

Learning Objectives

- 1. Motivating Examples: Program Correctness
- 2. Hoare Triple
- 3. Weakest Precondition (wp)
- 4. Rules of wp Calculus
- 5. Contract of Loops (*invariant* vs. *variant*)
- 6. *Correctness Proofs* of Loops

Assertions: Preconditions

Given preconditions P_1 and P_2 , we say that

 P_2 requires less than P_1 if

 $\overline{P_2}$ is *less strict* on (thus *allowing more*) inputs than P_1 does.

 $\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$

More concisely:

4 of 35

 $P_1 \Rightarrow P_2$

e.g., For command withdraw(amount: INTEGER),

 P_2 : *amount* ≥ 0 **requires less** than P_1 : *amount* > 0

What is the *precondition* that *requires the least*?

LASSONDE

Assertions: Postconditions

LASSONDE

Given postconditions or invariants Q_1 and Q_2 , we say that

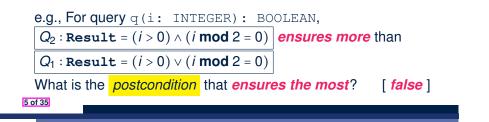
 Q_2 ensures more than Q_1 if

 Q_2 is *stricter* on (thus *allowing less*) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

$$Q_2 \Rightarrow Q_1$$



Motivating Examples (2)

Is this algorithm correct?

<pre>algorithm increment_by_9 { variable i;</pre>
{
(* precondition *)
assert i > 5
(* implementation *)
i := i + 9;
1.1.57
(* postcondition *)
assert i > 13
}
}
L
Q : Is <i>i</i> > 5 too weak or too strong?

A: Maybe too strong

 \therefore assertion *i* > 5 disallows 5 which would not fail postcondition.

7 of 35 Whether 5 should be allowed depends on the requirements.

Motivating Examples (1)

Is this algorithm correct?

	<pre>lgorithm increment_by_9 { ariable i;</pre>
{	(* precondition *) assert i > 3
	<pre>(* implementation *) i := i + 9;</pre>
	(* postcondition *) assert i > 13
}	

Q: Is i > 3 is too weak or too strong?

A: Too weak

 \therefore assertion *i* > 3 allows value 4 which would fail postcondition.

Software Correctness

LASSONDE

 Correctness is a *relative* notion: *consistency* of *implementation* with respect to *specification*. ⇒ This assumes there is a specification!

 We introduce a formal and systematic way for formalizing a program S and its *specification* (pre-condition *Q* and post-condition *R*) as a *Boolean predicate* : {*Q*} s {*R*}

• e.g.,
$$\{1 > 3\}$$
 1 := 1 + 9 $\{1 > 13\}$
• e.g., $\{i > 5\}$ 1 := 1 + 9 $\{i > 13\}$

- If $\{Q\} \in \{R\}$ can be proved **TRUE**, then the **S** is correct.
- $e.\underline{g.}, \{i > 5\}$ i := $i + 9\{i > 13\}$ can be proved TRUE.
- If $\{Q\} \in \{R\}$ cannot be proved TRUE, then the S is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.

Hoare Logic

- Consider a program **S** with precondition **Q** and postcondition **R**.
 - {**Q**} s {**R**} is a correctness predicate for program **S**
 - {**Q**} s {**R**} is TRUE if program **S** starts executing in a state satisfying the precondition **Q**, and then:
 - (a) The program S terminates.
 - (b) Given that program S terminates, then it terminates in a state satisfying the postcondition *R*.
- Separation of concerns
 - (a) requires a proof of *termination*.
- (b) requires a proof of *partial correctness*.

Proofs of (a) + (b) imply total correctness.

