playlist?list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN

• Contains a link to the corresponding video.

How Should You Use this Set of Notes?

It is advised that after watching/studying each part of the tutorial series above, go over its
written summary to review and reflect, before you proceed to the next video.

https://www.youtube.com/playlist?list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN

Roadmap

1 Unit Testing & Console Outputting, Run vs. Run Workbench System 1

2 Setting Tools Layout, Navigating Library Classes 2

3 BIRTHDAY: Variable Declarations, Features, Invariant 3

4 BIRTHDAY: Static Queries, TDD, Boolean Test Case 4

5 BIRTHDAY: Assertions, Logical Operator Precedence 4

6 BIRTHDAY: Syntax Overview of Classes and Features 5

7 BIRTHDAY: Using a Command as a Constructor 6

8 BIRTHDAY: Setting Breaking Points & Launching Debugger 7

9 BIRTHDAY: Writing a Precondition Violation Test 8

10 BIRTHDAY: Writing a Postcondition Test 8

11 BIRTHDAY: Reference Equality vs. Object Equality 9

12 BIRTHDAY: Logical Pattern for Invariant 10

13 Basic Operations of Arrays 11

14 Basic Operations of Linked Lists 12

15 Use of across as Loop Instructions 13

16 Use of across as Boolean Expressions 13

17 BIRTHDAY BOOK Class: Attributes, Constructor, Void Safety 14

18 BIRTHDAY BOOK: Class Invariant 16

19 BIRTHDAY BOOK: Command add – Debugging Precondition 16

20 BIRTHDAY BOOK: Command add – Testing Postcondition 16

21 BIRTHDAY BOOK: Get Birthday – detachable? [Supplier] 17

22 BIRTHDAY BOOK: Get Birthday – detachable? [Client] 17

23 BIRTHDAY BOOK: Exercise – Implement & Specify celebrate 18

Back to Roadmap EECS3311 – Tutorial Notes

1 Unit Testing & Console Outputting, Run vs. Run Work-
bench System

Link: https://www.youtube.com/watch?v=vINZxvljR3c&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=2

1. Generate a starter project birthday book from:

https://www.eecs.yorku.ca/~eiffel/eiffel-new/

(1.1) Assumption: mathmodels.zip already downloaded and unzipped, and the loca-
tion of directory mathmodels has been set to variable MATHMODELS.

(1.2) Download and unzip the project archive birthday book.zip.

(1.3) Launch Eiffel Studio: estudio &, add the project, and compile.

2. For the generated ROOT class:

(2.1) Multiple inheritance: it inherits from both

ES SUITE (for unit testing) and ARGUMENTS 32 (for console outputs).

(2.2) Delete inherit ARGUMENTS 32 and print(...) from the make command.

(2.3) Instead, create an alternative root class: ROOT CONSOLE.

(2.4) Delete the generated test cases in TEST EXAMPLE. Then type a default boolean
case, which always passes, there:

t0: BOOLEAN

do

comment("t0: a test always passing")

Result := true

end

3. Show how to set the root class between ROOT and ROOT CONSOLE:

(3.1) When root class is set to ROOT CONSOLE (for console outputs), always hit Run

to see the execution result (contract violations, expected or not, will break the
execution flow).

(3.2) When the root class is set to ROOT (for unit testing):

• Hit Run Workbench System to see the test report (some contract violations
may be expected and will not cause a red bar).

• Hit Run to execute each test case as a normal feature (contract violations,
even if expected, will be considered as “exceptions” and break the execution
flow). This option is useful when you need to debug because there’s a red
bar from your ES TEST test report.

Notes:

• To debug, you should use breakpoints/debugger in the unit-testing mode.
Simply trying console outputs does not scale to larger projects.

Back to Roadmap Page 1

https://www.youtube.com/watch?v=vINZxvljR3c&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=2
https://www.eecs.yorku.ca/~eiffel/eiffel-new/

Back to Roadmap EECS3311 – Tutorial Notes

2 Setting Tools Layout, Navigating Library Classes

Link: https://www.youtube.com/watch?v=fsz8yiNzvcY&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=3

1. Set panels:

(1.1) Right: Groups (≈ package explorer in Eclipse) & Features (≈ outline in Eclipse).

