EECS4315-Z Winter 2023
Mission Critical Systems
Example Exam Questions

Name (Print):

PPY Login
Signature

This exam contains 7 pages (including this cover page) and 2 problems.

Check to see if any pages are missing.
Do not detach any question pages from the booklet.

Enter all requested information on the top of this page before you start the exam, and put your initials on the top of every page, in case the pages become separated.

Attempt all questions. Answer each question in the boxed space provided.

The following rules apply:

- NO QUESTIONS DURING THE EXAM. If a question is ambiguous or unclear, then write your assumptions and proceed to answer the question.
- Do not write your answers in the questions booklet. Only answers written in the separate answers booklet will be graded.
- Do not sketch your work in the answers booklet. Only sketch on the blank pages attached to the questions booklet.
- At the end of the exam, be sure to submit all the following: 1) Exam questions booklet; 2) Exam answers booklet(s); and 3) Data sheet.
Each one of the above submissions must be written with your full name and student number. If any of the above submissions is missing, your exam will not be graded.
- Where descriptive answers are requested, use complete sentences and paragraphs. Be precise and concise.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive credit. A correct answer, unsupported by calculations or explanation will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Do not write in this table which contains your raw mark scores.

Problem	Points	Score
1	75	
2	25	
Total:	100	

1. Consider the following algorithm which computes the maximum value from an input tuple of integers:
```
-------------------------- MODULE findMax --------------------------------
EXTENDS Integers, Sequences, TLC
CONSTANT input
\* defines LI and invariant here
I(i, result) == \A j \in 1..i-1: result >= input[j]
V(i, inp) == Len(inp) - i + 1
(*
--algorithm FindMax {
    variables result = input[1], i = 1, variant_pre = 0, variant_post = 0;
    {
            assert Len(input) > 0; \* precondition
            assert I(i, result); \* invariant
            while (i =< Len(input)) {
                variant_pre := V(i, input);
                if (input[i] > result) { result := input[i] };
                i := i + 1;
                variant_post := V(i, input);
                assert variant_post >= 0;
                assert variant_post < variant_pre;
                assert I(i, result); \* invariant
    };
        \* postcondition
        assert \A j \in 1..Len(input): result >= input[j]
    }
}
*)
```

(a) State formally the obligation for proving that the loop invariant is established.

Requirement. Where a predicate is stated, it must be written in math form (translated from the given PlusCal syntax).

Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Len }(\text { input })>0\} \\
\quad \text { result }:=\text { input }[1] ; \text { i }:=1 \\
\{\forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \text { Len(input }) \wedge \text { result } \geq \text { input }[j]\}
\end{array}\right.
\end{aligned}
$$

Notice that the augmented constraint $1 \leq j \wedge j \leq \operatorname{Len}($ input $)$ is for the tuple indexing expression input $[j]$ to be well-defined. Similar augmentation is required for each occurrence of tuple indexing.
(b) Prove or disprove the stated proof obligation from Part (a).

Requirement. Calculation and proof steps should be presented in the equational style. Each step should be as atomic as possible: do not skip or perform multiple steps at a time.

Solution:

- First, calculate:

```
    \(w p(\) result \(:=\) input [1]; i := \(1, \forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len(input)~} \wedge r e s u l t \geq\) input \([j])\)
\(=\{w p\) rule of sequential composition \(\}\)
    \(w p(\) result \(:=\) input [1], wp \((\mathrm{i}:=1, \forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len(input)} \wedge\) result \(\geq\) input \([j]))\)
\(=\{\) wp rule of assignment \(\}\)
    \(w p(\) result \(:=\operatorname{input}[1], \forall j \bullet j \in 1 . .0 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\) input \() \wedge\) result \(\geq\) input \([j])\)
\(=\{w p\) rule of assignment \(\}\)
    \(\forall j \bullet j \in 1 . .0 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len(input)} \wedge\) input \([1] \geq\) input \([j]\)
\(=\{\) arithmetic \(\}\)
    \(\forall j \bullet\) false \(\Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\) input \() \wedge\) input \([1] \geq\) input \([j]\)
\(=\{\) false \(\Rightarrow p \equiv\) true \(\}\)
    \(\forall j\) • true
\(=\{\) arithmetic \(\}\)
    true
```

- Then, prove that the precondition is no weaker than the calculate $w p$:

$$
\text { Len }(\text { input })>0 \Rightarrow \text { true }
$$

This is proved as $p \Rightarrow$ true \equiv true for any proposition p.
(c) State formally the obligation for proving that the loop invariant is maintained.

