Introduction

```
MEB: Prologue, Chapter }
```

EECS3342 Z: System

Specification and Refinement
Winter 2023
CHEN-WFI WANG

- A safety-critical system (SCS) is a system whose failure or malfunction has one (or more) of the following consequences:
- death or serious injury to people
- loss or severe damage to equipment/property
- harm to the environment
- Based on the above definition, do you know of any systems that are safety-critical?

Learning Outcomes

This module is designed to help you understand:

- What a safety-critical system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development

30173

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,

1. fairness and loyalty to the practitioner's associates, employers, clients, subordinates and employees;
2. fidelity (i.e., dedication, faithfulness) to public needs;
3. devotion to high ideals of personal honour and professional integrity;
4. knowledge of developments in the area of professional engineering relevant to any services that are undertaken; and
5. competence in the performance of any professional engineering services that are undertaken.

- Consequence of misconduct?
- suspension or termination of professional licenses
- civil law suits

Industrial standards in various domains list acceptance criteria for mission- or safety-critical systems that practitioners need to comply with: e.g.,

Aviation Domain: RTCA DO-178C "Software Considerations in Airborne Systems and Equipment Certification"
Nuclear Domain: IEEE 7-4.3.2 "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"
Two important criteria are:

1. System requirements are precise and complete
2. System implementation conforms to the requirements

But how do we accomplish these criteria?

50 Cl 3

Safety-Critical vs. Mission-Critical?

- Critical:

A task whose successful completion ensures the success of a larger, more complex operation.
e.g., Success of a pacemaker \Rightarrow Regulated heartbeats of a patient

- Safety:

Being free from danger/injury to or loss of human lives.

- Mission:

An operation or task assigned by a higher authority.
Q. Formally relate being safety-critical and mission-critical.
A.

- safety-critical \Rightarrow mission-critical
- mission-critical \nRightarrow safety-critical
- Relevant industrial standard: RTCA DO-178C (replacing RTCA DO-178B in 2012) "Software Considerations in Airborne Systems and Equipment Certification"

Source: Article from OpenSystems

Using Formal Methods for Certification

- A formal method (FM) is a mathematically rigorous technique for the specification, development, and verification of software and hardware systems.
- DO-333 "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods:
The use of formal methods is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute to establishing the correctness and robustness of a design.
- FMs, because of their mathematical basis, are capable of:
- Unambiguously describing software system requirements.
- Enabling precise communication between engineers.
- Providing verification (towards certification) evidence of: - A formal representation of the system being healthy.
- A formal representation of the system satistying safety properties.
ot 73
0

Verification: Building the Product Right?

- Implementation built via reusable programming components.
- Goal: Implementation Satisfies Intended Requirements
- To verify this, we formalize them as a system model and a set of (e.g., safety) properties, using the specification language of a theorem prover (EECS3342) or a model checker (EECS4315).
- Two Verification Issues:

1. Library components may not behave as intended.
2. Successful checks/proofs ensure that we built the product right, with respect to the informal requirements. But...

- Successful checks/proofs \nRightarrow We built the right product.
- The target of our checks/proofs may not be valid:

The requirements may be ambiguous, incomplete, or contradictory.

- Solution: Precise Documentation
[EECS4312]

Catching Defects - When?

- To minimize development costs, minimize software defects.
- Software Development Cycle:

Requirements \rightarrow Design \rightarrow Implementation \rightarrow Release
Q. Design or Implementation Phase?

Catch defects as early as possible.

Design and architecture	Implementation	Integration testing	Customer beta test	Postproduct release
$1 \mathrm{X}^{*}$	5 X	10 X	15 X	30 X

\because The cost of fixing defects increases exponentially as software progresses through the development lifecycle.

- Discovering defects after release costs up to 30 times more than catching them in the design phase.
- Choice of a design language, amendable to formal verification, is therefore critical for your project.

Model-Based System Development

- Modelling and formal reasoning should be performed before implementing/coding a system.
- A system's model is its abstraction, filtering irrelevant details. A system model means as much to a software engineer as a blueprint means to an architect.
- A system may have a list of models, "sorted" by accuracy:

$$
\left\langle m_{0}, m_{1}, \ldots, m_{i}, m_{j}, \ldots, m_{n}\right\rangle
$$

- The list starts by the most abstract model with least details.
- A more abstract model $\sqrt{m_{i}}$ is said to be refined by its subsequent, more concrete model m_{j}
- The list ends with the most concrete/refined model with most details.
- It is far easier to reason about:
- a system's abstract models (rather than its full implementation)
- refinement steps between subsequent models
- The final product is correct by construction

110173

Learning through Case Studies

- We will study example models of programs/codes, as well as proofs on them, drawn from various application domains:
- Reactive Systems
[sensors vs. actuators]
- Distributed Systems [(geographically) distributed parties]
- What you learn in this course will allow you to explore example in other application domains:
- Sequential Programs
[single thread of control]
- Concurrent Programs
[interleaving processes]
- The Rodin Platform will be used to:
- Construct system models using the Even-B notation.
- Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.

Index (1)
Learning Outcomes
What is a Safety-Critical System (SCS)?
Professional Engineers: Code of Ethics
Developing Safety-Critical Systems
Safety-Critical vs. Mission-Critical?
Using Formal Methods to for Certification
Verification: Building the Product Right?
Validation: Building the Right Product?
Catching Defects - When?
Model-Based System Development
Learning through Case Studies
13 Ot 13

EECS3342 Z: System

YORK

 UN I VERS I TY

Specification and Refinement Winter 2023

CHFN-WFI WANG

Learning Outcomes of this Lecture

This module is designed to help you review:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

Rot 41

Propositional Logic (1)

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
- Unary logical operator: negation (\neg)

p	$\neg p$
true false	false true

- Binary logical operators: conjunction (\wedge), disjunction (\vee), implication (\Rightarrow), equivalence (\equiv), and if-and-only-if (\Longleftrightarrow).

p	q	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Longleftrightarrow q$	$p \equiv q$
true						
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

Propositional Logic: Implication (1)

[pronounced as "p implies q"]

- We call p the antecedent, assumption, or premise.
- We call q the consequence or conclusion.
- Compare the truth of $p \Rightarrow q$ to whether a contract is honoured:
- antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
- consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
- honoured if the obligations fulfilled. $\quad[($ true \Rightarrow true $) \Longleftrightarrow$ true $]$
- breached if the obligations violated. $\quad[($ true \Rightarrow false $) \Longleftrightarrow$ false $]$
- When the promised terms are not met, then:
- Fulfilling the obligation (q) or not $(\neg q)$ does not breach the contract.

p	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$:

- q if p
q is true if p is true
- p only if q

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true.
Otherwise, if p is true but q is false, then (true \Rightarrow false) \equiv false.
Note. To prove $p \equiv q$, prove $p \Longleftrightarrow q$ (pronounced: " p if and only if q "):

- p if q

$$
[q \Rightarrow p]
$$

- p only if q
$[p \Rightarrow q]$
- p is sufficient for q

For q to be true, it is sufficient to have p being true.

- q is necessary for $p \quad$ [similar to p only if q]

If p is true, then it is necessarily the case that q is also true.
Otherwise, if p is true but q is false, then (true \Rightarrow false) \equiv false.

- q unless $\neg p$
[When is $p \Rightarrow q$ true?]
If q is true, then $p \Rightarrow q$ true regardless of p.
If q is false, then $p \Rightarrow q$ cannot be true unless p is false.