(1.2) Bottom: Feature (for setting break points)

(1.3) To reset the tools layout: View → Tools Layout → Reset Tools Layout

2. Navigate the Eiffel base library:

(2.1) Search for a library class (verbatim vs. regular expression e.g., *SORT*, *LIST*)
from the Class textfield.

(2.2) Skim through the available features in the Features panel.

(2.3) Click on the feature in Features panel, or type it in the Feature textfield.

(2.4) Show the contract view to see the interface of the class.

(2.5) Show the flat view to see the “flattened” version, accumulating features and
contracts from ancestor classes (e.g., flat view of ARRAY).

• On the Features panel, see what the ancestors are.

• On the editor panel, see what the accumulated contracts are (e.g., {ARRAY}.item).

(2.6) Show ancestor and descendants of a library class (e.g., ARRAY).

• Pay attention to the iconic hint about a class being deferred (abstract, par-
tially implemented) or effective (concrete, fully implemented).

• Exercise: Get a feel about the inheritance hierarchy of LINKED LIST.

• Exercise: Say you declare a variable container: LIST , what are the possible
dynamic types of container?

Back to Roadmap Page 2

https://www.youtube.com/watch?v=fsz8yiNzvcY&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=3

Back to Roadmap EECS3311 – Tutorial Notes

3 BIRTHDAY: Variable Declarations, Features, Invariant

Link: https://www.youtube.com/watch?v=wDg-8frItEk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=4

1. Create a new class: BIRTHDAY.

2. Create customized feature sections: e.g.,

Commands, Attributes, Queries, Equality, String Representation

Note. Each feature clause creates a bookmark for navigating within the class.

3. Add attributes month and day.

(3.1) INTEGER denotes the set of integer values.

(3.2) When you write month: INTEGER , it has the mathematical meaning:

month ∈ INTEGER

That is, at runtime, month stores a value from the INTEGER set.

4. Taxonomy:

features

attributes (storage)

routines (computation)

{
commands (no return values, side effects)

queries (return values, no side effects)

5. Always first think about the class invariant : how should a legitimate BIRTHDAY

object be characterized (in terms of its attribute values and query return values)?

(5.1) valid day, valid month

Back to Roadmap Page 3

https://www.youtube.com/watch?v=wDg-8frItEk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=4

Back to Roadmap EECS3311 – Tutorial Notes

4 BIRTHDAY: Static Queries, TDD, Boolean Test Case

Link: https://www.youtube.com/watch?v=OZJZITCh7PI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=5

1. valid month and valid day are not enough because invalid dates such as June 31
will be considered as valid (i.e., June [6] is a valid month and 31 is a valid day).

2. Define class-level queries is month with 31 days and is month with 30 days.

(2.1) Define preconditions and postconditions of these two queries.

(2.2) Specially, writing class as a postcondition makes a feature class-level (static).

(2.3) We supply implementations that satisfy the postconditions.

• In this simple case, we may simply change = (equality) to := (assignment).

• Alternatively, we can implement using an array.

3. These two class-level queries can be invoked without having to create a BIRTHDAY

object (e.g., {BIRTHDAY}.is month with 30 days(. . .)).

4. Test Driven Development (TDD):

• Test as soon as a feature becomes executable.

• Re-run all tests when a change is made. [regression testing]

5. Write a Boolean test case for these two class-level queries.

• To add a boolean test (testing if a normal scenario happens as expected):

In the constructor of a sub-class of ES TEST, write: add_boolean_case(agent f)

f is the boolean test query.

5 BIRTHDAY: Assertions, Logical Operator Precedence

Link: https://www.youtube.com/watch?v=1NX3ryQWV_g&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=6

1. When there are multiple, consecutive re-assignments to the Result of a Boolean test
query, intermediate assertions are necessary.

