
Design-by-Contract (Dbc)
Test-Driven Development (TDD)

Readings: OOSC2 Chapter 11

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

Motivation of this Course

● Focus is design
○ Architecture: work with many interacting classes○ Specification: being mathematically precise about expectations

● For this course, having a prototypical, working implementation
for your design suffices.

● A later refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
∴ Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

2 of 38

Catching Defects:
Design or Implementation Phase?
● To minimize development costs , minimize software defects.
∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle:
Requirements → Design → Implementation → Release
∴ Catch defects as early as possible .

● Discovering defects after release costs up to 30 times more
than catching them in the design phase.

● Choice of design language for your project is therefore of
paramount importance.

Source: Minimizing code defects to improve software quality and lower development costs.
3 of 38

Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.○ The client are required to follow certain instructions to obtain the

service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).○ The client does not care how the supplier implements it.● What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER assume instructions followed provide a service
● There is a contract between two parties, violated if:○ The instructions are not followed. [Client’s fault]○ Instructions followed, but service not satisfactory. [Supplier’s fault]
4 of 38

Client, Supplier, Contract in OOP (1)

class Microwave {

private boolean on;

private boolean locked;

void power() {on = true;}

void lock() {locked = true;}

void heat(Object stuff) {

/* Assume: on && locked */

/* stuff not explosive. */

} }

class MicrowaveUser {

public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;

m.power(); m.lock();]

m.heat(obj);
} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]○ Supplier: type of context object (or call target) m [Microwave]

5 of 38

Client, Supplier, Contract in OOP (2)
class Microwave {

private boolean on;

private boolean locked;

void power() {on = true;}

void lock() {locked = true;}

void heat(Object stuff) {

/* Assume: on && locked */

/* stuff not explosive. */ } }

class MicrowaveUser {

public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;

m.power(); m.lock();

m.heat(obj);
} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.● If any of these fails, there is a contract violation.● m.on or m.locked is false ⇒ MicrowaveUser’s fault.● obj is an explosive ⇒ MicrowaveUser’s fault.● A fault from the client is identified ⇒ Method call will not start.● Method executed but obj not properly heated ⇒ Microwave’s fault

6 of 38

What is a Good Design?
● A “good” design should explicitly and unambiguously describe

the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We such a contractual relation a specification .● When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.○ Instructions to clients should not be unreasonable.

e.g., asking them to assemble internal parts of a microwave○ Working conditions for suppliers should not be unconditional .
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!○ You as a designer should strike proper balance between

obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]○ Upon contract violation, there should be the fault of only one side.

○ This design process is called Design by Contract (DbC) .
7 of 38

A Simple Problem: Bank Accounts
Provide an object-oriented solution to the following problem:

REQ1 : Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.
REQ2 : We may withdraw an integer amount from an account.

REQ3 : Each bank stores a list of accounts.

REQ4 : Given a bank, we may add a new account in it.

REQ5 : Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").
REQ6 : Given a bank, we may withdraw from a specific

account, identified by its name, for an integer amount.

Let’s first try to work on REQ1 and REQ2 in Java.
This may not be as easy as you might think!

8 of 38

Playing the Various Versions in Java

● Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/˜jackie/teaching/

lectures/2018/F/EECS3311/codes/DbCIntro.zip

● Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQZg2qY

● Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

9 of 38

Version 1: An Account Class
1 public class AccountV1 {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountV1(String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;

11 }

12 public String toString() {

13 return owner + "’s current balance is: " + balance;

14 }

15 }

● Is this a good design? Recall REQ1 : Each account is
associated with . . . an integer balance that is always positive .