Propositional Logic (2)

- Axiom: Definition of \Rightarrow
- Theorem: Identity of $\Rightarrow p \Rightarrow q \equiv \neg p \vee q$
- Theorem: Zero of $\Rightarrow \quad$ true $\Rightarrow p \equiv p$
- Axiom: De Morgan

$$
\begin{aligned}
\neg(p \wedge q) & \equiv \neg p \vee \neg q \\
\neg(p \vee q) & \equiv \neg p \wedge \neg q
\end{aligned}
$$

- Axiom: Double Negation

$$
p \equiv \neg(\neg p)
$$

- Theorem: Contrapositive

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

아 41

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
- \mathbb{Z} : the set of integers
$[-\infty, \ldots,-1,0,1, \ldots,+\infty]$
- \mathbb{N} : the set of natural numbers
$[0,1, \ldots,+\infty]$
- Variable(s) in a predicate may be quantified:
- Universal quantification:

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

- Existential quantification:

Some value that a variable may take satisfies certain property. e.g., Given that i is an integer, i can be negative.

B-0t41

Predicate Logic (2.1): Universal Q. (\forall)

- A universal quantification has the form ($\forall X \bullet R \Rightarrow P$)
- X is a comma-separated list of variable names
- R is a constraint on types/ranges of the listed variables
- P is a property to be satisfied
- For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied.
- $\forall i \cdot i \in \mathbb{N} \Rightarrow i \geq 0$
[true]
- $\forall i \cdot i \in \mathbb{Z} \Rightarrow i \geq 0$
[false]
- $\forall i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \Rightarrow i<j \vee i>j$
[false]
- Proof Strategies

1. How to prove $(\forall X \bullet R \Rightarrow P)$ true?

- Hint. When is $R \Rightarrow P$ true?
[true \Rightarrow true, false \Rightarrow _]
- Show that for all instances of $x \in X$ s.t. $R(x), P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.

2. How to prove ($\forall X \bullet R \Rightarrow P$) false?

- Hint. When is $R \Rightarrow P$ false?
- Give a witness/counterexample of $x \in X$ s.t. $R(x), \neg P(x)$ holds.

Predicate Logic (2.2): Existential Q. (\exists)

- An existential quantification has the form $(\exists X \bullet R \wedge P)$
- X is a comma-separated list of variable names
- R is a constraint on types/ranges of the listed variables
- P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.
- $\exists i \bullet i \in \mathbb{N} \wedge i \geq 0$
- $\exists i \bullet i \in \mathbb{Z} \wedge i \geq 0$
- $\exists i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \wedge(i<j \vee i>j)$
- Proof Strategies

1. How to prove $(\exists X \bullet R \wedge P)$ true?

- Hint. When is $R \wedge P$ true?
[true^ true]
- Give a witness of $x \in X$ s.t. $R(x), P(x)$ holds.

2. How to prove $(\exists X \bullet R \wedge P)$ false?

- Hint. When is $R \wedge P$ false?
[true \wedge false, false \wedge_{-}]
- Show that for all instances of $x \in X$ s.t. $R(x), \neg P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x$ - $(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>0$.

All 10 integers between 1 and 10 are greater than 0 .

- Prove or disprove: $\forall x$ - $(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>1$.

Integer 1 (a witness/counterexample) in the range between 1 and 10 is not greater than 1.

- Prove or disprove: $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>1$.

Integer 2 (a witness) in the range between 1 and 10 is greater than 1.

- Prove or disprove that $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>10$?

All integers in the range between 1 and 10 are not greater than 10 .

Set Relations

Given two sets S_{1} and S_{2} :

- S_{1} is a subset of S_{2} if every member of S_{1} is a member of S_{2}.

$$
S_{1} \subseteq S_{2} \Longleftrightarrow(\forall x \bullet x \in S 1 \Rightarrow x \in S 2)
$$

- S_{1} and S_{2} are equal iff they are the subset of each other.

$$
S_{1}=S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge S_{2} \subseteq S_{1}
$$

- S_{1} is a proper subset of S_{2} if it is a strictly smaller subset.

$$
S_{1} \subset S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge|S 1|<|S 2|
$$

12 of 411
140 C 41

Set Relations: Exercises

Sets: Definitions and Membership

- A set is a collection of objects.
- Objects in a set are called its elements or members.
- Order in which elements are arranged does not matter.
- An element can appear at most once in the set.
- We may define a set using:
- Set Enumeration: Explicitly list all members in a set. e.g., $\{1,3,5,7,9\}$
- Set Comprehension: Implicitly specify the condition that all members satisfy.
e.g., $\{x \mid 1 \leq x \leq 10 \wedge x$ is an odd number $\}$
- An empty set (denoted as $\}$ or \varnothing) has no members.
- We may check if an element is a member of a set:

$$
\begin{array}{ll}
\text { e.g., } 5 \in\{1,3,5,7,9\} & \text { [true }] \\
\text { e.g., } 4 \notin\{x \mid x \leq 1 \leq 10, x \text { is an odd number }\} & \text { [true] }
\end{array}
$$

- The number of elements in a set is called its cardinality. e.g., $|\varnothing|=0, \mid\{x \mid x \leq 1 \leq 10, x$ is an odd number $\} \mid=5$

Set Operations

Given two sets S_{1} and S_{2} :

- Union of S_{1} and S_{2} is a set whose members are in either.

$$
S_{1} \cup S_{2}=\left\{x \mid x \in S_{1} \vee x \in S_{2}\right\}
$$

- Intersection of S_{1} and S_{2} is a set whose members are in both.

$$
S_{1} \cap S_{2}=\left\{x \mid x \in S_{1} \wedge x \in S_{2}\right\}
$$

- Difference of S_{1} and S_{2} is a set whose members are in S_{1} but not S_{2}.

$$
S_{1}, S_{2}=\left\{x \mid x \in S_{1} \wedge x \notin S_{2}\right\}
$$

16 아 41

Power Sets
The power set of a set S is a set of all S 's subsets.

$$
\mathbb{P}(S)=\{s \mid s \subseteq S\}
$$

The power set contains subsets of cardinalities $0,1,2, \ldots,|S|$. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality $0,1,2$, or 3 :

$$
\left\{\begin{array}{l}
\varnothing, \\
\{1\},\{2\},\{3\}, \\
\{1,2\},\{2,3\},\{3,1\}, \\
\{1,2,3\}
\end{array}\right\}
$$

Exercise: What is $\mathbb{P}(\{1,2,3,4,5\}) \backslash \mathbb{P}(\{1,2,3\})$?

Set of Tuples

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$, a cross/Cartesian product of theses sets is a set of n-tuples.
Each n-tuple $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ contains n elements, each of which a member of the corresponding set.

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(e_{1}, e_{2}, \ldots, e_{n}\right) \mid e_{i} \in S_{i} \wedge 1 \leq i \leq n\right\}
$$

e.g., $\{a, b\} \times\{2,4\} \times\{\$, \&\}$ is a set of triples:

$$
\begin{aligned}
& \{a, b\} \times\{2,4\} \times\{\$, \&\} \\
= & \left\{\left(e_{1}, e_{2}, e_{3}\right) \mid e_{1} \in\{a, b\} \wedge e_{2} \in\{2,4\} \wedge e_{3} \in\{\$, \&\}\right\} \\
= & \left\{\begin{array}{c}
(a, 2, \$),(a, 2, \&),(a, 4, \$),(a, 4, \&), \\
(b, 2, \$),(b, 2, \&),(b, 4, \$),(b, 4, \&)
\end{array}\right\}
\end{aligned}
$$

180아 41

Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair that maps a member of set S to a member of set T.
e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$

- \varnothing is an empty relation.
- $S \times T$ is the maximum relation (say r_{1}) between S and T, mapping from each member of S to each member in T :
$\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
- $\{(x, y) \mid(x, y) \in S \times T \wedge x \neq 1\}$ is a relation (say r_{2}) that maps only some members in S to every member in T :

$$
\{(2, a),(2, b),(3, a),(3, b)\}
$$

Relations (3.1): Domain, Range, Inverse

- We use the power set operator to express the set of all possible relations on S and T :

$$
\mathbb{P}(S \times T)
$$

Each member in $\mathbb{P}(S \times T)$ is a relation.