(1.1) If no, then the mistake of a poor supplier (e.g., the is month with 31 days query
with a faulty implementation and with no postcondition) cannot be caught by
the test case.

(1.2) Intermediate check ... end assertions can catch such errors by causing check
assertion violations.

(1.3) Alternatively, If the is month with 31 days query had an appropriate postcon-
dition, then the faulty implementation would have been caught as a postcondition
violation.

(1.4) But in general, we may not assume that an appropriate postcondition always
exists, so intermediate check assertions are necessary.

2. Use these two class-level queries to write the class invariant:

valid day month combination.

(2.1) For operator precedence (tightest to loosest): and, or, implies

Back to Roadmap Page 4

https://www.youtube.com/watch?v=OZJZITCh7PI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=5
https://www.youtube.com/watch?v=1NX3ryQWV_g&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=6

Back to Roadmap EECS3311 – Tutorial Notes

6 BIRTHDAY: Syntax Overview of Classes and Features

Link: https://www.youtube.com/watch?v=Nyk7yaH2d5M&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=7

1. Classes are divided into various feature sections.

2. Always think first about the class invariant : Under what circumstances should
instances of a class be considered as valid (e.g., a valid bank account, a valid birthday).

3. A routine is either a command or a command:

(3.1) A command or a query may have a list of input parameter declarations, separated
by semi-columns (;).

(3.2) A command has no return type.

(3.3) A query has return type.

• Imaginatively, for each query with a return type T:

• There is a first line: Result: T

• There is a last line: return Result [never write this, just imagine it!]

• Consequently:

– You are not allowed to use Result as the name of your own variable.

– To implement a query, manipulate the pre-defined variable Result, in
such way that it stores the desired value.

Back to Roadmap Page 5

https://www.youtube.com/watch?v=Nyk7yaH2d5M&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=7

Back to Roadmap EECS3311 – Tutorial Notes

7 BIRTHDAY: Using a Command as a Constructor

Link: https://www.youtube.com/watch?v=ikz2LogoKI4&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=8

1. Declare command make and add its implementation.

2. Add a create clause and put make as one of the valid constructors.

3. Rename TEST EXAMPLE as TEST BIRTHDAY.

4. To create an object, you must use the create keyword:

• (Version 1) e.g., create bd.make(1, 31)

Alternatively, create an object using an anonymous object on the RHS:

• (Version 2) e.g., bd := create BIRTHDAY.make (1, 31)

The RHS of := (assignment) is an anonymous object: create BIRTHDAY.make (1, 31)

• Constrast how an anonymous is created in Java: new Birthday(1, 31)

That is, the way a new object is created in Java is similar to Version 2 above:

Birthday bd = new Birthday(1, 31)

• Cross Reference. See Section 17 for specifying a dynamic type.

5. On the other hand, writing bd.make(1, 31) means: bd already points to some
BIRTHDAY object (i.e., bd is attached), a change is to be made on that object, and
no new object is to be created.

6. Show the difference between including and excluding make in the create clause.

(6.1) Without explicitly adding make under a create clause:

• Its use as a constructor is no longer valid (e.g., previously-compiled test no
longer compiles).

• It can only be used as a command with a context object (by writing e.g.,
bd.make(. . .)). In this case, no new object is being created.

(6.2) By explicitly adding make under a create clause, it can then be used both as a
command and as a constructor (by writing e.g., create bd.make(. . .)).

Back to Roadmap Page 6

https://www.youtube.com/watch?v=ikz2LogoKI4&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=8

Back to Roadmap EECS3311 – Tutorial Notes

8 BIRTHDAY: Setting Breaking Points & Launching Debugger

Link: https://www.youtube.com/watch?v=5H-eOezK_QI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=9

1. Set breakpoints within a boolean test case query on creating a valid birthday.

e.g., {TEST BIRTHDAY}.t create new birthday

2. Debugging Scenarios:

• Set a break point on a test case that fails.

