Review of Math

EECS4315 Z: Mission-Critical Systems Winter 2023

CHEN-WEI WANG

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - $\circ~$ Unary logical operator: negation (\neg)

р	$\neg p$	
true	false	
false	true	

 \circ Binary logical operators: conjunction (\land), disjunction (\lor), implication (\Rightarrow), equivalence (\equiv), and if-and-only-if (\iff).

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	<i>p</i> ≡ <i>q</i>
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

Learning Outcomes of this Lecture

This module is designed to help you review:

- Propositional Logic
- Predicate Logic

2 of 13

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - \circ We call p the antecedent, assumption, or premise.
 - We call q the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - ∘ antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
 - ∘ consequence/conclusion q ≈ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - \circ honoured if the obligations fulfilled. [(true \Rightarrow true) \iff true]
 - \circ breached if the obligations violated. [(true \Rightarrow false) \iff false]
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

4 of 13

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$:

o q if p

g is true if p is true

 \circ p only if q

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

Note. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"):

p if q

 $[q \Rightarrow p]$

• p only if q

 $[p \Rightarrow q]$

∘ p is **sufficient** for q

For q to be true, it is sufficient to have p being true.

∘ *q* is **necessary** for *p*

[similar to p only if q]

If *p* is *true*, then it is necessarily the case that *q* is also *true*. Otherwise, if *p* is *true* but *q* is *false*, then ($true \Rightarrow false$) $\equiv false$.

∘ q unless ¬p

[When is $p \Rightarrow q$ true?]

If *q* is *true*, then $p \Rightarrow q$ *true* regardless of *p*.

If q is *false*, then $p \Rightarrow q$ cannot be *true* unless p is *false*.

5 of 13

Propositional Logic (2)

• Axiom: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

• **Theorem**: Identity of ⇒

$$true \Rightarrow p \equiv p$$

• **Theorem**: Zero of ⇒

$$false \Rightarrow p \equiv true$$

• Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

7 of 13

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- **Inverse**: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- Converse: $q \Rightarrow p$ [swap antecedent and consequence]
- **Contrapositive**: $\neg q \Rightarrow \neg p$ [inverse of converse]

6 of 13

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - $\circ \ \ \mathbb{Z} \text{: the set of integers} \qquad \qquad [\ -\infty, \dots, -1, 0, 1, \dots, +\infty \]$
 - ∘ \mathbb{N} : the set of natural numbers [0,1,...,+∞]
- Variable(s) in a predicate may be quantified:
 - Universal quantification:
 All values that a variable may take satisfy certain property.
 e.g., Given that i is a natural number, i is always non-negative.
 - Existential quantification:

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i* can be negative.

Predicate Logic (2.1): Universal Q. (∀)

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
- X is a comma-separated list of variable names
- R is a constraint on types/ranges of the listed variables
- P is a property to be satisfied
- *For all* (combinations of) values of variables listed in *X* that satisfies *R*, it is the case that *P* is satisfied.
 - $\circ \ \forall i \bullet i \in \mathbb{N} \Rightarrow i \ge 0$ [true] $\circ \ \forall i \bullet i \in \mathbb{Z} \Rightarrow i \ge 0$ [false] $\circ \ \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$ [false]
- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?
 - **Hint.** When is $R \Rightarrow P$ **true**? [true \Rightarrow true, false \Rightarrow _]
 - Show that for all instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for all instances of $x \in X$ it is the case $\neg R(x)$.
 - **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ *false*?
 - **Hint.** When is $R \Rightarrow P$ **false**?

[$true \Rightarrow false$]

• Give a **witness/counterexample** of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

9 of 13

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 1$. Integer 1 (a witness/counterexample) in the range between 1 and 10 is *not* greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
 Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that $\exists x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \land x > 10$? All integers in the range between 1 and 10 are *not* greater than 10.

Predicate Logic (2.2): Existential Q. (∃)

- An existential quantification has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - *R* is a *constraint on types/ranges* of the listed variables
 - P is a property to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.

 $\circ \exists i \bullet i \in \mathbb{N} \land i \geq 0$ [true] $\circ \exists i \bullet i \in \mathbb{Z} \land i \geq 0$ [true] $\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$ [true]

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - **Hint.** When is *R* ∧ *P true*?

[true ∧ true]

- Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
- **2.** How to prove $(\exists X \bullet R \land P)$ false?
 - **Hint.** When is $R \wedge P$ **false**?
- [true \land false, false \land _]
- Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.

10 of 13

Predicate Logic (4): Switching Quantification Sonde

Conversions between \forall and \exists :

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P)$$
$$(\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications