## Program Verification

Readings: Chapter 4 of LICS2

EECS4315 Z:

## YORK <br> UN IVERS ITEE <br> UN I VERS I TY

Mission-Critical Systems
Winter 2023
CHEN-WEI WANG

## Learning Objectives

1. Motivating Examples: Program Correctness
2. Hoare Triple
3. Weakest Precondition (wp)
4. Rules of wp Calculus
5. Contract of Loops (invariant vs. variant)
6. Correctness Proofs of Loops

## Assertions: Weak vs. Strong

- Describe each assertion as a set of satisfying value.

$$
x>3 \text { has satisfying values }\{x \mid x>3\}=\{4,5,6,7, \ldots\}
$$

$x>4$ has satisfying values $\{x \mid x>4\}=\{5,6,7, \ldots\}$

- An assertion $p$ is stronger than an assertion $q$ if $p$ 's set of satisfying values is a subset of $q$ 's set of satisfying values.
- Logically speaking, $p$ being stronger than $q$ (or, $q$ being weaker than $p$ ) means $p \Rightarrow q$.
- e.g., $x>4 \Rightarrow x>3$
- What's the weakest assertion?
- What's the strongest assertion?
- In System Specification:
- A weaker invariant has more acceptable object states e.g., balance $>0$ vs. balance $>100$ as an invariant for ACCOUNT
- A weaker precondition has more acceptable input values
- A weaker postcondition has more acceptable output values

30t 35

## Assertions: Preconditions

Given preconditions $P_{1}$ and $P_{2}$, we say that
$P_{2}$ requires less than $P_{1}$ if
$P_{2}$ is less strict on (thus allowing more) inputs than $P_{1}$ does.

$$
\left\{x \mid P_{1}(x)\right\} \subseteq\left\{x \mid P_{2}(x)\right\}
$$

More concisely:

$$
P_{1} \Rightarrow P_{2}
$$

e.g., For command withdraw (amount: INTEGER),
$P_{2}$ : amount $\geq 0$ requires less than $P_{1}$ : amount $>0$
What is the precondition that requires the least? [ true]

Given postconditions or invariants $Q_{1}$ and $Q_{2}$, we say that $Q_{2}$ ensures more than $Q_{1}$ if
$Q_{2}$ is stricter on (thus allowing less) outputs than $Q_{1}$ does.

$$
\left\{x \mid Q_{2}(x)\right\} \subseteq\left\{x \mid Q_{1}(x)\right\}
$$

More concisely:

$$
Q_{2} \Rightarrow Q_{1}
$$

e.g., For query q(i: INTEGER): BOOLEAN,
$Q_{2}:$ Result $=(i>0) \wedge(i \bmod 2=0)$ ensures more than
$Q_{1}:$ Result $=(i>0) \vee(i \bmod 2=0)$
What is the postcondition that ensures the most? [ false ] $50+35$


Q: Is $i>3$ is too weak or too strong?
A: Too weak
$\because$ assertion $i>3$ allows value 4 which would fail postcondition.

## Software Correctness

- Correctness is a relative notion:
consistency of implementation with respect to specification.
$\Rightarrow$ This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program $\mathbf{S}$ and its specification (pre-condition $Q$ and
post-condition $R$ ) as a Boolean predicate: $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$
- e.g., $\{i>3\}$ i := i + $9\{i>13\}$
- e.g., $\{i>5\}$ i : $=$ i + $9\{i>13\}$
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$ can be proved TruE, then the $\mathbf{S}$ is correct. e.g., $\{i>5\}$ i := i + $9\{i>13\}$ can be proved TruE.
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$ cannot be proved True, then the $\mathbf{S}$ is incorrect. e.g., $\{i>3\}$ i $:=i+9\{i>13\} \underline{\text { cannot be proved True. }}$
- Consider a program $\mathbf{S}$ with precondition $Q$ and postcondition $\boldsymbol{R}$.
- $\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\}$ is a correctness predicate for program $\mathbf{S}$
- $\{\boldsymbol{Q}\} S\{\boldsymbol{R}\}$ is TruE if program $\mathbf{S}$ starts executing in a state satisfying the precondition $Q$, and then:
(a) The program S terminates.
(b) Given that program $\mathbf{S}$ terminates, then it terminates in a state satisfying the postcondition $R$.
- Separation of concerns
(a) requires a proof of termination.
(b) requires a proof of partial correctness .