• Set a break point on a feature which you want to see how that line is called (from
the stack trace).

3. To set a breakpoint:

• (Approach 1): Switch to the flat view and type the feature in the Feature

textfield.

• (Approach 2): Right-click on the feature and drop it to the bottom Feature

panel.

4. To launch the debugger, just click on Run and you’re given 3 options to execute the
code:

• One step at a time

• Step into a routine (query or command)

• Step out of a routine (e.g., within the check of class invariant)

Back to Roadmap Page 7

https://www.youtube.com/watch?v=5H-eOezK_QI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=9

Back to Roadmap EECS3311 – Tutorial Notes

9 BIRTHDAY: Writing a Precondition Violation Test

Link: https://www.youtube.com/watch?v=kX1Idyj_ZgI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=10

1. Write a boolean test case (a boolean query with no parameters) which creates a
BIRTHDAY with invalid day and month.

2. A class invariant violation occurs (⇒ a red bar).

(2.1) Run to show this class invariant violation on the stack trace.

(2.2) To prevent the class invariant from happening, add precondition to make.

3. Re-running the test (via Workbench System),

a precondition violation occurs (⇒ a red bar).

(3.1) Run to show this precondition violation on the stack trace.

(3.2) The precondition violation occurs as expected ⇒ We want a green bar .

4. Instead, we add a violation case for testing this expected precondition violation.

(4.1) Re-running the test (via Workbench System), a precondition violation occurs
but it’s expected (⇒ a green bar).

10 BIRTHDAY: Writing a Postcondition Test

Link: https://www.youtube.com/watch?v=v2c6MBPhEz0&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=11

1. As an example, in order to test that the day set postcondition violation occurs when
it should, we need an incorrect implementation such that:

• It violates the Boolean expression for day set: month = m

2. Define a violation test case (a command with no parameters) which calls this version
of incorrect implementation.

3. To add a violation test (testing if an exceptional scenario happens as expected):

In the constructor of a sub-class of ES TEST, write:

add_violation_case_with_tag("tag_name", agent f)

where f is the violation test command, and tag name is the tag of the postcondition
under test (spelt verbatim, e.g., day set).

4. Test Driven Development (TDD): write a test for a routine as soon as it becomes
executable.

• violation tests for its precondition and postcondition

• boolean tests for its implementation

Back to Roadmap Page 8

https://www.youtube.com/watch?v=kX1Idyj_ZgI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=10
https://www.youtube.com/watch?v=v2c6MBPhEz0&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=11

Back to Roadmap EECS3311 – Tutorial Notes

11 BIRTHDAY: Reference Equality vs. Object Equality

Link: https://www.youtube.com/watch?v=AiiJSPLwBSk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=12

1. Write a test that compare references (addresses) of two BIRTHDAY class using =.

2. Redefine the is equal query from the ANY class (≈ the boolean equals method of
the Object class in Java).

3. The top class ANY (≈ Object in Java) declares the equality query:

is_equal(other: like Current)

(3.1) It is different from what happens in Java: boolean equals(Object obj).

(3.2) It uses an anchor type: the type of other depends on what the current class is.
This is a design choice of Eiffel base library, so as to avoid the trouble of doing
what you have to do in Java:

1 boolean equals(Object obj) {

2 if(this == obj) { return true; }

3 if(obj == null) { return false; }

4 if(this.getClass() != obj.getClass()) { return false; }

5 BIRTHDAY other = (BIRTHDAY) obj;

6 return this.month == other.month && this.day == other.day;

7 }

(3.3) In Eiffel’s case, the use of an anchor type allows you to focus on just L6 in the
Java code (assuming that the context object Current and the argument object
other have the same dynamic type).

(3.4) Cross Reference. See how anchor type is used in Section 23.

4. Show the use of ∼:

(4.1) When BIRTHDAY does not redefine (override) {ANY}.is equal,

bd1 ∼ bd2 is equivalent to bd1 = bd2.

(Show this in debugger that the version of {ANY}.is equal is called.)

