Syntax of Eiffel: a Brief Overview

EECS3311 A \& E: Software Design Fall 2020

CHEN-WEI WANG

Escape Sequences

Escape sequences are special characters to be placed in your program text.

- In Java, an escape sequence starts with a backward slash \} e.g., $\backslash \mathrm{n}$ for a new line character.
- In Eiffel, an escape sequence starts with a percentage sign \% e.g., $\% \mathrm{~N}$ for a new line characgter.

See here for more escape sequences in Eiffel: https://www. eiffel.org/doc/eiffel/Eiffel\ programming\%
20language\%20syntax\#Special_characters

Commands, and Queries, and Features

- In a Java class:
- Attributes: Data
- Mutators: Methods that change attributes without returning
- Accessors: Methods that access attribute values and returning
- In an Eiffel class:
- Everything can be called a feature.
- But if you want to be specific:
- Use attributes for data
- Use commands for mutators
- Use queries for accessors

Naming Conventions

- Cluster names: all lower-cases separated by underscores e.g., root, model, tests, cluster_number_one
- Classes/Type names: all upper-cases separated by underscores
e.g., ACCOUNT, BANK_ACCOUNT_APPLICATION
- Feature names (attributes, commands, and queries): all lower-cases separated by underscores
e.g., account_balance, deposit_into, withdraw_from

Class Declarations

- In Java:

```
class BankAccount {
    /* attributes and methods */
}
```

- In Eiffel:
class BANK_ACCOUNT
/* attributes, commands, and queries */ end

Class Constructor Declarations (1)

- In Eiffel, constructors are just commands that have been explicitly declared as creation features:

```
class BANK_ACCOUNT
-- List names commands that can be used as constructors
create
    make
feature -- Commands
    make (b: INTEGER)
        do balance := b end
    make2
        do balance := 10 end
end
```

- Only the command make can be used as a constructor.
- Command make2 is not declared explicitly, so it cannot be used as a constructor.

Creations of Objects (1)

- In Java, we use a constructor Accont (int b) by:
- Writing Account acc = new Account (10) to create a named object acc
- Writing new Account (10) to create an anonymous object
- In Eiffel, we use a creation feature (i.e., a command explicitly declared under create) make (int b) in class ACCOUNT by:
- Writing create \{ACCOUNT\} acc.make (10) to create a named object acc
- Writing create \{ACCOUNT\}.make (10) to create an anonymous object
- Writing create \{ACCOUNT\} acc.make (10) is really equivalent to writing

$$
\text { acc }:=\text { create \{ACCOUNT\}.make (10) }
$$

Attribute Declarations

- In Java, you write: int i, Account acc
- In Eiffel, you write: i: INTEGER, acc: ACCOUNT

Think of : as the set membership operator ϵ :
e.g., The declaration acc: ACCOUNT means object acc is a member of all possible instances of Account.

Method Declaration

- Command

```
deposit (amount: INTEGER)
    do
    balance := balance + amount
    end
```

Notice that you don't use the return type void

- Query

```
sum_of ( }x\mathrm{ : INTEGER; }y\mathrm{ : INTEGER) : INTEGER
    do
        Result := x + y
    end
```

- Input parameters are separated by semicolons ;
- Notice that you don't use return; instead assign the return value to the pre-defined variable Result.

Operators: Assignment vs. Equality

- In Java:
- Equal sign = is for assigning a value expression to some variable. e.g., $x=5 * y$ changes x's value to $5 * y$

This is actually controversial, since when we first learned about $=$, it means the mathematical equality between numbers.

