
Program Verification
Readings: Chapter 4 of LICS2

EECS4315 Z:
Mission-Critical Systems

Winter 2023

CHEN-WEI WANG

Learning Objectives

1. Motivating Examples: Program Correctness

2. Hoare Triple

3. Weakest Precondition (wp)
4. Rules of wp Calculus

5. Contract of Loops (invariant vs. variant)

6. Correctness Proofs of Loops

2 of 35

Assertions: Weak vs. Strong
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values { x � x > 3 } = { 4,5,6,7, . . . }
x > 4 has satisfying values { x � x > 4 } = { 5,6,7, . . . }

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.○ e.g., x > 4⇒ x > 3
● What’s the weakest assertion? [TRUE]
● What’s the strongest assertion? [FALSE]● In System Specification:○ A weaker invariant has more acceptable object states

e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT○ A weaker precondition has more acceptable input values○ A weaker postcondition has more acceptable output values
3 of 35

Assertions: Preconditions

Given preconditions P1 and P2, we say that

P2 requires less than P1 if
P2 is less strict on (thus allowing more) inputs than P1 does.

{ x � P1(x) } ⊆ { x � P2(x) }

More concisely:
P1 ⇒ P2

e.g., For command withdraw(amount: INTEGER),
P2 ∶ amount ≥ 0 requires less than P1 ∶ amount > 0

What is the precondition that requires the least? [true]
4 of 35

Assertions: Postconditions

Given postconditions or invariants Q1 and Q2, we say that

Q2 ensures more than Q1 if
Q2 is stricter on (thus allowing less) outputs than Q1 does.

{ x � Q2(x) } ⊆ { x � Q1(x) }
More concisely:

Q2 ⇒ Q1

e.g., For query q(i: INTEGER): BOOLEAN,
Q2 ∶ Result = (i > 0) ∧ (i mod 2 = 0) ensures more than

Q1 ∶ Result = (i > 0) ∨ (i mod 2 = 0)
What is the postcondition that ensures the most? [false]

5 of 35

Motivating Examples (1)
Is this algorithm correct?

--algorithm increment_by_9 {
variable i;
{
(* precondition *)

assert i > 3

(* implementation *)
i := i + 9;

(* postcondition *)

assert i > 13
}

}

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

6 of 35

Motivating Examples (2)
Is this algorithm correct?

--algorithm increment_by_9 {
variable i;
{
(* precondition *)

assert i > 5

(* implementation *)
i := i + 9;

(* postcondition *)

assert i > 13
}

}

Q: Is i > 5 too weak or too strong?
A: Maybe too strong
∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
7 of 35

Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}
○ e.g., {i > 3} i := i + 9 {i > 13}○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

8 of 35

Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

9 of 35

Hoare Logic and Software Correctness
Consider the contract /specification view of an algorithm f
(whose body of implementation is S) as a Hoare Triple :

{Q} S {R}
Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [Most-user friendly]○ {false} S {R}
All input values are invalid [Most useless for clients]○ {Q} S {true}
All output values are valid [Most risky for clients; Easiest for suppliers]○ {Q} S {false}
All output values are invalid [Most challenging coding task]○ {true} S {true}
All inputs/outputs are valid (No specification) [Least informative]

10 of 35

Proof of Hoare Triple using wp

{Q} S {R} ≡ Q⇒ wp(S,R)
● wp(S,R) is the weakest precondition for S to establish R .
○ If Q⇒ wp(S,R), then any execution started in a state satisfying Q

will terminate in a state satisfying R.○ If Q �⇒ wp(S,R), then some execution started in a state satisfying
Q will terminate in a state violating R.● S can be:○ Assignments [x := y]○ Alternations [if . . . then . . . else . . . end]○ Sequential compositions [S1 ; S2]○ Loops [while(. . .) { . . . }]● We will learn how to calculate the wp for the above

programming constructs.
11 of 35

Denoting Pre- and Post-State Values

● In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:○ We may choose to write “b” rather than “b0” in preconditions∵ All variables are pre-state values in preconditions○ We don’t write “b0” in program∵ there might be multiple intermediate values of a variable due

to sequential composition

12 of 35

wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]
R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

13 of 35

wp Rule: Assignments (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]�����������������������������������
wp(x := e,R)

14 of 35

wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)= { Rule of wp: Assignments }
x > x0[x ∶= x0 + 1]= { Replacing x by x0 + 1 }
x0 + 1 > x0= { 1 > 0 always true }
True

Any precondition is OK. False is valid but not useful.
15 of 35

wp Rule: Assignments (4) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x = 23?

{??} x := x + 1 {x = 23}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)= { Rule of wp: Assignments }
x = 23[x ∶= x0 + 1]= { Replacing x by x0 + 1 }
x0 + 1 = 23= { arithmetic }
x0 = 22

Any precondition weaker than x = 22 is not OK.
16 of 35

wp Rule: Assignments (4) Revisit

Given {??}n ∶= n + 9{n > 13}:
● n > 4 is the weakest precondition (wp) for the given

implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

17 of 35

wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) = ����
B ⇒ wp(S1, R)∧¬ B ⇒ wp(S2, R)

����
The wp of an alternation is such that all branches are able to
establish the postcondition R.