(4.2) When {ANY}.is equal is redefined in BIRTHDAY,

bd1 ∼ bd2 is equivalent to bd1.is equal(bd2).

(Show this in debugger that the version of {BIRTHDAY}.is equal is called.)

Back to Roadmap Page 9

https://www.youtube.com/watch?v=AiiJSPLwBSk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=12

Back to Roadmap EECS3311 – Tutorial Notes

12 BIRTHDAY: Logical Pattern for Invariant

Link: https://www.youtube.com/watch?v=VyDau1Vt77A&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=13

1. Can we replace implies by and in invariant valid day month combination?

That is, can the following revised invariant work?

valid_combination:

(is_month_with_31_days (month) and 1 <= day and day <= 31)

and

(is_month_with_30_days (month) and 1 <= day and day <= 30)

and

(month = 2 implies 1 <= day and day <= 29)

2. No. Conceptually valid dates such as June 23 and January 12 will cause class in-
variant violations.

(2.1) b1 and b2 evaluates to false if b1 is false.

(2.2) b1 implies b2 evaluates to true if b1 is false.

3. Write a test case to demonstrate this class invariant violation.

Back to Roadmap Page 10

https://www.youtube.com/watch?v=VyDau1Vt77A&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=13

Back to Roadmap EECS3311 – Tutorial Notes

13 Basic Operations of Arrays

Link: https://www.youtube.com/watch?v=pv4AZcWYmmk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=14

1. Use of ARRAY (with a test case):

(1.1) make empty, force vs. put

(1.2) lower, upper, count, valid index , [. . .], item(. . .)

(1.3) By default, indices start with 1.

(1.4) from . . . until loop using a loop counter i

2. Use of object comparison:

(2.1) It affects queries related to membership: e.g., {ARRAY}.has and {ARRAY}.occurrences
(2.2) See definitions of {ARRAY}.has and {ARRAY}.occurrences
(2.3) Say there’s an array a1 with starting index 1. The behaviour a1.has(x) depends

on the value of a1.object comparison:

• a1.object_comparison is true : a1.has(x) is equivalent to

(a1[1] ∼ x) ∨ (a1[2] ∼ x) ∨ . . . ∨ (a1[a1.upper] ∼ x)

• a1.object_comparison is false : a1.has(x) is equivalent to

(a1[1] = x) ∨ (a1[2] = x) ∨ . . . ∨ (a1[a1.upper] = x)

3. Use of ∼ for collections:

• See the definition of {ARRAY}.is equal

• Say two arrays a1 and a2: a1 ∼ a2 evaluates to true if:

– a1.lower = a2.lower

– a1.count = a2.count

– a1.object_comparison = a2.object_comparison

Say a1.lower is 1.

– a1[1] ∼ a2[1] ∧ a1[2] ∼ a2[2] ∧ . . . a1[a1.upper] ∼ a2[a2.upper]

Back to Roadmap Page 11

https://www.youtube.com/watch?v=pv4AZcWYmmk&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=14

Back to Roadmap EECS3311 – Tutorial Notes

14 Basic Operations of Linked Lists

Link: https://www.youtube.com/watch?v=1FGHBmilVP8&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=15

1. Use of LINKED LIST (with a test case):

(1.1) make, extend

(1.2) count, valid index, is empty, [. . .], item,

(1.3) start, forth, after

(1.4) By default, indices start with 1.

(1.5) from . . . until loop using cursor operations: start, forth, after

2. Use of object comparison:

(2.1) It affects queries related to membership: e.g., {ARRAY}.has and {ARRAY}.occurrences
(2.2) See definitions of {ARRAY}.has and {ARRAY}.occurrences
(2.3) Say there’s a list l1 with starting index 1. The behaviour l1.has(x) depends

on the value of l1.object comparison:

• l1.object_comparison is true : l1.has(x) is equivalent to

(l1[1] ∼ x) ∨ (l1[2] ∼ x) ∨ . . . ∨ (l1[l1.count] ∼ x)