- Equal-equal == and bang-equal $!=$ are used to denote the equality and inequality.
e.g., $x=5 * y$ evaluates to true if x 's value is equal to the value of 5 * y, or otherwise it evaluates to false.
- In Eiffel:
- Equal = and slash equal /= denote equality and inequality. e.g., $x=5 * y$ evaluates to true if x 's value is equal to the value of 5 * y, or otherwise it evaluates to false.
- We use := to denote variable assignment.
e.g., $x:=5$ * y changes x's value to 5 * y
- Also, you are not allowed to write shorthands like $x++$,

Operators: Division and Modulo

	Division	Modulo (Remainder)
Java	$20 / 3$ is 6	$20 \% 3$ is 2
Eiffel	$20 / / \quad 3$ is 6	$20 \backslash \backslash 3$ is 2

Operators: Logical Operators (1)

- Logical operators (what you learned from EECS1090) are for combining Boolean expressions.
- In Eiffel, we have operators that EXACTLY correspond to these logical operators:

	LOGIC	EIFFEL
Conjunction	\wedge	and
Disjunction	\vee	or
Implication	\Rightarrow	implies
Equivalence	\equiv	$=$

Operators: Logical Operators (2)

- How about Java?
- Java does not have an operator for logical implication.
- The == operator can be used for logical equivalence.
- The \&\& and ।। operators only approximate conjunction and disjunction, due to the short-circuit effect (SCE):
- When evaluating e1 \&\& e2, if e1 already evaluates to false, then e1 will not be evaluated.
e.g., $\ln (y!=0) \& \&(x / y>10)$, the SCE guards the division against division-by-zero error.
- When evaluating e1 || e2, if e1 already evaluates to true, then e1 will not be evaluated.
e.g., $\ln (y==0)|\mid(x / y>10)$, the SCE guards the division against division-by-zero error.
- However, in math, the order of the two sides should not matter.
- In Eiffel, we also have the version of operators with SCE:
short-circuit conjunction \mid short-circuit disjunction

	short-circuit conjunction	short-circuit disjunction
Java	\&\&	$\|\mid$
Eiffel	and then	or else

Selections (1)

```
if }\mp@subsup{B}{1}{}\mathrm{ then
    -- B1
    -- do something
elseif B2 then
    -- B2^(\negB
    -- do something else
else
    -- (\negB
    -- default action
end
```


Selections (2)

An if-statement is considered as:

- An instruction if its branches contain instructions.
- An expression if its branches contain Boolean expressions.

```
class
    FOO
feature --Attributes
    x, y: INTEGER
feature -- Commands
    command
                -- A command with if-statements in implementation and contracts
        require
            if x \\ 2 /= 0 then True else False end -- Or: x \\ 2 /= 0
        do
            if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end
        ensure
            y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
            -- Or: (old x > O implies y = 1)
            -- and (old x < O implies y = -1) and (old x = 0 implies y = 0)
        end
end

\section*{Loops (1)}
- In Java, the Boolean conditions in for and while loops are stay conditions.
```

void printStuffs() {
int i = 0;
while(i < 10 /* stay condition */) {
System.out.println(i);
i = i + 1;
}
}

```
- In the above Java loop, we stay in the loop as long as i < 10 is true.
- In Eiffel, we think the opposite: we exit the loop as soon as i >= 10 is true.

\section*{Loops (2)}

In Eiffel, the Boolean conditions you need to specify for loops are exit conditions (logical negations of the stay conditions).
```

print_stuffs
local
i: INTEGER
do
from
i := 0
until
i >= 10 -- exit condition
loop
print (i)
i := i + 1
end -- end loop
end -- end command

```
- Don't put () after a command or query with no input parameters.
- Local variables must all be declared in the beginning.

\section*{Library Data Structures}

Enter a DS name.


\section*{Explore supported features.}
```

Features
\#[1]:= 0] 国1
|}\mathrm{ Inherit
\& RESIZABLE [G]
O INDEXABLE [G, INTEGER]
OTO_SPECIAL [G]
\square}|\mathrm{ Initialization
\#
\# make_filled
\& make
\# make_from_array
\#\#make_from_special
\#}=\mathrm{ make_from_cil
\square Access
\# item
4F at
\# entry
Groups Features NutoTest

```

\section*{Data Structures: Arrays}
- Creating an empty array:
```

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty

```
- This creates an array of lower and upper indices 1 and 0.
- Size of array a: a.upper - a.lower + 1 .
- Typical loop structure to iterate through an array:
```

local
a: ARRAY[INTEGER]
i, j: INTEGER
do
from
j := a.lower
until
j > a.upper
do
i := a [j]
j := j + 1