Requirement. Where a predicate is stated, it must be written in math form (translated from the given PlusCal syntax).

Solution:

$$
\begin{aligned}
& \{i \leq \operatorname{Len}(\text { input }) \wedge(\forall j \bullet j \in 1 \ldots i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { result } \geq \text { input }[j])\} \\
& \quad \text { if(input }[\mathrm{i}]>\text { result })\{\text { result }:=\text { input }[\mathrm{i}]\} ; \mathrm{i}:=\mathrm{i}+1 ; \\
& \{\forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \operatorname{result} \geq \text { input }[j]\}
\end{aligned}
$$

Notice that the augmented constraint $1 \leq j \wedge j \leq \operatorname{Len}$ (input) is for the tuple indexing expression input $[j]$ to be well-defined. Similar augmentation is required for each occurrence of tuple indexing.
(d) Prove or disprove the stated proof obligation from Part (c).

Requirement. Calculation and proof steps should be presented in the equational style. Each step should be as atomic as possible: do not skip or perform multiple steps at a time.

Solution to Part (d)

We first calculate the $w p$ for the loop body to maintain the LI:

$\forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge r e s u l t \geq i n p u t[j])$
$=\{w p$ rule for sequential composition $\}$
$w p(\mathrm{if}($ input[i] $>$ result $)\{$ result $:=$ input[i] \}, $w p(\mathrm{i}:=\mathrm{i}+1, \forall j \bullet j \in 1 . . i-1 \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge$ result \geq input $[j])$
$=\{w p$ rule for assignment $\}$ $w p($ if (input[i] $>$ result $)\{$ result $:=$ input[i] $\}, \forall j \bullet j \in 1 . . \mathbf{i} \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge$ result \geq input $[j])$
$=\{w p$ rule for conditional $\}$
input $[i]>\operatorname{result} \Rightarrow w p($ result $:=\operatorname{input}[\mathrm{i}], \forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge$ result \geq input $[j])$
\wedge
input $[i] \leq$ result $\Rightarrow w p($ result $:=$ result, $\forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge \operatorname{result} \geq$ input $[j]$)
$=\{w p$ rule for assignment, twice $\}$
input $[i]>$ result $\Rightarrow(\forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge$ input $[\mathbf{i}] \geq$ input $[j])$
\wedge
input $[i] \leq \operatorname{result} \Rightarrow(\forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}($ input $) \wedge$ result $\geq i n p u t[j])$
We then prove that the precondition (i.e., Stay Condition $\wedge \mathrm{LI}$) is no weaker than the above calculated $w p$:

- To prove the left conjunct:

$$
\begin{aligned}
& i \leq \operatorname{Len}(\text { input }) \wedge(\forall j \bullet j \in 1 . . \mathbf{i}-\mathbf{1} \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \operatorname{result} \geq \text { input }[j]) \Rightarrow \\
& \text { input }[i]>\operatorname{result} \Rightarrow \forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \text { input }[j] \\
& \equiv \\
& \left\{\begin{array}{l}
\text { Shunting: } \quad p \Rightarrow(q \Rightarrow r) \equiv(p \wedge q) \Rightarrow r \quad\} \\
i \leq \operatorname{Len}(\text { input }) \wedge(\forall j \bullet j \in 1 . . \mathbf{i}-\mathbf{1} \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \operatorname{result} \geq \text { input }[j]) \wedge \text { input }[i]>\operatorname{result} \Rightarrow \\
\forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \text { input }[j]
\end{array}\right.
\end{aligned}
$$