• l1.object_comparison is false : l1.has(x) is equivalent to

(l1[1] = x) ∨ (l1[2] = x) ∨ . . . ∨ (l1[l1.count] = x)

3. Use of ∼ for collections:

• See the definition of {LINKED LIST}.is equal

• Say two arrays l1 and l2: l1 ∼ l2 evaluates to true if:

– l1.count = l2.count

– l1.object_comparison = l2.object_comparison

– l1[1] ∼ l2[1] ∧ l1[2] ∼ l2[2] ∧ . . . l1[l1.count] ∼ l2[l2.upper]

Back to Roadmap Page 12

https://www.youtube.com/watch?v=1FGHBmilVP8&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=15

Back to Roadmap EECS3311 – Tutorial Notes

15 Use of across as Loop Instructions

Link: https://www.youtube.com/watch?v=zKT8UlqxIn0&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=16

1. Use of across (with test cases):

(1.1) Code completion:

across as (default, which denotes a cursor) vs. across is (denotes a value)

(1.2) across over integer interval (e.g., 1 .. (a.count - 1))

(1.3) across over iterable collection

(1.4) Instruction: across ... is ... loop ... end

16 Use of across as Boolean Expressions

Link: https://www.youtube.com/watch?v=DYnrsLbj5CY&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=17

1. Use of across (with test cases):

(1.1) Code completion:

across as (default, which denotes a cursor) vs. across is (denotes a value)

(1.2) across over integer interval (e.g., 1 .. (a.count - 1))

(1.3) across over iterable collection

(1.4) Boolean Expressions:

across ... is ... all ... (≈ ∀) vs. across ... is ... some ... (≈ ∃)

Back to Roadmap Page 13

https://www.youtube.com/watch?v=zKT8UlqxIn0&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=16
https://www.youtube.com/watch?v=DYnrsLbj5CY&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=17

Back to Roadmap EECS3311 – Tutorial Notes

17 BIRTHDAY BOOK Class: Attributes, Constructor, Void Safety

Link: https://www.youtube.com/watch?v=jcpFE5FrsVA&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=18

1. Add attributes count, names, and birthdays.

(1.1) LIST[BIRTHDAY] denotes the set of all possible lists (of size 0, 1, 2, . . .), where
each slot stores the reference of a valid BIRTHDAY object (i.e., one satisfying the
invariant of BIRTHDAY).

(1.2) When you write birthdays: LIST[BIRTHDAY] , it has the mathematical meaning:

birthdays ∈ LIST[BIRTHDAY]

That is, at runtime, birthdays stores the beginning address of an array from
the LIST[BIRTHDAY] set.

2. Design principle: Program from the Interface, Not from the Implementation

(2.1) The static type of birthdays is the deferred (abstract) class LIST.

(2.2) In order to instantiate birthdays, we must use an effective (concrete) class that
is a descendant of LIST (recall the exercise done previously on looking up the
descendants of LIST!).

(2.3) Say we instantiate it to a LINKED LIST (called an implementation secret), by
writing:

create LINKED_LIST[BIRTHDAY] birthdays.make

• What goes between the curly brackets denotes the dynamic type of birthdays:
LINKED LIST[BIRTHDAY].

• Contrast how object creations are done (particularly for reference types) in
Java:

List<Birthday> birthdays;

birthdays = new LinkedList<Birthday>();

and in Eiffel:

birthdays: LIST[BIRTHDAY]

...

create {LINKED_LIST[BIRTHDAY]} birthdays.make

-- equivalent to:

-- birthdays := create {LINKED_LIST[BIRTHDAY]}.make

-- (anonymous type)

3. Void Safety . All referene attributes (names and birthdays, not count) must be
initialized.

Back to Roadmap Page 14

https://www.youtube.com/watch?v=jcpFE5FrsVA&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=18

Back to Roadmap EECS3311 – Tutorial Notes

4. Void Safety . Object variables are attached by default:

(4.1) When we declare a variable of some reference type, e.g.:

name: STRING

names: ARRAY[STRING]

(4.2) We implicitly declare to the Eiffel compiler—so that the compiler will perform
automatic checks for us before allowing a given piece of code to be executed—that
name and names will always be attached.