- To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$
r: \mathbb{P}(S \times T)
$$

- Or alternatively, we write:

$$
r: S \leftrightarrow T
$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

20 Ot 41

Relations (2.2): Exercise

Enumerate $\{a, b\} \leftrightarrow\{1,2,3\}$.

- Hints:
- You may enumerate all relations in $\mathbb{P}(\{a, b\} \times\{1,2,3\})$ via their cardinalities: $0,1, \ldots,|\{a, b\} \times\{1,2,3\}|$.
- What's the maximum relation in $\mathbb{P}(\{a, b\} \times\{1,2,3\})$?

$$
\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

- The answer is a set containing all of the following relations:
- Relation with cardinality $0: \varnothing$
- How many relations with cardinality 1 ? $\left.\quad\left[\begin{array}{c}(\{a, b\}\} \times\{1,2,3\} \\ 1\end{array}\right)=6\right]$
- How many relations with cardinality 2 ? $\left[\left(\{a, b\} \times\{1,2,3\} \left\lvert\,=\frac{6 \times 5}{2!}=15\right.\right]\right.$

Given a relation

$$
r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}
$$

- domain of r : set of first-elements from r
- Definition: $\operatorname{dom}(r)=\left\{d \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $\operatorname{dom}(r)=\{a, b, c, d, e, f\}$
- ASCII syntax: dom (r)
- range of r : set of second-elements from r
- Definition: $\operatorname{ran}(r)=\left\{r^{\prime} \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $\operatorname{ran}(r)=\{1,2,3,4,5,6\}$
- ASCII syntax: ran (r)
- inverse of r : a relation like r with elements swapped
- Definition: $r^{-1}=\left\{\left(r^{\prime}, d\right) \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $r^{-1}=\{(1, a),(2, b),(3, c),(4, a),(5, b),(6, c),(1, d),(2, e),(3, f)\}$ - ASCII syntax: $5 \sim$

Relations (3.2): Image

Given a relation

$$
\begin{aligned}
& \quad \mathrm{r}=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\} \\
& \begin{array}{l}
\text { relational image of } r \text { over set } s \text { : sub-range of } r \text { mapped by } s . \\
\circ \text { Definition: } r(s]=\left\{r^{\prime} \mid\left(d, r^{\prime}\right) \in r \wedge d \in s\right\} \\
\circ \text { e.g., } r[\{a, b\}]=\{1,2,4,5\} \\
\circ \text { ASCll syntax: } r[s]
\end{array}
\end{aligned}
$$

- Relation with cardinality $|\{a, b\} \times\{1,2,3\}|:$
$\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}$

Given a relation

$$
r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}
$$

- domain restriction of r over set $d s$: sub-relation of r with domain $d s$.
- Definition: $d s \triangleleft r=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge d \in d s\right\}$
- e.g., $\{a, b\} \triangleleft r=\{(\mathbf{a}, 1),(\mathbf{b}, 2),(\mathbf{a}, 4),(\mathbf{b}, 5)\}$
- ASCII syntax: ds <l r
- range restriction of r over set $r s$: sub-relation of r with range r s.

[^0]
Relations (3.4): Subtractions

Given a relation

$$
r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}
$$

- domain subtraction of r over set $d s$: sub-relation of r with domain not $d s$.
- Definition: $d s \notin r=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge d \notin d s\right\}$
- e.g., $\{a, b\} \notin r=\{(\mathbf{c}, 3),(\mathbf{c}, 6),(\mathbf{d}, 1),(\mathbf{e}, 2),(\mathbf{f}, 3)\}$
- ASCII syntax: ds <<| r
- range subtraction of r over set $r s$: sub-relation of r with range not $r s$.
- Definition: $r \triangleright r s=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge r^{\prime} \notin r s\right\}$
- e.g., $r \triangleright\{1,2\}=\{\{(c, \mathbf{3}),(\mathbf{a}, \mathbf{4}),(b, \mathbf{5}),(c, \mathbf{6}),(f, \mathbf{3})\}\}$
- ASCII syntax: r |>> rs

Relations (3.5): Overriding

Given a relation

$$
r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}
$$

overriding of r with relation t : a relation which agrees with t within $\operatorname{dom}(t)$, and agrees with r outside $\operatorname{dom}(t)$

- Definition: $r \nleftarrow t=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in t \vee\left(\left(d, r^{\prime}\right) \in r \wedge d \notin \operatorname{dom}(t)\right)\right\}$
- e.g.,

$$
r \notin\{(a, 3),(c, 4)\}
$$

$$
=\underbrace{\{(a, 3),(c, 4)\}}_{\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in t\right\}} \underbrace{\{(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}}_{\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge d \notin \operatorname{dom}(t)\right\}}
$$

$$
=\{(a, 3),(c, 4),(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}
$$

- ASCII syntax: r <+ t

260r41

Relations (4): Exercises

1. Define $r[s]$ in terms of other relational operations.

Answer: $r[s]=\operatorname{ran}(s \triangleleft r)$
e.g.,

$$
r[\underbrace{\{a, b\}}_{s}]=\operatorname{ran}(\underbrace{\{(\mathbf{a}, 1),(\mathbf{b}, 2),(\mathbf{a}, 4),(\mathbf{b}, 5)\}}_{\{a, b\} \triangleleft r})=\{1,2,4,5\}
$$

2. Define $r \& t$ in terms of other relational operators.

Answer: $r \notin t=t \cup(\operatorname{dom}(t) \notin r)$
e.g.,

$=\{(a, 3),(c, 4),(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}$

Functions (1): Functional Property

- A relation r on sets S and T (i.e., $r \in S \leftrightarrow T$) is also a function if it satisfies the functional property:
isFunctional (r)
\Longleftrightarrow
$\forall s, t_{1}, t_{2} \bullet\left(s \in S \wedge t_{1} \in T \wedge t_{2} \in T\right) \Rightarrow\left(\left(s, t_{1}\right) \in r \wedge\left(s, t_{2}\right) \in r \Rightarrow t_{1}=t_{2}\right)$
- That is, in a function, it is forbidden for a member of S to map to more than one members of T.
- Equivalently, in a function, two distinct members of T cannot be mapped by the same member of S.
- e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$, which of the following relations satisfy the above functional property?
- $S \times T$

Witness 1: $(1, a),(1, b)$; Witness 2: $(2, a),(2, b)$; Witness $3:(3, a),(3, b)$.

- $(S \times T)$, $\{(x, y) \mid(x, y) \in S \times T \wedge x=1\}$

Witness 1: $(2, a),(2, b) ;$ Witness 2: $(3, a),(3, b)$

- $\{(1, a),(2, b),(3, a)\}$
- $\{(1, a),(2, b)\}$
[Yes]

Functions (2.2):

LASSONDE

Relation Image vs. Function Application

- Recall: A function is a relation, but a relation is not necessarily a function.
- Say we have a partial function $f \in\{1,2,3\} \rightarrow\{a, b\}$:

$$
f=\{(\mathbf{3}, a),(\mathbf{1}, b)\}
$$

- With f wearing the relation hat, we can invoke relational images:

$$
\begin{aligned}
f[\{3\}] & =\{a\} \\
f[\{1\}] & =\{b\} \\
f[\{2\}] & =\varnothing
\end{aligned}
$$

Remark. Given that the inputs are singleton sets (e.g., $\{3\}$), so are the output sets (e.g., $\{a\}$). \because Each member in the domain is mappe to at most one member in the range.

