Common Eiffel Errors:
Contracts vs. Implementations

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Contracts vs. Implementations: Definitions |.assono:

In Eiffel, there are two categories of constructs:
o Implementations
o are step-by-step instructions that have side-effects

e.g.,,’across ... as ... loop ... end‘

¢ change attribute values
¢ do not return values
¢ ~commands
o Contracts
o are Boolean expressions that have no side-effects

eg.,|... = ... ,’across ... as ... all ... end

¢ use attribute and parameter values to specify a condition
¢ return a Boolean value (i.e., True or False)
e ~ queries

U ot o3

I

Contracts vs. Implementations: Where?

e |nstructions for Implementations: insty, insty
* Boolean expressions for Contracts: expy, expo, exps, €xps, €Xps

feature - Commands
class withdraw
ACCOUNT require
feature Queries qu ox
balance: INTEGER do Ps
require insty
expy
ensure
do exp
i 4
inst;
1 end
ensure . .
invariant
expo ex
end Ps S
end —— end of clas AC(

Implementations: Retoue
Instructions with No Return Values

e Assignments

’ balance := balance + a ‘

e Selections with branching instructions:

’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘

e Loops
from from
i = a.l X
unltil a-sower list.start across
i > a.upper until list as cursor
1oo -upp list.after loop
Repsult L loop sum :=
Result‘ + oali] list.item.wdw(10) sum + cursor.item
, . list. forth end
i := 1+ 1
end
end

_

Contracts: LASSONDE

Expressions with Boolean Return Values

» Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)

o |

e Binary Logical Expressions (using and, and then, or, or else,
implies)

’ (a.lower <= index) and (index <= a.upper)

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [cursor.item] >= 0
end

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a ‘

I

Contracts: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance := old balance - a
end

Colon-Equal sign (: =) is used to write assignment instructions.

I

Contracts: Common Mistake (1) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance = old balance - a
end

I

Contracts: Common Mistake (2)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across
a as cursor
loop

end

across...loop...end is used to create loop instructions.

I

Contracts: Common Mistake (2) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
across
a as cursor
all —— if you

end

I

Contracts: Common Mistake (3)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
old balance - a
end

Contracts can only be specified as Boolean expressions.

i or o3

I

Contracts: Common Mistake (3) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
postcond_1: balance = old balance - a

postcond_2: old balance > 0
end

1)

I

Contracts: Common Mistake (4)

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
old balance > 0
do

ensure

end

e Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
withdraw) and post-state values (after the execution of
withdraw).

» Pre-state values (right before the feature is executed) are

I

Contracts: Common Mistake (4) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
balance > 0
do

ensure

end

130173

Contracts: Common Mistake (5)

I

LASSONDE

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY [STRING]
feature - O

count: INTEGER do Result := a.count end

get (i: INTEGER) STRING do Result := a[i] end
feature).

make do create a. make empty end
update (i: INTEGER; v: STRING)

do ...
aifﬂii\ count as j
all

j.item /= i implies old get (j.item) ~ get(j.item)

end

end

end
Compilation Error:
o Expression value to be cached before executing update?
[Ccurrent.get (j.item)]

o But, in the pre-state, integer cursor 5 does not exist!

Contracts: Common Mistake (5) Fixed

I

LASSONDE

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature)

count: INTEGER do Result := a.count end

get (i: INTEGER) STRING do Result := a[i] end
feature s

make do create a. make empty end
update (i: INTEGER; v: STRING)

do ...
aclro\s.s.\ count as j
all

j.item /= i implies (old Current) .get(j.item) ~ get(j.item)

end

end

end
o The idea is that the old expression should not involve the local
cursor variable 7 that is introduced in the postcondition.
o Whether to put (o1ld Current.twin) or (old
Current .deep twin) isS up to your need.

I

Implementations: Common Mistake (1) LASSONDE

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.

e In the context of implementations, Boolean expression values
must appear:
o on the RHS of an assignment;
o as one of the branching conditions of an if-then-else statement; or
o as the exit condition of a loop instruction.

b o1 o3

I

Implementations: Common Mistake (1) Fixe@sono:

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance := balance + 1
end

o173

I

Implementations: Common Mistake (2) LASSONDE

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT]

no_warning_accounts: BOOLEAN
do
across
accounts as cursor
all
cursor.item.balance > min_credit
end
end

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.

I

Implementations: Common Mistake (2) Fixe@sono:

1 |class

2 BANK

3 | feature

4 min_credit: REAL

5 accounts: LIST[ACCOUNT]

6

7 no_warning_accounts: BOOLEAN

8 do

9 Result :=

10 across

11 accounts as cursor

12 all

13 cursor.item.balance > min_credit

14 end

15 end

16
Rewrite L10 — L14 using across ... as ... some ... end.
Hint: Vx e P(x) = -(3x ¢ -P(x))

[exaax |

I

Implementations: Common Mistake (3)

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
Result :=

across
accounts as cursor

loop
Result := Result + cursor.item.balance

end

end

In implementations, since instructions do not return values, they

cannot be used on the RHS of assignments.

I

Implementations: Common Mistake (3) Fixetsono:

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
across
accounts as cursor
loop
Result := Result + cursor.item.balance
end
end

PIoro3

Index (1)

Eon[rac[s VS. Implemen[ahons: DE|II1I[IOI‘I§

ontracts vs. impiementations: ere
implementations: |

Insfrucfions with No Refurn Valuesl
Confracfs:]
Expresswns Wlﬂi Boolean ReEurn Value§|

ontracts: Common iistake

ontracts: Common iistake IXe

ontracts: Common iistake

ontracits: Common liistake IXe

ontracts: Common istake

Index (2)

ontracis: Common Wistake IXe

ontracts: Common Mistake

ontracts: Common istake 1Xe

ontracis: Common iistake

ontracis: Common iistake IXe

mpiementations: Common histake

mpiementations: Common histake IXe

mpiementations: Common Mistake

mpiementations: Common histake IXe

mpliementations: Common Mistake

mpiementations: Common liistake IXe

VW) WK

	Contracts vs. Implementations: Definitions
	Contracts vs. Implementations: Where?
	Implementations: Instructions with No Return Values
	Contracts: Expressions with Boolean Return Values
	Contracts: Common Mistake (1)
	Contracts: Common Mistake (1) Fixed
	Contracts: Common Mistake (2)
	Contracts: Common Mistake (2) Fixed
	Contracts: Common Mistake (3)
	Contracts: Common Mistake (3) Fixed
	Contracts: Common Mistake (4)
	Contracts: Common Mistake (4) Fixed
	Contracts: Common Mistake (5)
	Contracts: Common Mistake (5) Fixed
	Implementations: Common Mistake (1)
	Implementations: Common Mistake (1) Fixed
	Implementations: Common Mistake (2)
	Implementations: Common Mistake (2) Fixed
	Implementations: Common Mistake (3)
	Implementations: Common Mistake (3) Fixed