(4.3) An object variable x being attached means that x is not void (i.e., non-null, or
pointing to some object stored in the memory).

(4.4) This is different from Java, where object variables are not always non-null (hence
the notorious phenomenon of NullPointerException !). Moreover, there is no
way for you to ask the Java compiler to perform static checks on your Java code,
so that a compilable Java code is free from NullPointerException .

(4.5) On the other hand, the void safety feature of the Eiffel compiler guarantees
that, if your code passes it checks and compiles, there will be no runtime errors
related to null pointers.

⇒ What’s the catch?

• In Java, you run into NullPointerException at runtime (meaning that there
is no way for you to be aware of such an issue during development).

• In Eiffel, you run into compile-time errors related to void safety, and you are
forced to fix these compile-time errors before you can run your software.

A typical void-safety error is the use of an uninitialized object variable obj

as the context object of some call: e.g., obj.f(. . .).

• Analogy.

– In Java, a problem of a plane’s landing gear is discovered after its takeoff.

– In Eiffel, the landing gear’s problem would have been discovered and
forced to fix before the takeoff.

(4.6) More precisely:

• Declaring object variables such as String name and String[] names in Java
is as if you added an explicit modifier detachable in the case of Eiffel:

name: detachable STRING and names: detachable ARRAY[STRING].

– In this case, the Java compiler let problems manifest themselves when a
NullPointerException causes your program to crash at runtime, whereas
the Eiffel compiler imposes constraints related to void safety at the
compile-time.

– In this case, both Java and Eiffel allow the developer to perform manual
checks.

◦ In Java, you write Boolean expressions such as name != null and
names != null.

◦ In Eiffel, you write Boolean expressions such as attached name and
attached names.

• Declaring objet variables that are always attached in Eiffel (e.g., name: STRING

and names: ARRAY[STRING]) has no equivalent support in Java.

Back to Roadmap Page 15

Back to Roadmap EECS3311 – Tutorial Notes

18 BIRTHDAY BOOK: Class Invariant

Link: https://www.youtube.com/watch?v=3MnIO3oJWew&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=19

1. Always first think about the class invariant : how should a legitimate BIRTHDAY

object be characterized (in terms of its attribute values and query return values)?

2. consistent counts

3. no duplicate names uses nested across.

19 BIRTHDAY BOOK: Command add – Debugging Precondition

Link: https://www.youtube.com/watch?v=ubrFBmbURKI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=20

1. Add precondition: name does not exist.

• (Approach 1) Use of {ARRAY}.has
• Add a precondition violation test (e.g., adding a name which already exists).

• In order to inquire membership in the names array, names.object comparison

must be set to true.

• (Approach 2) Use of across ... is ... some ...

• Conversion between ∀ and ∃: (∀x : P (X)) ≡ ¬(∃x : ¬P (X)).

2. The video also demonstrates a valuable process of debugging a test. Please
make sure you take the time to understand and re-produce the process.

20 BIRTHDAY BOOK: Command add – Testing Postcondition

Link: https://www.youtube.com/watch?v=OPwlNxt9Lqc&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=21

1. Add postconditions, assuming that the new name and new birthday are always added
to the end of the two linear structures.

2. Add an implementation that satisfies the postconditions.

3. Add a boolean test for testing the implementation of command add.

4. Add a postcondition violation test.

• In order to test that the name added postcondition violation occurs when it
should, we need an incorrect implementation such that:

– It satisfies all postconditions are satisfied: one more name and one more birthday

– It violates the Boolean expression for name added: names[count] ∼ p n

Back to Roadmap Page 16

https://www.youtube.com/watch?v=3MnIO3oJWew&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=19
https://www.youtube.com/watch?v=ubrFBmbURKI&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=20
https://www.youtube.com/watch?v=OPwlNxt9Lqc&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=21

Back to Roadmap EECS3311 – Tutorial Notes

21 BIRTHDAY BOOK: Get Birthday – detachable? [Supplier]

Link: https://www.youtube.com/watch?v=TTpbrlvDIOw&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=22

1. get_birthday_book(name: STRING): BIRTHDAY

(1.1) Void Safety . The return value Result is always attached and must thus be
explicitly initialized.