9 of 35

Proof of Hoare Triple using wp

$$\{Q\} \subseteq \{R\} \equiv Q \Rightarrow wp(S, R)$$

- $wp(S, \mathbf{R})$ is the weakest precondition for S to establish **R**.
 - If $Q \Rightarrow wp(S, R)$, then <u>any</u> execution started in a state satisfying Q will terminate in a state <u>satisfying</u> R.
 - If $Q \Rightarrow wp(S, \mathbf{R})$, then <u>some</u> execution started in a state satisfying Q will terminate in a state <u>violating</u> \mathbf{R} .
- *S* can be:
 - Assignments
 - Alternations
 - Sequential compositions
 - Loops
- We will learn how to calculate the wp for the above programming constructs.

LASSONDE

Hoare Logic and Software Correctness

Consider the *contract/specification* view of an <u>algorithm f</u> (whose body of implementation is **S**) as a Hoare Triple :

{**Q**} S {**R**}

 $\begin{array}{l} \label{eq:quarter} \textbf{Q} \text{ is the } \textit{precondition} \text{ of } f. \\ \text{S is the implementation of } f. \\ \end{tabular} \textbf{S} \text{ is the } \textit{postcondition} \text{ of } f. \\ \end{tabular} \circ \left\{ \textit{true} \right\} & \text{S} \left\{ R \right\} \\ & \text{All input values are valid} & [\text{Most-user friendly}] \\ \end{tabular} \circ \left\{ \textit{false} \right\} & \text{S} \left\{ R \right\} \\ & \text{All input values are invalid} & [\text{Most useless for clients}] \\ \end{tabular} \circ \left\{ Q \right\} & \text{S} \left\{ \textit{true} \right\} \\ & \text{All output values are valid} [\text{Most risky for clients; Easiest for suppliers}] \\ \end{tabular} \circ \left\{ Q \right\} & \text{S} \left\{ \textit{false} \right\} \end{array}$

All output values are invalid [Most challenging coding task] • {*true*} S {*true*}

All inputs/outputs are valid (No specification) [Least informative]

Denoting Pre- and Post-State Values

 $\begin{bmatrix} x \\ \vdots \end{bmatrix} = \begin{bmatrix} v \end{bmatrix}$

 $[S_1; S_2]$

[while(...) { ... }]

[if ... then ... else ... end]

- In the *postcondition*, for a program variable *x*:
 - We write x_0 to denote its *pre-state (old)* value.
 - We write x to denote its *post-state (new)* value.
 Implicitly, in the *precondition*, all program variables have their *pre-state* values.

e.g.,
$$\{b_0 > a\}$$
 b := b - a $\{b = b_0 - a\}$

- Notice that:
 - We may choose to write "b" rather than " b_0 " in preconditions \therefore All variables are pre-state values in preconditions
 - We don't write "b₀" in program
 there might be <u>multiple</u> intermediate values of a variable due to sequential composition

```
12 of 35
```

wp Rule: Assignments (1)

$Wp(x := e, \mathbf{R}) = \mathbf{R}[x := e]$

R[x := e] means to substitute all *free occurrences* of variable x in postcondition *R* by expression *e*.

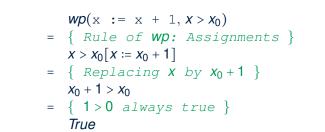
wp Rule: Assignments (3) Exercise

LASSONDE

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

 $\{??\} \times := \times + 1 \{x > x_0\}$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0).$



Any precondition is OK.

15 of 35

False is valid but not useful.

Recall:

13 of 35

$$\{\mathbf{Q}\} \le \{\mathbf{R}\} \equiv \mathbf{Q} \Rightarrow wp(\mathbf{S}, \mathbf{R})$$

How do we prove $\{Q\} \times := e \{R\}$?

wp Rule: Assignments (2)

$$\{\mathbf{Q}\} \times := e \{\mathbf{R}\} \iff \mathbf{Q} \Rightarrow \underbrace{\mathbf{R}[x := e]}_{wp(x := e, \mathbf{R})}$$

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition x = 23?

$$\{??\} \times := \times + 1 \{x = 23\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x = 23).$

Any precondition weaker than x = 22 is not OK.

wp Rule: Assignments (4) Revisit

Given $\{??\}n := n + 9\{n > 13\}$:

- n > 4 is the *weakest precondition (wp)* for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is *equal to or stronger than* the *wp* (*n* > 4) will result in a correct program.

e.g., $\{n > 5\}n := n + 9\{n > 13\}$ can be proved **TRUE**.