Proofs of $(\mathrm{a})+(\mathrm{b})$ imply total correctness .

9 of 35

## Hoare Logic and Software Correctness

Consider the contract/specification view of an algorithm $f$
(whose body of implementation is $\mathbf{S}$ ) as a Hoare Triple:

$$
\{Q\} S\{R\}
$$

$Q$ is the precondition of $f$.
$S$ is the implementation of $f$.
$R$ is the postcondition of $f$.

- $\{$ true $\}$ S $\{R\}$

All input values are valid

- $\{$ false $\}$ S $\{R\}$

All input values are invalid

- $\{Q\}$ S $\{$ true $\}$

All output values are valid [ Most risky for clients; Easiest for suppliers ]

- $\{Q\}$ S \{false $\}$

All output values are invalid [ Most challenging coding task ]

- $\{$ true $\}$ S $\{$ true $\}$

All inputs/outputs are valid (No specification) [ Least informative ]

$$
\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

- $w p(S, R)$ is the weakest precondition for $S$ to establish $\boldsymbol{R}$.
- If $Q \Rightarrow w p(S, R)$, then any execution started in a state satisfying $Q$ will terminate in a state satisfying $R$.
- If $Q \nRightarrow w p(S, R)$, then some execution started in a state satisfying $Q$ will terminate in a state violating $R$.
- $S$ can be:
- Assignments [x := y]
- Alternations [if ... then ... else ... end]
- Sequential compositions [ $S_{1} ; S_{2}$ ]
- Loops
[while(...) $\{\ldots\}]$
- We will learn how to calculate the wp for the above programming constructs.
11 of 35


## Denoting Pre- and Post-State Values

- In the postcondition, for a program variable $x$ :
- We write $x_{0}$ to denote its pre-state (old) value.
- We write $X$ to denote its post-state (new) value. Implicitly, in the precondition, all program variables have their pre-state values.

$$
\text { e.g., }\left\{b_{0}>a\right\} \mathrm{b}:=\mathrm{b}-\mathrm{a}\left\{b=b_{0}-a\right\}
$$

- Notice that:
- We may choose to write " $b$ " rather than " $b_{0}$ " in preconditions $\because$ All variables are pre-state values in preconditions
- We don't write " $b_{0}$ " in program
$\because$ there might be multiple intermediate values of a variable due to sequential composition

$$
w p(\mathrm{x}:=e, R)=\boldsymbol{R}[x:=e]
$$

$R[x:=e]$ means to substitute all free occurrences of variable $x$ in postcondition $R$ by expression $e$.

13 of 35
wp Rule: Assignments (2)

Recall:

$$
\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{\boldsymbol{Q}\} \times:=e\{\boldsymbol{R}\}$ ?

$$
\{\boldsymbol{Q}\} \mathrm{x}:=\mathrm{e}\{\boldsymbol{R}\} \Longleftrightarrow \boldsymbol{Q} \Rightarrow \underbrace{R[x:=e]}_{w p(\mathrm{x}:=\mathrm{e}, R)}
$$

## wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x>x_{0}$ ?

$$
\{? ?\} \mathrm{x}:=\mathrm{x}+1\left\{x>x_{0}\right\}
$$

For the above Hoare triple to be TRUE, it must be that $? ? \Rightarrow w p\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right)$.

```
    \(w p\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right)\)
\(=\{\) Rule of wp: Assignments \}
    \(x>x_{0}\left[x:=x_{0}+1\right]\)
\(=\left\{\right.\) Replacing \(x\) by \(\left.x_{0}+1\right\}\)
    \(x_{0}+1>x_{0}\)
    \(=\{1>0\) always true \(\}\)
    True
```

    Any precondition is OK.
    False is valid but not useful.
15 of 35

## wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x=23$ ?

$$
\{? ?\} \mathrm{x}:=\mathrm{x}+1\{x=23\}
$$

For the above Hoare triple to be TRUE, it must be that

$$
? ? \Rightarrow w p(\mathrm{x}:=\mathrm{x}+1, x=23) .
$$

$$
w p(\mathrm{x}:=\mathrm{x}+1, x=23)
$$

$=$ \{ Rule of wp: Assignments \}

$$
x=23\left[x:=x_{0}+1\right]
$$

$=\left\{\right.$ Replacing $x$ by $\left.x_{0}+1\right\}$

$$
x_{0}+1=23
$$

$=\{$ arithmetic $\}$

$$
x_{0}=22
$$

Any precondition weaker than $x=22$ is not OK.
(16ot 35
wp Rule: Assignments (4) Revisit
Given $\{? ?\} n:=n+9\{n>13\}$ :