(1.2) The from ... until ... loop requires Result to be initialized.

2. get_birthday_book(name: STRING): detachable BIRTHDAY

(2.1) Void Safety The return value Result is detachable and may thus be unini-
tialized, i.e., storing void by default.

(2.2) The from ... until ... loop does not require Result to be initialized.

3. We define an auxiliary query index of name to help specify the postcondition.

22 BIRTHDAY BOOK: Get Birthday – detachable? [Client]

Link: https://www.youtube.com/watch?v=eCxI48msewU&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=23

1. Write tests on add using get birthday.

2. Write tests on add using get detachable birthday.

(2.1) Void Safety Calling a feature on the return value of get detachable birthday

requires the use of a developer’s assertion:

check attached get_detachable_birthday(...) as ... then ... end

Back to Roadmap Page 17

https://www.youtube.com/watch?v=TTpbrlvDIOw&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=22
https://www.youtube.com/watch?v=eCxI48msewU&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=23

Back to Roadmap EECS3311 – Tutorial Notes

23 BIRTHDAY BOOK: Exercise – Implement & Specify celebrate

Link: https://www.youtube.com/watch?v=ZeCqOIJulFM&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=24

1. The return value uses the anchor type: remind (today: BIRTHDAY): like names

(1.1) It is as if you declared remind (today: BIRTHDAY): ARRAY[STRING]

(1.2) What’s the advantage of using an anchor type here?

• The use of anchor type for remind’s return type indicates a designer’s inten-
tion that names and remind(. . .) are always of the same type.

• When the type of names changes, say from ARRAY[NAME] to LIST[NAME], is
there any manual change necessary to still satisfy this designer’s intention?

• No. It will be updated automatically.

(1.3) Cross Reference. See how anchor type is used in Section 11.

2. TODO: Complete the implementation of this query.

3. TODO:

• every name in result is an existing name

• every name in result has birthday today

4. You should write boolean test queries for testing the implementation.

5. You should write violation test commands for testing each of the postconditions.

Back to Roadmap Page 18

https://www.youtube.com/watch?v=ZeCqOIJulFM&list=PL5dxAmCmjv_4bxISJrwPoBrzVdCfVgVnN&index=24

	Unit Testing & Console Outputting, Run vs. Run Workbench System
	Setting Tools Layout, Navigating Library Classes
	BIRTHDAY: Variable Declarations, Features, Invariant
	BIRTHDAY: Static Queries, TDD, Boolean Test Case
	BIRTHDAY: Assertions, Logical Operator Precedence
	BIRTHDAY: Syntax Overview of Classes and Features
	BIRTHDAY: Using a Command as a Constructor
	BIRTHDAY: Setting Breaking Points & Launching Debugger
	BIRTHDAY: Writing a Precondition Violation Test
	BIRTHDAY: Writing a Postcondition Test
	BIRTHDAY: Reference Equality vs. Object Equality
	BIRTHDAY: Logical Pattern for Invariant
	Basic Operations of Arrays
	Basic Operations of Linked Lists
	Use of across as Loop Instructions
	Use of across as Boolean Expressions
	BIRTHDAY_BOOK Class: Attributes, Constructor, Void Safety
	BIRTHDAY_BOOK: Class Invariant
	BIRTHDAY_BOOK: Command add – Debugging Precondition
	BIRTHDAY_BOOK: Command add – Testing Postcondition
	BIRTHDAY_BOOK: Get Birthday – detachable? [Supplier]
	BIRTHDAY_BOOK: Get Birthday – detachable? [Client]
	BIRTHDAY_BOOK: Exercise – Implement & Specify celebrate