18 of 35

wp Rule: Alternations (2)
Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove that {Q} if B then S1 else S2 end {R}?
{Q}
if B then{Q ∧ B } S1 {R}
else{Q ∧ ¬ B } S2 {R}
end{R}

{Q} if B then S1 else S2 end {R}
⇐⇒ ����

{ Q ∧ B } S1 { R }∧{ Q ∧ ¬ B } S2 { R }
���� ⇐⇒

����
(Q ∧ B)⇒ wp(S1, R)∧(Q ∧ ¬ B)⇒ wp(S2, R)

����
19 of 35

wp Rule: Alternations (3) Exercise
Is this program correct?
{x > 0 ∧ y > 0}
if x > y then

bigger := x ; smaller := y
else

bigger := y ; smaller := x
end{bigger ≥ smaller}

���
{(x > 0 ∧ y > 0) ∧ (x > y)}

bigger := x ; smaller := y{bigger ≥ smaller}
���

∧
���
{(x > 0 ∧ y > 0) ∧ ¬(x > y)}

bigger := y ; smaller := x{bigger ≥ smaller}
���

20 of 35

wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))
The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

21 of 35

wp Rule: Sequential Composition (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))���
wp(S1 ; S2,R)

22 of 35

wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)= { wp rule for seq. comp. }
wp(tmp := x, wp(x := y ; y := tmp , x > y))= { wp rule for seq. comp. }
wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))

= { wp rule for assignment }
wp(tmp := x, wp(x := y, x > tmp))= { wp rule for assignment }
wp(tmp := x, y > tmp)

= { wp rule for assignment }
y > x

∵ True⇒ y > x does not hold in general.∴ The above program is not correct.
23 of 35

Loops

● A loop is a way to compute a certain result by successive

approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:○ “off-by-one” error [partial correctness]○ Not establishing the desired condition [partial correctness]○ Improper handling of borderline cases [partial correctness]○ Infinite loops [termination]

24 of 35

Correctness of Loops

How do we prove that the following loop is correct?

{Q}
Sinit
while(B) {

Sbody
}
{R}

In case of C/Java/PlusCal, B denotes the stay condition.○ In TLA+ toolbox, there is not native, syntactic support for
model-checking the total correctness of loops.○ Instead, we have to manually add assertions to encode:
● LOOP INVARIANT [for establishing partial correctness]● LOOP VARIANT [for ensuring termination]

25 of 35

Specifying Loops

● Use of loop invariant (LI) and loop variant (LV).○ LI : Boolean expression for measuring/proving partial correctness
● Typically a special case of the postcondition.

e.g., Given postcondition “Result is maximum of the array”:
LI can be “Result is maximum of the part of array scanned so far”.● Established before the very first iteration.● Maintained TRUE after each iteration.○ LV : Integer expression for measuring/proving termination

● Denotes the “number of iterations remaining”● Decreased at the end of each subsequent iteration● Maintained non-negative at the end of each iteration.● As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

● Remember:
total correctness = partial correctness + termination

26 of 35

Specifying Loops: Syntax
CONSTANT . . . (* input list *)
I(var_list) == . . .
V(var_list) == . . .
--algorithm MYALGORITHM {
variables . . ., variant pre = 0, variant post = 0;
{
assert Q; (* Precondition *)
Sinit
assert I(. . .); (* Is LI established? *)
while(B) {
variant pre := V(. . .);
Sbody
variant post := V(. . .);

assert variant post >= 0;
assert variant post < variant pre;
assert I(. . .); (* Is LI preserved? *)

}
assert R; (* Postcondition *)

}
}

27 of 35

Specifying Loops: Runtime Checks (1)

Loop
Invariant
Violation

Sinit

¬ I

I

B

¬ B ∧ R

Sbody

V ≥ 0 ∧ V < V0

Loop
Variant

Violation

V < 0 ∨ V ≥ V0

Postcondition
Violation

¬ B ∧ ¬ R

¬ Q Precondition
Violation

28 of 35

Specifying Loops: Runtime Checks (2)

1 I(i) == (1 <= i) /\ (i <= 6)
2 V(i) == 6 - i
3 --algorithm loop_invariant_test
4 variables i = 1, variant_pre = 0, variant_post = 0;
5 {
6 assert I(i);
7 while (i <= 5) {
8 variant_pre := V(i);
9 i := i + 1;

10 variant_post := V(i);
11 assert variant_post >= 0;
12 assert variant_post < variant_pre;
13 assert I(i);
14 } ;
15 }

L1: Change to 1 <= i /\ i <= 5 for a Loop Invariant Violation.

L2: Change to 5 - i for a Loop Variant Violation.
29 of 35

Specifying Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
30 of 35

Proving Correctness of Loops (1)
{Q}
Sinit
assert I(. . .);
while(B) {
variant_pre := V(. . .);
Sbody
variant_post := V(. . .);
assert variant_post >= 0;
assert variant_post < variant_pre;
assert I(. . .);

}
{R}

○ A loop is partially correct if:● Given precondition Q, the initialization step Sinit establishes LI I.● At the end of Sbody , if not yet to exit, LI I is maintained.● If ready to exit and LI I maintained, postcondition R is established.○ A loop terminates if:● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.● Given LI I, and not yet to exit, Sbody decrements LV V .
31 of 35

Proving Correctness of Loops (2)

● A loop is partially correct if:○ Given precondition Q, the initialization step Sinit establishes LI I.
{Q} Sinit {I}

○ At the end of Sbody , if not yet to exit, LI I is maintained.
{I ∧ B} Sbody {I}

○ If ready to exit and LI I maintained, postcondition R is established.
I ∧ ¬B⇒ R

● A loop terminates if:○ Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.
{I ∧ B} Sbody {V ≥ 0}

○ Given LI I, and not yet to exit, Sbody decrements LV V .
{I ∧ B} Sbody {V < V0}

32 of 35

Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting Pre- and Post-State Values
33 of 35

Index (2)
wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise
34 of 35

Index (3)
Loops

Correctness of Loops

Specifying Loops

Specifying Loops: Syntax

Specifying Loops: Runtime Checks (1)

Specifying Loops: Runtime Checks (2)

Specifying Loops: Visualization

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

35 of 35