- With f wearing the function hat, we can invoke functional applications:
$f(3)=a$
$f(1)=b$
$f(2)$ is undefined

30-0147

Functions (2.3): Modelling Decision

An organization has a system for keeping track of its employees as to where they are on the premises (e.g., ' 'Zone A, Floor $23^{\prime \prime}$). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.
Assume the following two sets:

- Employee denotes the set of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.

1. Is it appropriate to model/formalize such a track functionality as a relation (i.e., where_is \in Employee \leftrightarrow Location)?
Answer. No - an employee cannot be at distinct locations simultaneously. e.g., where_is[Alan] = \{ ' 'Zone A, Floor 23'', ' 'Zone C, Floor 46'' \}
2. How about a total function (i.e., where_is \in Employee \rightarrow Location)? Answer. No - in reality, not necessarily all employees show up. e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
3. How about a partial function (i.e., where_is \in Employee \rightarrow Location)? Answer. Yes - this addresses the inflexibility of the total function.

Functions (3.1): Injective Functions

 LASSONDEFunctions (3.3): Bijective Functions LASSONDE

Given a function f (either partial or total):

- f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T.
isInjective (f)
\Longleftrightarrow
$\forall s_{1}, s_{2}, t \bullet\left(s_{1} \in S \wedge s_{2} \in S \wedge t \in T\right) \Rightarrow\left(\left(s_{1}, t\right) \in f \wedge\left(s_{2}, t\right) \in f \Rightarrow s_{1}=s_{2}\right)$
- If f is a partial injection, we write: $f \in S \nrightarrow T$
- e.g., $\{\varnothing,\{(1, \mathbf{a})\},\{(2, \mathbf{a}),(3, \mathbf{b})\}\} \subseteq\{1,2,3\} \nrightarrow\{\mathbf{a}, \boldsymbol{b}\}$
- e.g., $\{(1, \mathbf{b}),(2, a),(3, \mathbf{b})\} \notin\{1,2,3\} \gg\{a, b\}$
[total, not inj.]
- e.g., $\{(1, b),(3, b)\} \notin\{1,2,3\} \nrightarrow\{a, b\}$ [partial, not inj.]
- ASCII syntax: f : >+>
- If f is a total injection, we write: $f \in S \rightarrow T$
- e.g., $\{1,2,3\} \gtrdot\{a, b\}=\varnothing$
- e.g., $\{(2, d),(1, a),(3, c)\} \in\{1,2,3\}>\{a, b, c, d\}$
- e.g., $\{(\mathbf{2}, d),(\mathbf{1}, c)\} \notin\{1,2,3\} \gtrdot\{a, b, c, d\}$
- e.g., $\{(2, \mathbf{d}),(1, c),(3, \mathbf{d})\} \notin\{1,2,3\} \mapsto\{a, b, c, d\}$
[total, not inj.]
○ ASCII syntax: f
Given a function f :
f is bijective/a bijection/one-to-one correspondence if f is total, injective, and surjective.
- e.g., $\{1,2,3\} \mapsto\{a, b\}=\varnothing$
- e.g., $\{\{(1, a),(2, b),(3, c)\},\{(2, a),(3, b),(1, c)\}\} \subseteq\{1,2,3\} \mapsto\{a, b, c\}$
- e.g., $\{(\mathbf{2}, b),(\mathbf{3}, c),(\mathbf{4}, a)\} \notin\{1,2,3,4\} \mapsto\{a, b, c\}$
- e.g., $\{(1, \mathbf{a}),(2, b),(3, c),(4, \mathbf{a})\} \notin\{1,2,3,4\} \mapsto\{a, b, c\}$
[total, not inj., sur.]
- e.g., $\{(1, \mathbf{a}),(2, \mathbf{c})\} \notin\{1,2\} \mapsto\{a, b, c\}$
[total, inj., not sur.]
- ASCII syntax: $£$: >->>

Functions (3.2): Surjective Functions

Given a function f (either partial or total):

- f is surjective/onto/a surjection if f maps to all members of T.

$$
\text { isSurjective }(f) \Longleftrightarrow \operatorname{ran}(f)=T
$$

- If f is a partial surjection, we write: $f \in S \nrightarrow T$
- e.g., $\{\{(1, \mathbf{b}),(2, \mathbf{a})\},\{(1, \mathbf{b}),(2, \mathbf{a}),(3, \mathbf{b})\}\} \subseteq\{1,2,3\} \nrightarrow\{\mathbf{a}, b$
- e.g., $\{(2, \mathbf{a}),(1, \mathbf{a}),(3, \mathbf{a})\} \notin\{1,2,3\} \rightarrow\{a, b\}$
[total, not sur.]
- e.g., $\{(2, \mathbf{b}),(1, \mathbf{b})\} \notin\{1,2,3\} \nrightarrow\{\mathbf{a}, \boldsymbol{b}\}$
[partial, not sur.]
- ASCII syntax: f : +->>
- If f is a total surjection, we write: $f \in S \rightarrow T$
- e.g., $\{\{(2, a),(1, b),(3, a)\},\{(2, b),(1, a),(3, b)\}\} \subseteq\{1,2,3\} \rightarrow\{a, b\}$
- e.g., $\{(\mathbf{2}, a),(3, b)\} \notin\{1,2,3\} \rightarrow\{a, b\}$ [not total, sur.]
\circ e.g., $\{(2, \mathbf{a}),(3, \mathbf{a}),(1, \mathbf{a})\} \notin\{1,2,3\} \rightarrow\{a, b\}$ [total., not sur]
- ASCII syntax: $£$: -->>

Functions (4.2): Modelling Decisions

LASSONDE

1. Should an array a declared as "String [] a" be modelled/formalized as a partial function (i.e., $a \in \mathbb{Z} \rightarrow$ String) or a total function (i.e., $a \in \mathbb{Z} \rightarrow$ String)?
Answer. $a \in \mathbb{Z} \rightarrow$ String is not appropriate as:

- Indices are non-negative (i.e., a(i), where $i<0$, is undefined).
- Each array size is finite: not all positive integers are valid indices.

2. What does it mean if an array is modelled/formalized as a partial injection (i.e., $a \in \mathbb{Z} \rtimes$ String)?
Answer. It means that the array does not contain any duplicates.
3. Can an integer array "int [] a" be modelled/formalized
as a partial surjection (i.e., $a \in \mathbb{Z} \nrightarrow \mathbb{Z}$)?
Answer. Yes, if a stores all 2^{32} integers (i.e., $\left[-2^{31}, 2^{31}-1\right]$).
4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \nrightarrow$ String)?
Answer. No \because \# possible strings is ∞.
5. Can an integer array "int []" storing all 2^{32} values be modelled/formalized as a bijection (i.e., $a \in \mathbb{Z} \mapsto \mathbb{Z}$)?
Answer. No, because it cannot be total (as discussed earlier).
36กt41

- For the where_is \in Employee \rightarrow Location model, what does it mean when it is:
- Injective [where_is \in Employee \gg Location]
- Surjective [where_is \in Employee \rightarrow Location]
- Bijective [where_is \in Employee \gg Location]
- Review examples discussed in your earlier math courses on logic and set theory.
- Ask questions in the Q\&A sessions to clarify the reviewed concepts.