- $n>4$ is the weakest precondition (wp) for the given implementation ( $\mathrm{n}:=\mathrm{n}+9$ ) to start and establish the postcondition ( $n>13$ ).
- Any precondition that is equal to or stronger than the wp ( $n>4$ ) will result in a correct program.
e.g., $\{n>5\} n:=n+9\{n>13\}$ can be proved TRUE.
- Any precondition that is weaker than the $w p(n>4)$ will result in an incorrect program.
e.g., $\{n>3\} n:=n+9\{n>13\}$ cannot be proved TRUE. Counterexample: $n=4$ satisfies precondition $n>3$ but the output $n=13$ fails postcondition $n>13$.
$w p\left(\right.$ if $B$ then $S_{1}$ else $S_{2}$ end, $\left.R\right)=\left(\begin{array}{l}B \Rightarrow w p\left(S_{1}, R\right) \\ \wedge \\ \neg B \Rightarrow w p\left(S_{2}, R\right)\end{array}\right)$
The wp of an alternation is such that all branches are able to establish the postcondition $\boldsymbol{R}$.


## wp Rule: Alternations (2)

```
{Q}
if }B\mathrm{ then
{Q^B} S S {R}
else
{Q^\negB} S2 {R}
end
{R}
```

Recall: $\quad\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})$
How do we prove that $\{Q\}$ if $B$ then $S_{1}$ else $S_{2}$ end $\{R\}$ ?
$\{Q\}$ if $B$ then $S_{1}$ else $S_{2}$ end $\{R\}$
$\Longleftrightarrow\left(\begin{array}{l}\{Q \wedge B\} S_{1}\{\boldsymbol{R}\} \\ \wedge \\ \{Q \wedge \neg B\} S_{2}\{\boldsymbol{R}\}\end{array}\right) \Longleftrightarrow\left(\begin{array}{l}(\boldsymbol{Q} \wedge B) \Rightarrow w p\left(S_{1}, R\right) \\ \wedge \\ (Q \wedge \neg B) \Rightarrow w p\left(S_{2}, R\right)\end{array}\right)$
19 of 35

## wp Rule: Alternations (3) Exercise

```
Is this program correct?
```

```
{x>0\wedge y>0}
if }x>y\mathrm{ then
bigger := x ; smaller := y
else
bigger := y ; smaller := x
end
{bigger }\geq\mathrm{ smaller}
```

$$
\left(\begin{array}{l}
\{(x>0 \wedge y>0) \wedge(x>y)\} \\
\text { bigger }:=x ; \text { smaller }:=y \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right)
$$

$$
\wedge
$$

$$
\left(\begin{array}{l}
\{(x>0 \wedge y>0) \wedge \neg(x>y)\} \\
\text { bigger }:=y ; \text { smaller }:=x \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right)
$$

$$
w p\left(S_{1} ; S_{2}, R\right)=w p\left(S_{1}, w p\left(S_{2}, R\right)\right)
$$

The wp of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition $R$.

21 of 35


Recall:

$$
\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{Q\} S_{1} ; S_{2}\{R\}$ ?

$$
\{\boldsymbol{Q}\} S_{1} ; S_{2}\{\boldsymbol{R}\} \Longleftrightarrow \boldsymbol{Q} \Rightarrow \underbrace{w p\left(S_{1}, w p\left(S_{2}, R\right)\right)}_{w p\left(S_{1} ; S_{2}, R\right)}
$$