● This requirement is not reflected in the above Java code.
10 of 38

Version 1: Why Not a Good Design? (1)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Alan with balance -10:");

AccountV1 alan = new AccountV1("Alan", -10) ;

System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:

Alan’s current balance is: -10

● Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). ⇒ Violation of REQ1

● Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! ⇒ A lack of defined contract

11 of 38

Version 1: Why Not a Good Design? (2)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Mark with balance 100:");

AccountV1 mark = new AccountV1("Mark", 100);

System.out.println(mark);

System.out.println("Withdraw -1000000 from Mark’s account:");

mark. withdraw(-1000000) ;

System.out.println(mark);

Create an account for Mark with balance 100:

Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:

Mark’s current balance is: 1000100

● Mark’s account state is always valid (i.e., 100 and 1000100).
● Withdraw amount is never negative! ⇒ Violation of REQ2
● Again a lack of contract between BankAppV1 and AccountV1.
12 of 38

Version 1: Why Not a Good Design? (3)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Tom with balance 100:");

AccountV1 tom = new AccountV1("Tom", 100);

System.out.println(tom);

System.out.println("Withdraw 150 from Tom’s account:");

tom. withdraw(150) ;

System.out.println(tom);

Create an account for Tom with balance 100:

Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

● Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid . ⇒ Violation of REQ1

● Again a lack of contract between BankAppV1 and AccountV1.
13 of 38

Version 1: How Should We Improve it?
● Preconditions of a method specify the precise circumstances

under which that method can be executed.○ Precond. of divide(int x, int y)? [y != 0]○ Precond. of binSearch(int x, int[] xs)? [xs is sorted]● The best we can do in Java is to encode the logical negations
of preconditions as exceptions:○ divide(int x, int y)

throws DivisionByZeroException when y == 0.○ binSearch(int x, int[] xs)

throws ArrayNotSortedException when xs is not sorted.○ It should be preferred to design your method by specifying the
preconditions (i.e., valid inputs) it requires, rather than the
exceptions (i.e., erroneous inputs) that it might trigger.● Create Version 2 by adding exceptional conditions (an

approximation of preconditions) to the constructor and
withdraw method of the Account class.

14 of 38

Version 2: Added Exceptions
to Approximate Method Preconditions

1 public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */

14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

15 of 38

Version 2: Why Better than Version 1? (1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Alan with balance -10:");

4 try {

5 AccountV2 alan = new AccountV2("Alan", -10) ;

6 System.out.println(alan);

7 }

8 catch (BalanceNegativeException bne) {

9 System.out.println("Illegal negative account balance.");

10 }

Create an account for Alan with balance -10:

Illegal negative account balance.

L6: When attempting to call the constructor AccountV2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object .
16 of 38

Version 2: Why Better than Version 1? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Mark with balance 100:");

4 try {

5 AccountV2 mark = new AccountV2("Mark", 100);

6 System.out.println(mark);

7 System.out.println("Withdraw -1000000 from Mark’s account:");

8 mark. withdraw(-1000000) ;

9 System.out.println(mark);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

17 of 38

Version 2: Why Better than Version 1? (2.2)
Console Output:
Create an account for Mark with balance 100:

Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:

Illegal negative withdraw amount.

● L9: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

● We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppV2’s code to get
complicated by the try-catch statements.

● Adding clear contract (preconditions in this case) to the design
should not be at the cost of complicating the client’s code!!

18 of 38

Version 2: Why Better than Version 1? (3.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Tom with balance 100:");

4 try {

5 AccountV2 tom = new AccountV2("Tom", 100);

6 System.out.println(tom);

7 System.out.println("Withdraw 150 from Tom’s account:");

8 tom. withdraw(150) ;

9 System.out.println(tom);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

19 of 38

Version 2: Why Better than Version 1? (3.2)
Console Output:
Create an account for Tom with balance 100:

Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

● L9: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException

(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

● We should observe that due to the added preconditions to the
supplier BankV2’s code, the client BankAppV2’s code is forced
to repeat the long list of the try-catch statements.

● Indeed, adding clear contract (preconditions in this case)
should not be at the cost of complicating the client’s code!!

20 of 38

Version 2: Why Still Not a Good Design? (1)
1 public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */

14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

● Are all the exception conditions (¬ preconditions) appropriate?
● What if amount == balance when calling withdraw?
21 of 38

Version 2: Why Still Not a Good Design? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:");

4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);

6 System.out.println(jim);

7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

22 of 38

Version 2: Why Still Not a Good Design? (2.2)

Create an account for Jim with balance 100:

Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of REQ1), there should have
been a precondition violation.

Supplier AccountV2’s exception condition balance < amount

has a missing case :
● Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).● ∴ L13 of AccountV2 should be balance <= amount.