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)
Propositional Logic: Implication (1)
Propositional Logic: Implication (2)
Propositional Logic: Implication (3)
Propositional Logic (2)
Predicate Logic (1)
Predicate Logic (2.1): Universal Q. ()
Predicate Logic (2.2): Existential Q. (ヨ)
Predicate Logic (3): Exercises
Predicate Logic (4): Switching Quantifications
[8014]

Index (2)

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises
Set Operations
Power Sets
Set of Tuples
Relations (1): Constructing a Relation
Relations (2.1): Set of Possible Relations
Relations (2.2): Exercise
Relations (3.1): Domain, Range, Inverse
Relations (3.2): Image

- Directly reasoning about source code (written in a programming language) is too complicated to be feasible.
- Instead, given a requirements document, prior to implementation, we develop models through a series of refinement steps:
- Each model formalizes an external observer's perception of the system.
- Models are "sorted" with increasing levels of accuracy w.r.t. the system.
- The first model, though the most abstract, can already be proved satisfying some requirements.
- Starting from the second model, each model is analyzed and proved correct relative to two criteria

1. Some requirements (i.e., R-descriptions)
2. Proof Obligations (POs) related to the preceding model being refined by the current model (via "extra" state variables and events).

- The last model (which is correct by construction) should be sufficiently close to be transformed into a working program (e.g., in C).

State Space of a Model

- A model's state space is the set of all configurations:
- Each configuration assigns values to constants \& variables, subject to: - axiom (e.g., typing constraints, assumptions)
- invariant properties/theorems
- Say an initial model of a bank system with two constants and a variable: $c \in \mathbb{N} 1 \wedge L \in \mathbb{N} 1 \wedge$ accounts \in String $\rightarrow \mathbb{Z} \quad / *$ typing constraint */ $\forall i d \bullet i d \in \operatorname{dom}($ accounts $) \Rightarrow-c \leq$ accounts (id) $\leq L \quad / *$ desired property */
Q. What is the state space of this initial model?
A. All valid combinations of c, L, and accounts.
- Configuration 1: $(c=1,000, L=500,000, b=\varnothing)$
- Configuration 2: $\left(c=2,375, L=700,000, b=\left\{\left(" i d 1^{\prime \prime}, 500\right),\left({ }^{\prime} i d 2^{\prime \prime}, 1,250\right)\right\}\right)$
[Challenge: Combinatorial Explosion]
- Model Concreteness $\uparrow \Rightarrow$ (State Space $\uparrow \wedge$ Verification Difficulty \uparrow)
- A model's complexity should be guided by those properties intended to be verified against that model.
\Rightarrow Infeasible to prove all desired properties on a model.
\Rightarrow Feasible to distribute desired properties over a list of refinements.
- We will walk through the development process of constructing models of a control system regulating cars on a bridge.

Such controllers exemplify a reactive system.
(with sensors and actuators)

- Always stay on top of the following roadmap:

1. A Requirements Document (RD) of the bridge controller
2. A brief overview of the refinement strategy
3. An initial, the most abstract model
4. A subsequent model representing the 1st refinement
5. A subsequent model representing the $2 n d$ refinement
6. A subsequent model representing the 3rd refinement

$50+124$

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Requirements Document: E-Descriptions

Each E-Description is an atomic specification of a constraint or an assumption of the system's working environment.

Requirements Document: R-Descriptions

Each R-Description is an atomic specification of an intended functionality or a desired property of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.

REQ2	The number of cars on bridge and island is limited.

Requirements Document:
Visual Summary of Equipment Pieces

- Before diving into details of the models, we first clarify the adopted design strategy of progressive refinements.
0 . The initial model (m_{0}) will address the intended functionality of a limited number of cars on the island and bridge.

1. A 1 st refinement (m_{1} which refines m_{0}) will address the intended functionality of the bridge being one-way.
2. A $2 n d$ refinement (m_{2} which refines m_{1}) will address the environment constraints imposed by traffic lights.
[ENV1, ENV2, ENV3]
3. A final, 3rd refinement (m_{3} which refines m_{2}) will address the environment constraints imposed by sensors and the architecture: controller, environment, communication channels. [ENV4, ENV5]

- Recall Correct by Construction :

From each model to its refinement, only a manageable amount of details are added, making it feasible to conduct analysis and proofs.

Model m_{0} : Abstraction

- In this most abstract perception of the bridge controller, we do not even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

- Analogies:
- Observe the system from the sky: island and bridge appear only as a compound.

- "Zoom in" on the system as refinements are introduced.

Model m_{0} : State Space

1. The static part is fixed and may be seen/imported.

A constant d denotes the maximum number of cars allowed to be on the island-bridge compound at any time.
(whereas cars on the mainland is unbounded)

Remark. Axioms are assumed true and may be used to prove theorems. 2. The dynamic part changes as the system evolves.

A variable n denotes the actual number of cars, at a given moment, in the island-bridge compound.

variables: n
invariants: inv0_1 $: n \in \mathbb{N}$ inv0_2: $n \leq d$

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

Model m_{0} : Actions vs. Before-After Predicatesonos

- When an enabled event eoccurs there are two notions of state:
- Before-/Pre-State: Configuration just before e's actions take effect
- After-/Post-State: Configuration just after e's actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the pre-state to the post-state.

- As examples, consider actions of m_{0} 's two events:

Events	$\mathbf{M L}$ out $n:=n+1$
before-after predicates	$\mathbf{M L}$ in $n:=n-1$
	$n^{\prime}=n+1$

- An event action " $n:=n+1$ " is not a variable assignment; instead, it is a specification: " n becomes $n+1$ (when the state transition completes)".
- The before-after predicate (BAP) " n ' $=n+1$ " expresses that
n^{\prime} (the post-state value of n) is one more than n (the pre-state value of n).
- When we express proof obligations (POs) associated with events, we use BAP. 14 of 124
- Our design of the two events

ML_out begin $n:=n+1$ end
ML_in begin $n:=n-1$ end

only specifies how the variable n should be updated.

- Remember, invariants are conditions that should never be violated!

> invariants:
> inv0_1: $n \in \mathbb{N}$
> inv0_2 : $n \leq d$

- By simulating the system as an ASM, we discover witnesses (i.e., event traces) of the invariants not being preserved all the time.

$$
\exists s \bullet s \in \text { State Space } \Rightarrow \neg \text { invariants }(s)
$$

- We formulate such a commitment to preserving invariants as a proof obligation (PO) rule (a.k.a. a verification condition (VC) rule).
15 ot 124

Sequents: Syntax and Semantics

- We formulate each PO/VC rule as a (horizontal or vertical) sequent:

$$
H \vdash G
$$

$$
\begin{gathered}
\hline H \\
\vdash \\
G \\
\hline
\end{gathered}
$$

- The symbol \vdash is called the turnstile.
- H is a set of predicates forming the hypotheses/assumptions.
[assumed as true]
- G is a set of predicates forming the goal/conclusion.
[claimed to be provable from H]
- Informally:
- $H \vdash G$ is true if G can be proved by assuming H.
[i.e., We say "H entails G " or "H yields G "]
- $H \vdash G$ is false if G cannot be proved by assuming H.
- Formally: $H \vdash G \Longleftrightarrow(H \Rightarrow G)$
Q. What does it mean when H is empty (i.e., no hypotheses)?