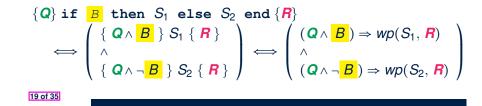
 Any precondition that is *weaker than* the *wp* (n > 4) will result in an incorrect program.

e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**.

Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

17 of 35

Recall: $\{Q\} \subseteq \{R\} \equiv Q \Rightarrow wp(S, R)$ How do we prove that $\{Q\}$ if B then S_1 else S_2 end $\{R\}$?



wp Rule: Alternations (1)

$$wp(if \ B \ then \ S_1 \ else \ S_2 \ end, \ R) = \begin{pmatrix} B \Rightarrow wp(S_1, \ R) \\ \land \\ \neg B \Rightarrow wp(S_2, \ R) \end{pmatrix}$$

The wp of an alternation is such that *all branches* are able to establish the postcondition R.

wp Rule: Alternations (3) Exercise

Is this program correct?

$\{x > 0 \land y > 0\}$		
if $x > y$ then		
bigger := x ; smaller := y		
else		
bigger := y ; smaller := x		
end		
$\{bigger \ge smaller\}$		

$$\left(\begin{array}{l} \left\{ (x > 0 \land y > 0) \land (x > y) \right\} \\ \text{bigger} := x ; \text{smaller} := y \\ \left\{ bigger \ge smaller \right\} \\ \land \\ \left(\begin{array}{l} \left\{ (x > 0 \land y > 0) \land \neg (x > y) \right\} \\ \text{bigger} := y ; \text{smaller} := x \\ \left\{ bigger \ge smaller \right\} \end{array}\right)$$

20 of 35

LASSONDE

 $wp(S_1 ; S_2, \mathbf{R}) = wp(S_1, wp(S_2, \mathbf{R}))$

The *wp* of a sequential composition is such that the first phase establishes the *wp* for the second phase to establish the postcondition R.

 \therefore *True* \Rightarrow *y* > *x* does not hold in general.

 \therefore The above program is not correct.

23 of 35

wp Rule: Sequential Composition (2)

Recall:

21 of 35

$$\{\mathbf{Q}\} \le \{\mathbf{R}\} \equiv \mathbf{Q} \Rightarrow wp(\mathbf{S}, \mathbf{R})$$

How do we prove $\{Q\} S_1$; $S_2 \{R\}$?

$$\{Q\} S_1 ; S_2 \{R\} \iff Q \Rightarrow \underbrace{wp(S_1, wp(S_2, R))}_{wp(S_1; S_2, R)}$$

Loops

• A loop is a way to compute a certain result by *successive approximations*.

e.g. computing the maximum value of an array of integers

- Loops are needed and powerful
- But loops very hard to get right:
 - "off-by-one" error

Infinite loops

- Not establishing the desired condition
 Improper handling of borderline cases
- [partial correctness] [partial correctness]
- [partial correctness]
 - [termination]

Correctness of Loops

LASSONDE

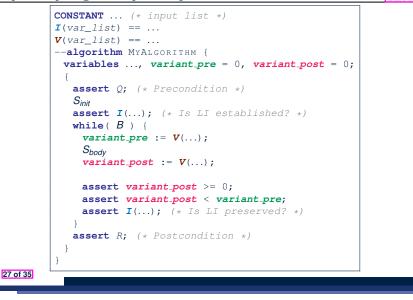
How do we prove that the following loop is correct?

In case of C/Java/PlusCal, *B* denotes the *stay condition*.