Data Structures: Linked Lists (1)

Data Structures: Linked Lists (2)

- Creating an empty linked list:

```
local
    list: LINKED_LIST[INTEGER]
do
    create {LINKED_LIST[INTEGER]} list.make
```

- Typical loop structure to iterate through a linked list:

```
local
    list: LINKED_LIST[INTEGER]
    i: INTEGER
do
from
    list.start
until
    list.after
do
    i := list.item
    list.forth
end

\section*{Iterable Structures}
- Eiffel collection types (like in Java) are iterable .
- If indices are irrelevant for your application, use:
```

across ... as ... loop ... end
e.g.,
local
a: ARRAY[INTEGER]
1: LINKED_LIST [INTEGER]
sum1, sum2: INTEGER
do
across a as cursor loop sum1 := sum1 + cursor.item end
across l as cursor loop sum2 := sum2 + cursor.item end
end

```

\section*{Using across for Quantifications (1.1)}
- across ... as ... all ... end

A Boolean expression acting as a universal quantification \((\forall)\)
```

local
allPositive: BOOLEAN
a: ARRAY[INTEGER]
do
Result :=
across
a.lower |..| a.upper as i
all
a [i.item] > 0
end

```
- L8: a.lower | ..| a.upper denotes a list of integers.
- L8: as i declares a list cursor for this list.
- L10: i. item denotes the value pointed to by cursor i.
- L9: Changing the keyword all to some makes it act like an existential quantification \(\exists\).

\section*{Using across for Quantifications (1.2)}
- Alternatively: across ... is ... all ... end

A Boolean expression acting as a universal quantification ( \(\forall\) )
```

local
allPositive: BOOLEAN
a: ARRAY[INTEGER]
do
Result :=
across
a.lower |..| a.upper is i
all
a [i] > 0
end

```
- L8: a.lower |..| a.upper denotes a list of integers.
- L8: is i declares a variable for storing a member of the list.
- L10: i denotes the value itself.
- L9: Changing the keyword all to some makes it act like an existential quantification \(\exists\).

\section*{Using across for Quantifications (2)}
```

class
CHECKER
feature -- Attributes
collection: ITERABLE [INTEGER] -- ARRAY, LIST, HASH_TABLE
feature -- Queries
is_all_positive: BOOLEAN
-- Are all items in collection positive?
do
ensure
across
collection as cursor
all
cursor.item > 0
end
end

```
- Using all corresponds to a universal quantification (i.e., \(\forall\) ).
- Using some corresponds to an existential quantification (i.e., ヨ).

\section*{Using across for Quantifications (3)}
```

class BANK
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
-- Search on accounts sorted in non-descending order.
require
-- \foralli:INTEGER | 1 \leqi< accounts.count \bullet accounts[i].id \leq accounts[i+1].id
across
1 |..| (accounts.count - 1) as cursor
all
accounts [cursor.item].id <= accounts [cursor.item + 1].id
end
do
ensure
Result.id = acc_id
end

```

\section*{Using across for Quantifications (4)}
```

class BANK
accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN
-- Does the account list contain duplicate?
do
ensure
\foralli,j: INTEGER |
1\leqi\leq accounts.count ^ 1\leqj\leq accounts.count \bullet
accounts[i] ~ accounts[j] =>i=j
end

```
- Exercise: Convert this mathematical predicate for postcondition into Eiffel.
- Hint: Each across construct can only introduce one dummy variable, but you may nest as many across constructs as necessary.

\section*{Equality}
- To compare references between two objects, use \(=\).
- To compare "contents" between two objects of the same type, use the redefined version of is_equal feature.
- You may also use the binary operator ~
o1 ~ o2 evaluates to:
- true
- false
- o1.is_equal(o2)
if both \(\circ 1\) and \(\circ 2\) are void if one is void but not the other if both are not void

\section*{Use of \(\sim\) : Caution}
```