- Here is a sketch of the PO/VC rule for invariant preservation :

Axioms
Invariants Satisfied at Pre-State
Guards of the Event
\vdash
Invariants Satisfied at Post-State

- Informally, this is what the above PO/VC requires to prove: Assuming all axioms, invariants, and the event's guards hold at the pre-state, after the state transition is made by the event,
all invariants hold at the post-state.
17 Of 124

PO of Invariant Preservation: Components

- c : list of constants
- $A(c)$: list of axioms
- v and v^{\prime} : list of variables in pre- and post-states
- $I(c, v)$: list of invariants〈inv0_1, inv0_2〉
- $G(c, v)$: the event's list of guards
$G(\langle d\rangle,\langle n\rangle)$ of $M L_{-}$out $\widehat{\equiv}\langle$ true $\rangle, G(\langle d\rangle,\langle n\rangle)$ of $M L_{-}$in $\widehat{\equiv}\langle$ true \rangle
- $E(c, v)$: effect of the event's actions i.t.o. what variable values become
$E(\langle d\rangle,\langle n\rangle)$ of ML_out $\widehat{\equiv}\langle n+1\rangle, E(\langle d\rangle,\langle n\rangle)$ of ML_out $\widehat{\equiv}\langle n-1\rangle$
- $v^{\prime}=E(c, v)$: before-after predicate formalizing E 's actions

BAP of ML_out: $\left\langle n^{\prime}\right\rangle=\langle n+1\rangle$, BAP of ML_in: $\left\langle n^{\prime}\right\rangle=\langle n-1\rangle$

Rule of Invariant Preservation: Sequents

- Based on the components $(c, A(c), v, I(c, v), E(c, v))$, we are able to formally state the PO/VC Rule of Invariant Preservation:

$$
\begin{aligned}
& A(c) \\
& I(c, v)
\end{aligned}
$$

$$
G(c, v) \quad \underline{\text { INV }} \quad \text { where } I_{i} \text { denotes a single invariant condition }
$$

$\stackrel{\rightharpoonup}{\vdash}$
$l_{i}(c, E(c, v))$

- Accordingly, how many sequents to be proved? [\# events \times \# invariants]
- We have two sequents generated for event ML_out of model m_{0} :

| $d \in \mathbb{N}$ |
| :--- | :--- |
| $n \in \mathbb{N}$ |
| $n \leq d$ |
| \vdash |
| $n+1 \in \mathbb{N}$ |\quad ML_out/inv0_1/INV $\left.\quad$| $d \in \mathbb{N}$ |
| :--- |
| $n \in \mathbb{N}$ |
| $n \leq d$ |
| \vdash |
| $n+1 \leq d$ | \right\rvert\, ML_out/inv0_2/INV

Exercise. Write the POs of invariant preservation for event ML_in.

- Before claiming that a model is correct, outstanding sequents associated with all POs must be proved/discharged.
$190+124$

Inference Rules: Syntax and Semantics

- An inference rule (IR) has the following form:

Formally: $A \Rightarrow C$ is an axiom.
Informally: To prove C, it is sufficient to prove A instead. Informally: C is the case, assuming that A is the case

- L is a name label for referencing the inference rule in proofs.
- A is a set of sequents known as antecedents of rule L.
- C is a single sequent known as consequent of rule L.
- Let's consider inference rules (IRs) with two different flavours:

$$
\frac{H 1 \vdash G}{H 1, H 2 \vdash G} \text { MON } \frac{}{n \in \mathbb{N} \vdash n+1 \in \mathbb{N}} \quad \text { P2 }
$$

- IR MON: To prove $H 1, H 2 \vdash G$, it suffices to prove $H 1 \vdash G$ instead.
- IR P2: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an axiom.
[proved automatically without further justifications]

Proof of Sequent: Steps and Structure

- To prove the following sequent (related to invariant preservation):

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \in \mathbb{N}$

1. Apply a inference rule, which transforms some "outstanding" sequent to one or more other sequents to be proved instead.
2. Keep applying inference rules until all transformed sequents are axioms that do not require any further justifications.

- Here is a formal proof of ML_out/inv0_1/INV, by applying IRs MON and P2:

| $d \in \mathbb{N}$
 $n \in \mathbb{N}$
 $n \leq d$
 \vdash
 $n+1 \in \mathbb{N}$ |
| :--- | :--- |\quad MON | |
| :--- |\quad| $n \in \mathbb{N}$ |
| :--- |
| \vdash |
| $n+1 \in \mathbb{N}$ |\quad P2

Example Inference Rules (2)

Example Inference Rules (3)

$$
\frac{H 1 \vdash G}{H 1, H 2 \vdash G} \text { MON }
$$

To prove a goal under certain hypotheses, it suffices to prove it under less hypotheses.

$$
\frac{H, P \vdash R \quad H, Q \vdash R}{H, P \vee Q \vdash R} \quad \text { OR_L }
$$

Proof by Cases:
To prove a goal under a disjunctive assumption, it suffices to prove independently the same goal, twice, under each disjunct.
$\frac{H \vdash P}{H \vdash P \vee Q} \quad$ OR_R1
To prove a disjunction,
it suffices to prove the left disjunct.

$$
\frac{H \vdash Q}{H \vdash P \vee Q} \quad \text { OR_R2 }
$$

To prove a disjunction,
it suffices to prove the right disjunct.

Revisiting Design of Events: ML_out

- Recall that we already proved PO ML_out/inv0_1/INV:

| $d \in \mathbb{N}$
 $n \in \mathbb{N}$
 $n \leq d$
 \vdash
 $n+1 \in \mathbb{N}$ |
| :--- | :--- |\quad MON | |
| :--- |\quad| $n \in \mathbb{N}$ |
| :--- |
| \vdash |
| $n+1 \in \mathbb{N}$ |\quad P2

$\therefore M L$ out/inv0_1/INV succeeds in being discharged.

- How about the other PO ML_out/inv0_2/INV for the same event?

$\therefore M$ _out/inv0_2/INV fails to be discharged.
$250+124$

Revisiting Design of Events: ML_in

- How about the PO ML_in/inv0_1/INV for ML_in:

$$
\begin{aligned}
& \begin{array}{l}
d \in \mathbb{N} \\
n \in \mathbb{N} \\
n \leq d \\
\vdash \\
n-1 \in \mathbb{N}
\end{array} \quad \text { MON } \quad \begin{array}{l}
n \in \mathbb{N} \\
\vdash \\
n-1 \in \mathbb{N}
\end{array}
\end{aligned} ?
$$

$\therefore M L$ in/inv0_1/INV fails to be discharged.

- How about the other PO ML_in/inv0_2/INV for the same event?

[^1]- Proofs of ML_out/inv0_2/INV and ML_in/inv0_1/INV fail due to the two events being enabled when they should not
- Having this feedback, we add proper guards to ML_out and ML_in:

ML_out when $n<d$	ML_in when then $n:=n+1$ end
$n>0$ then $n:=n-1$	n end

- Having changed both events, updated sequents will be generated for the PO/VC rule of invariant preservation.
- All sequents (\{ML_out, ML_in\} $\times\{$ inv0_1, inv0_2\}) now provable?

27 of 124

Revisiting Fixed Design of Events: ML_out

- How about the PO ML_out/inv0_1/INV for ML_out:

$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ $n<d$ \vdash $n+1 \in \mathbb{N}$	MON
$n \in \mathbb{N}$ $n+1 \in \mathbb{N}$	P2

$\therefore M$ L_out/inv0_1/INV still succeeds in being discharged!

- How about the other PO ML_out/inv0_2/INV for the same event?

$\therefore M L_{\text {out }}$ inv0_2/INV now succeeds in being discharged! 880

Revisiting Fixed Design of Events: ML in

- How about the PO ML_in/inv0_1/INV for ML_in:

| $d \in \mathbb{N}$
 $n \in \mathbb{N}$
 $n \leq d$
 $n>0$
 \vdash
 $n-1 \in \mathbb{N}$$\quad$ MON | $n>0$
 \vdash
 $n-1 \in \mathbb{N}$ |
| :--- | :--- | :--- |

\therefore ML_in/inv0_1/INV now succeeds in being discharged!