- In TLA+ toolbox, there is <u>not</u> native, syntactic support for model-checking the *total correctness* of loops.
- Instead, we have to manually add assertions to encode:
 - LOOP INVARIANT
 LOOP VARIANT
- [for establishing *partial correctness*] [for ensuring *termination*]

25 of 35

Specifying Loops: Syntax

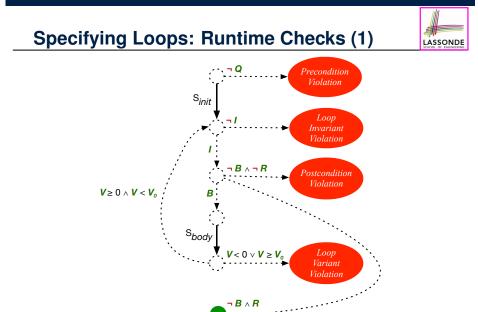


LASSONDE

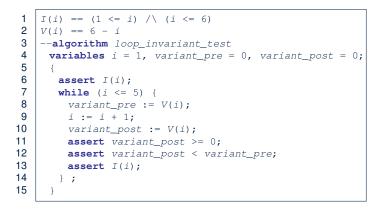
Specifying Loops

- Use of loop invariant (LI) and loop variant (LV).
 - LI: Boolean expression for measuring/proving partial correctness
 - Typically a special case of the postcondition.
 e.g., Given postcondition "*Result is maximum of the array*":
 LI can be "*Result is maximum of the part of array scanned so far*".
 - Established before the very first iteration.
 - *Maintained* TRUE after each iteration.
 - LV: Integer expression for measuring/proving termination
 - Denotes the "number of iterations remaining"
 - Decreased at the end of each subsequent iteration
 - Maintained *non-negative* at the end of each iteration.
 - As soon as value of *LV* reaches *zero*, meaning that no more iterations remaining, the loop must exit.
- Remember:

total correctness = partial correctness + termination



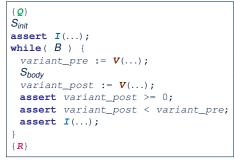
Specifying Loops: Runtime Checks (2)



- L1: Change to 1 <= i /\ i <= 5 for a Loop Invariant Violation.
- L2: Change to 5 i for a *Loop Variant Violation*.

29 of 35

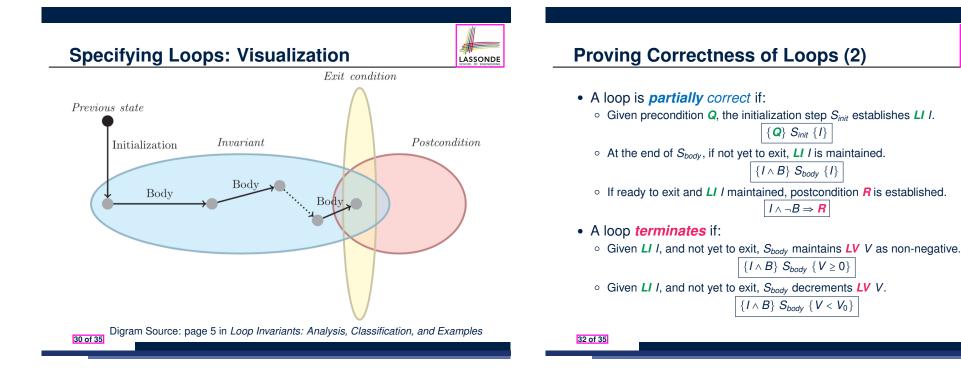
Proving Correctness of Loops (1)



LASSONDE

LASSONDE

- A loop is *partially* correct if:
 - Given precondition **Q**, the initialization step S_{init} establishes LI I.
 - At the end of Sbody, if not yet to exit, LI I is maintained.
 - If ready to exit and LI I maintained, postcondition R is established.
- A loop *terminates* if:
 - Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.
 - Given *LI I*, and not yet to exit, *S*_{body} decrements *LV V*.



Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting Pre- and Post-State Values

Index (3)

Loops

Correctness of Loops

Specifying Loops

Specifying Loops: Syntax

Specifying Loops: Runtime Checks (1)

Specifying Loops: Runtime Checks (2)

Specifying Loops: Visualization

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

35 of 35

Index (2)

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