23 of 38

Version 2: How Should We Improve it?
● Even without fixing this insufficient precondition, we could

have avoided the above scenario by checking at the end of
each method that the resulting account is valid .
⇒We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

● Invariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.○ Inv. of CSMajoarStudent? [gpa >= 4.5]○ Inv. of BinarySearchTree? [in-order trav. → sorted key seq.]● The best we can do in Java is encode invariants as assertions:○ CSMajorStudent: assert this.gpa >= 4.5○ BinarySearchTree: assert this.inOrder() is sorted○ Unlike exceptions, assertions are not in the class/method API.

● Create Version 3 by adding assertions to the end of
constructor and withdraw method of the Account class.

24 of 38

Version 3: Added Assertions
to Approximate Class Invariants

1 public class AccountV3 {

2 public AccountV3(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 assert this.getBalance() > 0 : "Invariant: positive balance";

9 }

10 public void withdraw(int amount) throws

11 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

12 if(amount < 0) { /* negated precondition */

13 throw new WithdrawAmountNegativeException(); }

14 else if (balance < amount) { /* negated precondition */

15 throw new WithdrawAmountTooLargeException(); }

16 else { this.balance = this.balance - amount; }

17 assert this.getBalance() > 0 : "Invariant: positive balance";

18 }

25 of 38

Version 3: Why Better than Version 2?
1 public class BankAppV3 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:");

4 try { AccountV3 jim = new AccountV3("Jim", 100);

5 System.out.println(jim);

6 System.out.println("Withdraw 100 from Jim’s account:");

7 jim. withdraw(100) ;

8 System.out.println(jim); }

9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jim with balance 100:

Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Exception in thread "main"

java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw(100), Jim has a zero
balance, an assertion failure (i.e., invariant violation) occurs,
preventing further operations on this invalid account object .

26 of 38

Version 3: Why Still Not a Good Design? (1)
Let’s review what we have added to the method withdraw:
○ From Version 2 : exceptions encoding negated preconditions
○ From Version 3 : assertions encoding the class invariants

1 public class AccountV3 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 if(amount < 0) { /* negated precondition */

5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */

7 throw new WithdrawAmountTooLargeException(); }

8 else { this.balance = this.balance - amount; }

9 assert this.getBalance() > 0 : "Invariant: positive balance"; }

However, there is no contract in withdraw which specifies:○ Obligations of supplier (AccountV3) if preconditions are met.○ Benefits of client (BankAppV3) after meeting preconditions.⇒We illustrate how problematic this can be by creating
Version 4 , where deliberately mistakenly implement withdraw.

27 of 38

Version 4: What If the
Implementation of withdraw is Wrong? (1)

1 public class AccountV4 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException

4 { if(amount < 0) { /* negated precondition */

5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */

7 throw new WithdrawAmountTooLargeException(); }

8 else { /* WRONT IMPLEMENTATION */

9 this.balance = this.balance + amount; }

10 assert this.getBalance() > 0 :

11 owner + "Invariant: positive balance"; }

○ Apparently the implementation at L11 is wrong.○ Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.⇒ The class invariant will not catch this flaw.○ When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

28 of 38

Version 4: What If the
Implementation of withdraw is Wrong? (2)

1 public class BankAppV4 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV4 jeremy = new AccountV4("Jeremy", 100);

5 System.out.println(jeremy);

6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }

9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:

Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. ⇒ Violation of REQ2

29 of 38

Version 4: How Should We Improve it?
● Postconditions of a method specify the precise conditions

which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

○ Postcondition of double divide(int x, int y)?
[Result × y == x]○ Postcondition of boolean binSearch(int x, int[] xs)?

[x ∈ xs ⇐⇒ Result]
● The best we can do in Java is, similar to the case of invariants,

encode postconditions as assertions.
But again, unlike exceptions, these assertions will not be part of
the class/method API.

● Create Version 5 by adding assertions to the end of
withdraw method of the Account class.

30 of 38

Version 5: Added Assertions
to Approximate Method Postconditions

1 public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 int oldBalance = this.balance;

5 if(amount < 0) { /* negated precondition */

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /* negated precondition */

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 assert this.getBalance() == oldBalance - amount :

12 "Postcondition: balance deducted"; }

A postcondition typically relates the pre-execution value and the
post-execution value of each relevant attribute (e.g.,balance in
the case of withdraw).⇒ Extra code (L4) to capture the pre-execution value of balance for

the comparison at L11.
31 of 38

Version 5: Why Better than Version 4?
1 public class BankAppV5 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV5 jeremy = new AccountV5("Jeremy", 100);

5 System.out.println(jeremy);

6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }

9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:

Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Exception in thread "main"

java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw(50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object .

32 of 38

Evolving from Version 1 to Version 5
Improvements Made Design Flaws

V1 – Complete lack of Contract

V2 Added exceptions as
method preconditions

Preconditions not strong enough (i.e., with missing
cases) may result in an invalid account state.

V3 Added assertions as
class invariants

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V4
Deliberately changed
withdraw’s implementa-
tion to be incorrect.

The incorrect implementation does not result in a state
that violates the class invariants.

V5 Added assertions as
method postconditions –

● In Versions 2, 3, 4, 5, preconditions approximated as exceptions.
/ These are not preconditions, but their logical negation .
/ Client BankApp’s code complicated by repeating the list of try-catch statements.● In Versions 3, 4, 5, class invariants and postconditions approximated as assertions.
/ Unlike exceptions, these assertions will not appear in the API of withdraw.
Potential clients of this method cannot know : 1) what their benefits are; and 2) what
their suppliers’ obligations are.
/ For postconditions, extra code needed to capture pre-execution values of attributes.

33 of 38

Version 5:
Contract between Client and Supplier

benefits obligations
BankAppV5.main balance deduction amount non-negative

(CLIENT) positive balance amount not too large
BankV5.withdraw amount non-negative balance deduction

(SUPPLIER) amount not too large positive balance

benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

34 of 38

DbC in Java
DbC is possible in Java, but not appropriate for your learning:● Preconditions of a method:

Supplier● Encode their logical negations as exceptions.● In the beginning of that method, a list of if-statements for throwing
the appropriate exceptions.

Client● A list of try-catch-statements for handling exceptions.● Postconditions of a method:
Supplier● Encoded as a list of assertions, placed at the end of that method.
Client● All such assertions do not appear in the API of that method.● Invariants of a class:
Supplier● Encoded as a list of assertions, placed at the end of every method.
Client● All such assertions do not appear in the API of that class.

35 of 38

Index (1)
Motivation of this Course
Catching Defects:
Design or Implementation Phase?
Terminology: Contract, Client, Supplier
Client, Supplier, Contract in OOP (1)
Client, Supplier, Contract in OOP (2)
What is a Good Design?
A Simple Problem: Bank Accounts
Playing with the Various Versions in Java
Version 1: An Account Class
Version 1: Why Not a Good Design? (1)
Version 1: Why Not a Good Design? (2)
Version 1: Why Not a Good Design? (3)
Version 1: How Should We Improve it?

36 of 38

Index (2)
Version 2: Added Exceptions
to Approximate Method Preconditions
Version 2: Why Better than Version 1? (1)
Version 2: Why Better than Version 1? (2.1)
Version 2: Why Better than Version 1? (2.2)
Version 2: Why Better than Version 1? (3.1)
Version 2: Why Better than Version 1? (3.2)
Version 2: Why Still Not a Good Design? (1)
Version 2: Why Still Not a Good Design? (2.1)
Version 2: Why Still Not a Good Design? (2.2)
Version 2: How Should We Improve it?
Version 3: Added Assertions
to Approximate Class Invariants
Version 3: Why Better than Version 2?

37 of 38

Index (3)
Version 3: Why Still Not a Good Design? (1)
Version 4: What If the
Implementation of withdraw is Wrong? (1)
Version 4: What If the
Implementation of withdraw is Wrong? (2)

Version 4: How Should We Improve it?
Version 5: Added Assertions
to Approximate Method Postconditions

Version 5: Why Better than Version 4?

Evolving from Version 1 to Version 5
Version 5:
Contract between Client and Supplier

DbC in Java
38 of 38