Proof via Assuming the Antecedent:

$$
\begin{aligned}
& \forall j \bullet j \in 1 \ldots i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \text { input }[j] \\
\equiv & \{\text { split range: } \forall j \bullet j \in 1 \ldots i \Rightarrow P(j) \equiv(\forall j \bullet j \in 1 \ldots i-1 \Rightarrow P(j)) \wedge P(i)\} \\
& (\forall j \bullet j \in 1 \ldots \mathbf{i}-\mathbf{1} \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \operatorname{input}[j]) \wedge(1 \leq \mathbf{i} \wedge \mathbf{i} \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \text { input }[\mathbf{i}]) \\
\equiv & \{\text { antecedent: input }[i]>\text { result; and RHS of precond: } \forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { result } \geq \text { input }[j]\} \\
& \text { true } \wedge(1 \leq i \wedge i \leq \operatorname{Len}(\text { input }) \wedge \text { input }[i] \geq \text { input }[i]) \\
\equiv & \{\text { LHS of precond: } i \leq \operatorname{Len}(\text { input }) \text { and } \operatorname{input}[i] \geq \text { input }[i] \equiv \text { true }\} \\
& \text { true }
\end{aligned}
$$

- (Exercise) To prove the right conjunct:

$$
\begin{aligned}
& i \leq \operatorname{Len}(\text { input }) \wedge(\forall j \bullet j \in 1 . . \mathbf{i}-\mathbf{1} \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { result } \geq \text { input }[j]) \\
& \quad \Rightarrow \text { input }[i] \leq \text { result } \Rightarrow \forall j \bullet j \in 1 . . i \Rightarrow 1 \leq j \wedge j \leq \operatorname{Len}(\text { input }) \wedge \text { result } \geq \text { input }[j]
\end{aligned}
$$

(e) Refer to the algorithm findMax at the start of this question. Consider a change of the loop invariant to:

$$
\backslash \mathrm{A} j \text { \in 1..i: result >= input[j] }
$$

Say the algorithm is run on an input tuple $\ll 20,10,40,30 \gg$. Describe how a loop invariant violation, if any, will occur.

Solution:

- After the initialization steps, value of i becomes 1 and value result becomes 20 $($ input $[1])$, and the loop invariant $\forall j \in 1 . .1 \Rightarrow$ result $\geq a[j]$ reduces to $a[1] \geq a[1]$, which is true.
- At the end of the 1st iteration, value of result remains 20 and value of i gets incremented to 2 , and the loop invariant $\forall j \in 1 . .2 \Rightarrow$ result $\geq a[j]$ is true $(\because$ $20 \geq 20 \wedge 20 \geq 10$).
- At the end of the 2nd iteration, value of result remains 20 and value of i gets incremented to 3 , and the loop invariant $\forall j \in 1 \ldots 3 \Rightarrow$ result $\geq a[j]$ is false $(\because 20 \nsupseteq$ input $[3]=40)$.

2. Consider the following claim relating two path satisfactions:

$$
\pi \vDash \mathbf{G} \phi \Longleftrightarrow \pi \vDash \neg(\mathbf{F} \neg \phi)
$$

where π is any path that is valid for the model (i.e., some LTS) in question, and ϕ is any arbitrary LTL formula that is syntactically correct. Prove or disprove the above claim.

Solution:

The claim is valid and here's a proof:

```
        \(\pi \triangleq \mathbf{G} \phi\)
\(\Longleftrightarrow \quad\{\) Definition of path satisfaction of \(\mathbf{G}\}\)
        \(\forall i \bullet i \geq 1 \Rightarrow \pi^{i} \models \phi\)
\(\Longleftrightarrow \quad\{\) Known Theorem: \(\forall X \bullet R(X) \Rightarrow P(X) \equiv \neg(\exists X \bullet R(X) \wedge \neg P(X))\}\)
        \(\neg\left(\exists i \bullet i \geq 1 \wedge \neg\left(\pi^{i} \models \phi\right)\right)\)
\(\Longleftrightarrow \quad\{\pi \vDash \neg \phi \Longleftrightarrow \neg(\pi \vDash \phi)\}\)
    \(\neg\left(\exists i \bullet i \geq 1 \wedge \pi^{i} \models \neg \phi\right)\)
\(\Longleftrightarrow \quad\{\) Definition of path satisfaction of \(\mathbf{F}\) \}
    \(\neg(\mathbf{F} \neg \phi)\)
```

This is a blank page for sketching purpose. You may detach it from the exam booklet.
Do not detach other question pages from the exam booklet.

This is a blank page for sketching purpose. You may detach it from the exam booklet.
Do not detach other question pages from the exam booklet.