- How about the other PO ML_in/inv0_2/INV for the same event?

\therefore ML_in/inv0_2/INV still succeeds in being discharged!
2901724

Initializing the Abstract System m_{0}

- Discharging the four sequents proved that both invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the invariants established in the first place? Analogy. Proving P via mathematical induction, two cases to prove:
- $P(1), P(2)$,
[base cases \approx establishing inv.]
- $P(n) \Rightarrow P(n+1)$
[inductive cases \approx preserving inv.]
- Therefore, we specify how the $\boldsymbol{A S M}$'s initial state looks like:
\checkmark The IB compound, once initialized, has no cars.
init
begin
$n:=0$
end
\checkmark Initialization always possible: guard is true.
\checkmark There is no pre-state for init.
\therefore The RHS of $:=$ must not involve variables.
\therefore The RHS of := may only involve constants.
\checkmark There is only the post-state for init.
$300+124$

```
init
    begin
        n:=0
    end
end
```

\checkmark An reactive system, once initialized, should never terminate.
\checkmark Event init cannot "preserve" the invariants.

- A new formal component is needed:
- $K(c)$: effect of init's actions i.t.o. what variable values become

$$
\text { e.g., } K(\langle d\rangle) \text { of init } \widehat{=}\langle 0\rangle
$$

- $v^{\prime}=K(c)$: before-after predicate formalizing init's actions
e.g., BAP of init: $\left\langle n^{\prime}\right\rangle=\langle 0\rangle$
- Accordingly, PO of invariant establisment is formulated as a sequent:
$\begin{array}{|l|l|}\hline \text { Axioms } \\ \vdash \\ \text { Invariants Satisfied at Post-State }\end{array} \quad$ INV $\left.\quad \begin{array}{|l}A(c) \\ \vdash \\ I_{i}(c, K(c))\end{array}\right]$ INV

31 Ot 124

Discharging PO of Invariant Establishment

- How many sequents to be proved?
[\# invariants]
- We have two sequents generated for event init of model m_{0} :

$\left.\begin{array}{l}d \in \mathbb{N} \\ \vdash \\ 0 \in \mathbb{N}\end{array}\right]$ init/inv0_1/INV $\left.\begin{array}{l}d \in \mathbb{N} \\ \vdash \\ 0 \leq d\end{array}\right]$ init/inv0_2/INV

- Can we discharge the $P O$ init/inv0_1/INV?

- Can we discharge the $P O$ init/inv0_2/INV?

```
d\in\mathbb{N}
\vdash}\quad\textrm{P}3\quad\therefore\mathrm{ init/inv0_2/INV
0\leqd \quaducceeds in being discharged.
```

$120+124$

- Deadlock freedom is not necessarily a desired property.
\Rightarrow When it is (like m_{0}), then the generated sequents must be discharged.
- Applying the PO of deadlock freedom to the initial model m_{0} :

Our bridge controller being deadlock-free means that cars can always enter (via ML_out) or leave (via ML_in) the island-bridge compound.

- Can we formally discharge this PO for our initial model m_{0} ?

To prove a goal $P(E)$ assuming $H(E)$,
where both P and H depend on expression E,
it suffices to prove $P(F)$ assuming $H(F)$,
where both P and H depend on expresion F, given that E is equal to F.
$H(E), E=F \vdash P(E)$
$H(F), E=F \vdash P(F)$$\quad$ EQ_RL

To prove a goal $P(F)$ assuming $H(F)$, where both P and H depend on expression F, it suffices to prove $P(E)$ assuming $H(E)$, where both P and H depend on expresion E, given that E is equal to F.

$$
\begin{array}{|l|l|}
\hline A(c) \\
I(c, v) \\
\vdash \\
G_{1}(c, v) \vee \cdots v G_{m}(c, v) \\
\hline & \begin{array}{l}
d \in \mathbb{N} \\
n \in \mathbb{N} \\
n \leq d \\
\vdash \\
n<d \vee n>0
\end{array} \\
\hline
\end{array}
$$

Fixing the Context of Initial Model

- Having understood the failed proof, we add a proper axiom to m_{0} :

```
axioms:
    axm0_2 : d>0
```

- We have effectively elaborated on REQ2:

$$
\begin{array}{l|l}
\text { REQ2 } & \begin{array}{l}
\text { The number of cars on bridge and island is limited } \\
\text { but positive. }
\end{array}
\end{array}
$$

- Having changed the context, an updated sequent will be generated for the PO/VC rule of deadlock freedom.
- Is this new sequent now provable?

390t124

Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d>0$
- This unprovable sequent gave us a good hint:
- For the model under consideration (m_{0}) to be deadlock-free,
it is required that $d>0$. $[\geq 1$ car allowed in the IB compound $]$
- But current specification of m_{0} not strong enough to entail this:
- $\neg(d>0) \equiv d \leq 0$ is possible for the current model
- Given axm0_1 : $d \in \mathbb{N}$
$\Rightarrow d=0$ is allowed by m_{0} which causes a deadlock.
- Recall the init event and the two guarded events:

When $d=0$, the disjunction of guards evaluates to false: $0<0 \vee 0>0$ \Rightarrow As soon as the system is initialized, it deadlocks immediately
as no car can either enter or leave the IR compound!!

Initial Model: Summary

- The final version of our initial model m_{0} is provably correct w.r.t.:
- Establishment of Invariants
- Preservation of Invariants
- Deadlock Freedom
- Here is the final specification of m_{0} :

$430+124$

Model m_{1} : "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
- We "zoom in" by observing the system from closer to the ground, so that the island-bridge compound is split into:
- the island
- the (one-way) bridge

- Nonetheless, traffic lights and sensors remain abstracted away!
- That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

- We are obliged to prove this added concreteness is consistent with m_{0} 44 ot 124

Model m_{1} : Refined State Space

1. The static part is the same as m_{0} 's: constants:

axioms:

axm0_1: $d \in \mathbb{N}$
axm0_2 : $d>0$
2. The dynamic part of the concrete state consists of three variables:

- a: number of cars on the bridge, heading to the island
- b: number of cars on the island
- c : number of cars on the bridge, heading to the mainland

	invariants: inv1_1: $a \in \mathbb{N}$ inv1_2: $b \in \mathbb{N}$ inv1_3: $c \in \mathbb{N}$
variables: a, b, c	
inv1_4: ??	
inv1_5: ??	

inv1_1, inv1_2, inv1_3 are typing constraints.
\checkmark inv1_4 links/glues the abstract and concrete states.
inv1_5 specifies
that the bridge is one-way.

Model m_{1} : State Transitions via Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" events already existing in m_{0}.
- Concrete/Refined version of event ML_out:

ML_out
when
??
then
$a:=a+1$
end

- Meaning of ML_out is refined: a car exits mainland (getting on the bridge).
- ML_out enabled only when:
- the bridge's current traffic flows to the island
- number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

ML_in	\circ Meaning of ML_in is refined:
when	\circ Mand

when
??
then
$c:=c-1$
end

> Meaning of ML_in is refined:
> a car enters mainland (getting off the bridge).

- ML_in enabled only when:
there is some car on the bridge heading to the mainland.