## wp Rule: Sequential Composition (3) Exercisesonos

```
Is \(\{\) True \(\}\) tmp \(:=x ; x:=y ; y:=\operatorname{tmp}\{x>y\}\) correct?
    If and only if True \(\Rightarrow w p(\mathrm{tmp}:=\mathrm{x}\); \(\mathrm{x}:=\mathrm{y}\); \(\mathrm{y}:=\mathrm{tmp}, x>y)\)
        \(w p(\mathrm{tmp}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}\); \(\mathrm{y}:=\mathrm{tmp}, x>y)\)
    \(=\{\) wp rule for seq. comp. \(\}\)
        \(w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}\); \(\mathrm{y}:=\operatorname{tmp}, x>y)\) )
    \(=\{\) wp rule for seq. comp. \(\}\)
        \(w p(\operatorname{tmp}:=\mathrm{x}, \operatorname{wp}(\mathrm{x}:=\mathrm{y}, \boldsymbol{w p}(\mathrm{y}:=\operatorname{tmp}, x>\mathrm{y})))\)
            \(=\{\) wp rule for assignment \}
        \(w p(t \mathrm{mp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}, \mathrm{x}>t m p))\)
            \(=\{\) wp rule for assignment \}
        \(w p(\) tmp \(:=x, y>\) tmp \()\)
    \(=\{\) wp rule for assignment \(\}\)
    \(y>x\)
    True \(\Rightarrow y>x\) does not hold in general.
    The above program is not correct.
    23 of 35
```

| Loops |  |
| :---: | :---: |

- A loop is a way to compute a certain result by successive approximations.
e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
- "off-by-one" error
- Not establishing the desired condition
- Improper handling of borderline cases
- Infinite loops

Correctness of Loops
How do we prove that the following loop is correct?
Sinit
Sinit
while(B) {
while(B) {
Sbody
Sbody
{R}
{R}

In case of C/Java/PlusCal, $B$ denotes the stay condition.

- In TLA+ toolbox, there is not native, syntactic support for model-checking the total correctness of loops.
- Instead, we have to manually add assertions to encode:
- Loop Invariant
[ for establishing partial correctness ]
- Loop Variant
[ for ensuring termination ]

25 of 35

```
CONSTANT
    I(var_list) ==
    V(var_list) ==
    -algorithm MYALGorithm {
    variables ..., variant_pre = 0, variant_post = 0;
        assert Q; (* Precondition *)
        Sinit
        assert I(...); (* Is LI estabIished? *)
        while(B) {
        variant_pre := V(...);
        Sbody
        variant_post := V(...);
        assert variant_post >= 0;
        assert variant_post < variant_pre;
        assert I(...); (* Is LI preserved? *)
        }
        assert R; (* Postcondition *)
    }
```

27 of 35


Specifying Loops: Runtime Checks (2)

```
I(i) == (1 <= i) /\ (i <= 6)
V(i) == 6 - i
--algorithm loop_invariant_test
    variables i = 1, variant_pre = 0, variant_post = 0;
    {
    assert I(i);
    while (i <= 5)
        variant_pre := V(i);
        i := i + 1;
        variant_post := V(i);
        assert variant_post >= 0;
        assert variant_post < variant_pre;
        assert I(i);
        } ;
}
```

L1: Change to $1<=$ i $/ \backslash$ i <= 5 for a Loop Invariant Violation.
L2: Change to 5 - i for a Loop Variant Violation.

```
{Q}
assert I(...);
while( B ) {
    variant_pre := v(...);
    Sbody
    variant post := V(...);
    assert variant_post >= 0;
    assert variant_post < variant_pre;
    assert I(...);
{R}
```

- A loop is partially correct if:

Given precondition $Q$, the initialization step $S_{\text {init }}$ establishes LII.

- At the end of $S_{b o d y}$, if not yet to exit, $L / /$ is maintained.
- If ready to exit and LI I maintained, postcondition $R$ is established
- A loop terminates if:
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ maintains $L V V$ as non-negative.
- Given LI I, and not yet to exit, $S_{b o d y}$ decrements LV V.


## Proving Correctness of Loops (2)

- A loop is partially correct if:
- Given precondition $Q$, the initialization step $S_{\text {init }}$ establishes LI I.

$$
\{Q\} S_{\text {init }}\{I\}
$$

- At the end of $S_{\text {body }}$, if not yet to exit, $L / I$ is maintained.

$$
\{I \wedge B\} S_{\text {body }}\{I\}
$$

- If ready to exit and L/ I maintained, postcondition $R$ is established

$$
I \wedge \neg B \Rightarrow R
$$

- A loop terminates if:
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ maintains $L V V$ as non-negative.

$$
\{I \wedge B\} S_{\text {body }}\{V \geq 0\}
$$

- Given LI I, and not yet to exit, $S_{\text {body }}$ decrements LV V.

$$
\{I \wedge B\} S_{\text {body }}\left\{V<V_{0}\right\}
$$