class
BANK
feature -- Attribute
accounts: ARRAY[ACCOUNT]
feature -- Queries
get_account (id: STRING): detachable ACCOUNT
-- Account object with 'id'.
do
across
accounts as cursor
loop
if cursor.item ~ id then
Result := cursor.item
end
end
end
end

```

L15 should be: cursor.item.id ~ id

\section*{Review of Propositional Logic (1)}
- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
- Binary logical operators: conjunction ( \(\wedge\) ), disjunction ( \(\vee\) ), implication \((\Rightarrow)\), and equivalence (a.k.a if-and-only-if \(\Longleftrightarrow\) )
\begin{tabular}{|c|c||c|c|c|c|}
\hline\(p\) & \(q\) & \(p \wedge q\) & \(p \vee q\) & \(p \Rightarrow q\) & \(p \Longleftrightarrow q\) \\
\hline \hline true & true & true & true & true & true \\
true & false & false & true & false & false \\
false & true & false & true & true & false \\
false & false & false & false & true & true \\
\hline
\end{tabular}
- Unary logical operator: negation ( \(\neg\) )
\begin{tabular}{|c||c|}
\hline\(p\) & \(\neg p\) \\
\hline \hline true \\
false
\end{tabular} \begin{tabular}{c} 
false \\
true \\
\hline
\end{tabular}

\section*{Review of Propositional Logic: Implication}
- Written as \(p \Rightarrow q\)
- Pronounced as "p implies q"
- We call \(p\) the antecedent, assumption, or premise.
- We call \(q\) the consequence or conclusion.
- Compare the truth of \(p \Rightarrow q\) to whether a contract is honoured: \(p \approx\) promised terms; and \(q \approx\) obligations.
- When the promised terms are met, then:
- The contract is honoured if the obligations are fulfilled.
- The contract is breached if the obligations are not fulfilled.
- When the promised terms are not met, then:
- Fulfilling the obligation \((q)\) or not \((\neg q)\) does not breach the contract.
\begin{tabular}{|c|c||c|}
\hline\(p\) & \(q\) & \(p \Rightarrow q\) \\
\hline \hline true & true & true \\
true & false & false \\
false & true & true \\
false & false & true \\
\hline
\end{tabular}

\section*{Review of Propositional Logic (2)}
- Axiom: Definition of \(\Rightarrow\)
\[
p \Rightarrow q \equiv \neg p \vee q
\]
- Theorem: Identity of \(\Rightarrow\)
- Theorem: Zero of \(\Rightarrow\)
\[
\text { true } \Rightarrow p \equiv p
\]
\[
\text { false } \Rightarrow p \equiv \text { true }
\]
- Axiom: De Morgan
\[
\begin{aligned}
\neg(p \wedge q) & \equiv \neg p \vee \neg q \\
\neg(p \vee q) & \equiv \neg p \wedge \neg q
\end{aligned}
\]
- Axiom: Double Negation
\[
p \equiv \neg(\neg p)
\]
- Theorem: Contrapositive
\[
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
\]

\section*{Review of Predicate Logic (1)}
- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
- \(\mathbb{Z}\) : the set of integers
- \(\mathbb{N}\) : the set of natural numbers
- Variable(s) in a predicate may be quantified:
- Universal quantification :

All values that a variable may take satisfy certain property. e.g., Given that \(i\) is a natural number, \(i\) is always non-negative.
- Existential quantification :

Some value that a variable may take satisfies certain property. e.g., Given that \(i\) is an integer, \(i\) can be negative.

\section*{Review of Predicate Logic (2.1)}
- A universal quantification has the form \((\forall X \mid R \bullet P)\)
- \(X\) is a list of variable declarations
- \(R\) is a constraint on ranges of declared variables
- \(P\) is a property
- \((\forall X \mid R \bullet P) \equiv(\forall X \bullet R \Rightarrow P)\)
e.g., \((\forall X \mid\) True • \(P) \equiv(\forall X\) • True \(\Rightarrow P) \equiv(\forall X \bullet P)\)
e.g., \((\forall X \mid\) False • \(P) \equiv(\forall X \bullet\) False \(\Rightarrow P) \equiv(\forall X \bullet\) True \() \equiv\) True
- For all (combinations of) values of variables declared in \(X\) that satisfies \(R\), it is the case that \(P\) is satisfied.
```

- $\forall i \mid i \in \mathbb{N}$ • $i \geq 0$
- $\forall i \mid i \in \mathbb{Z} \bullet i \geq 0$
- $\forall i, j \mid i \in \mathbb{Z} \wedge j \in \mathbb{Z} \bullet i<j \vee i>j$

```
- The range constraint of a variable may be moved to where the variable is declared.
```

- }\foralli:\mathbb{N}\bulleti\geq
- }\foralli:\mathbb{Z}\bulleti\geq
\circ}\foralli,j:\mathbb{Z}\bulleti<j\veei>

Review of Predicate Logic (2.2)

- An existential quantification has the form $(\exists X \mid R \bullet P)$
- X is a list of variable declarations
- R is a constraint on ranges of declared variables
- P is a property
- $(\exists X \mid R \bullet P) \equiv(\exists X \bullet R \wedge P)$
e.g., $(\exists X \mid$ True • $P) \equiv(\exists X$ • True $\wedge P) \equiv(\forall X \bullet P)$
e.g., $(\exists X \mid$ False • $P) \equiv(\exists X \bullet$ False $\wedge P) \equiv(\exists X \bullet$ False $) \equiv$ False
- There exists a combination of values of variables declared in X that satisfies R and P.

```
- \(\exists i \mid i \in \mathbb{N} \bullet i \geq 0\)
- \(\exists i \mid i \in \mathbb{Z} \bullet i \geq 0\)
- \(\exists i, j \mid i \in \mathbb{Z} \wedge j \in \mathbb{Z} \bullet i<j \vee i>j\)
- The range constraint of a variable may be moved to where the variable is declared.
\[
\begin{aligned}
& \circ \exists i: \mathbb{N} \bullet i \geq 0 \\
& \circ \exists i: \mathbb{Z} \bullet i \geq 0 \\
& \circ \exists i, j: \mathbb{Z} \bullet i<j \vee i>j \\
& \text { (35 of 40 }
\end{aligned}
\]

\section*{Predicate Logic (3)}
- Conversion between \(\forall\) and \(\exists\)
\[
\begin{aligned}
& (\forall X \mid R \bullet P) \Longleftrightarrow \neg(\exists X \bullet R \Rightarrow \neg P) \\
& (\exists X \mid R \bullet P) \Longleftrightarrow \neg(\forall X \bullet R \Rightarrow \neg P)
\end{aligned}
\]
- Range Elimination
\[
\begin{aligned}
& (\forall X \mid R \bullet P) \Longleftrightarrow(\forall X \bullet R \Rightarrow P) \\
& (\exists X \mid R \bullet P) \Longleftrightarrow(\exists X \bullet R \wedge P)
\end{aligned}
\]

\section*{Index (1)}

Escape Sequences

\section*{Commands, Queries, and Features}

Naming Conventions
Class Declarations
Class Constructor Declarations (1)
Creations of Objects (1)
Attribute Declarations
Method Declaration
Operators: Assignment vs. Equality
Operators: Division and Modulo
Operators: Logical Operators (1)

\section*{Index (2)}

Operators: Logical Operators (2)
Selections (1)
Selections (2)
Loops (1)
Loops (2)
Library Data Structures
Data Structures: Arrays
Data Structures: Linked Lists (1)
Data Structures: Linked Lists (2)
terable Data Structures
Using across for Quantifications (1.1)

\section*{Index (3)}

Using across for Quantifications (1.2)
Using across for Quantifications (2)
Using across for Quantifications (3)
Using across for Quantifications (4)
Equality
Use of \(\sim\) : Caution
Review of Propositional Logic (1)
Review of Propositional Logic: Implication
Review of Propositional Logic (2)
Review of Predicate Logic (1)
Review of Predicate Logic (2.1)

\section*{Index (4)}

Review of Predicate Logic (2.2)
Predicate Logic (3)```