Model m_{1} ：Actions vs．Before－After Predicatesonot

－Consider the concrete／refined version of actions of m_{0}＇s two events：

－An event＇s actions are a specification：＂c becomes c－1 after the transition＂．
－The before－after predicate（BAP）＂c＇$=c-1$＂expresses that
c^{\prime}（the post－state value of c ）is one less than c（the pre－state value of c ）
－Given that the concrete state consists of three variables：
－An event＇s actions only specify those changing from pre－state to post－state．
$\left[\right.$ e．g．，$\left.c^{\prime}=c-1\right]$
－Other unmentioned variables have their post－state values remain unchanged．

$$
\left[\text { e.g., } a^{\prime}=a \wedge b^{\prime}=b\right]
$$

－When we express proof obligations（POs）associated with events，we use BAP． $470+124$

States \＆Invariants：Abstract vs．Concrete

－m_{0} refines m_{1} by introducing more variables：
Abstract State
${ }^{\circ}$（of m_{0} being refined）：

－Concrete State
（of the refinement model m_{1} ）：

－Accordingly，invariants may involve different states：

－ | Abstract Invariants |
| :--- |
| （involving the abstract state only）： |

－Concrete Invariants
（involving at least the concrete state）：

invariants： inv0＿1 $: n \in \mathbb{N}$ inv0＿2 $: n \leq d$
invariants：
inv1＿1：$a \in \mathbb{N}$
inv1＿2：$b \in \mathbb{N}$
inv1＿3：$c \in \mathbb{N}$
inv1＿4：$a+b+c=n$
inv1＿5：$a=0 \vee c=0$

Events：Abstract vs．Concrete

－When an event exists in both models m_{0} and m_{1} ，there are two versions of it：
－The abstract version modifies the abstract state．

| （abstract＿ML＿out |
| :--- | :--- |
| when |
| $n<d$ |
| then |
| $n:=n+1$ |
| end |\quad| （abstract＿ML＿in |
| :--- |
| when |
| $n>0$ |
| then |
| $n:=n-1$ |
| end |

－The concrete version modifies the concrete state．

（concrete＿）ML＿out
when
$a+b<d$
$c=0$
then
$a:=a+1$
end

－A new event may only exist in m_{1}（the concrete model）：we will deal with this kind of events later，separately from＂redefined／overridden＂events．
4901724

PO of Refinement：Components（1）

－c：list of constants
－$A(c)$ ：list of axioms
〈axm0＿1〉
－v and v^{\prime} ：abstract variables in pre－\＆post－states $n\rangle, v^{\prime} \widehat{\equiv}\langle n\rangle$
－w and w^{\prime} ：concrete variables in pre－\＆post－states $w \widehat{\equiv}\langle a, b, c\rangle, w^{\prime} \widehat{\equiv}\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle$
－$I(c, v)$ ：list of abstract invariants 〈inv0＿1，inv0＿2〉
－$J(c, v, w)$ ：list of concrete invariants
\langle inv1＿1，inv1＿2，inv1＿3，inv1＿4，inv1＿5〉

PO of Refinement: Components (2)

- $G(c, v)$: list of guards of the abstract event
$G(\langle d\rangle,\langle n\rangle)$ of ML_out $\widehat{\equiv}\langle n<d\rangle, G(c, v)$ of $\left.M L_{\text {_in }} \widehat{\equiv}\langle n\rangle 0\right\rangle$
- $H(c, w)$: list of guards of the concrete event
$H(\langle d\rangle,\langle a, b, c\rangle)$ of $M L_{-}$out $\widehat{\equiv}\langle a+b<d, c=0\rangle, H(c, w)$ of $M L_{-}$in $\left.\widehat{\equiv}\langle c\rangle 0\right\rangle$
$510+124$

- $E(c, v)$: effect of the abstract event's actions i.t.o. what variable values become

$$
E(\langle d\rangle,\langle n\rangle) \text { of ML_out } \widehat{\equiv}\langle n+1\rangle, E(\langle d\rangle,\langle n\rangle) \text { of } M L \text { _out } \widehat{\equiv}\langle n-1\rangle
$$

- $F(c, w)$: effect of the concrete event's actions i.t.o. what variable values become

$$
F(c, v) \text { of } M L \text { out } \widehat{\equiv}\langle a+1, b, c\rangle, F(c, w) \text { of } M L \text { out } \widehat{\equiv}\langle a, b, c-1\rangle
$$

Sketching PO of Refinement

The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms
Abstract Invariants Satisfied at Pre-State Concrete Invariants Satisfied at Pre-State Guards of the Concrete Event
$\stackrel{\rightharpoonup}{\vdash} \stackrel{+}{\text { Guar }}$
Guards of the Abstract Event
2. Invariant Preservation

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State Guards of the Concrete Event
\vdash
Concrete Invariants Satisfied at Post-State

- A concrete transition always has an abstract counterpart.
- A concrete event is enabled only if abstract counterpart is enabled.

Note. Guard strengthening and invariant preservation are only applicable to events that might be enabled after the system is launched.
The special, non-guarded init event will be discussed separately later.

Refinement Rule: Guard Strengthening

- Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

$A(c)$
$I(c, v)$
$J(c, v, w)$
$H(c, w)$
\vdash
$G_{i}(c, v)$

where G_{i} denotes a single guard condition of the abstract event

- How many sequents to be proved?
[\# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

$d \in \mathbb{N}$	$d>0$		
$n \in \mathbb{N}$	$n \leq d$		
$a \in \mathbb{N}$	$b \in \mathbb{N}$	$c \in \mathbb{N}$	$a+b+c=n$
$a+b<d$	$c=0$		
\vdash			
$n<d$			

ML_out/GRD

- Exercise. Write ML_in's PO of Guard Strengthening for Refinement. 540 I 124

axm0_1	$\{d \in \mathbb{N}$
axm0_2	$\{d>0$
inv0.1	$\{n \in \mathbb{N}$
inv0_2	$\{n \leq d$
inv1_1	$\{a \in \mathbb{N}$
inv1 2	\{ $b \in \mathbb{N}$
inv1 3	\{ $c \in \mathbb{N}$
inv1 4	$\{a+b+c=n$
inv1.5	$\{a=0 \vee c=0$
Concrete guards of ML_out	$\left\{\begin{array}{l}a+b<d \\ c=0\end{array}\right.$
	\vdash
Abstract guards of ML_out	$\{n<d$

PO Rule: Guard Strengthening of ML_in

- Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:
$A(c)$
$I(c, v)$
$I(c, v)$
$J(c, v, w)$
$J(c, v, w)$
$H(c, w)$
INV where J_{i} denotes a single concrete invariant $J_{i}(c, E(c, v), F(c, w))$
- \# sequents to be proved?
[\# concrete, old evts \times \# concrete invariants]
- Here are two (of the ten) sequents generated:

Exercises. Specify and prove other eight POs of Invariant Preservation. $590+124$

ML_out/inv1_4/INV

INV PO of m_{1} : ML_in/inv1_5/INV

- Discharging the twelve sequents proved that:
- concrete invariants preserved by ML_out \& ML_in
- concrete guards of ML_out \& ML_in entail their abstract counterparts
- What's left is the specification of how the ASM 's initial state looks like:

```
init
    begin
        a:=0
        b:=0
        c:=0
    end
end
```

\checkmark No cars on bridge (heading either way) and island
\checkmark Initialization always possible: guard is true.
\checkmark There is no pre-state for init.
\therefore The RHS of $:=$ must not involve variables.
\therefore The RHS of := may only involve constants.
\checkmark There is only the post-state for init.
\therefore Before-After Predicate: $a^{\prime}=0 \wedge b^{\prime}=0 \wedge c^{\prime}=0$

5501724

PO of m_{1} Concrete Invariant Establishment

- Some (new) formal components are needed:
- $K(c)$: effect of abstract init's actions:
e.g., $K(\langle d\rangle)$ of init $\widehat{\equiv}\langle 0\rangle$
- $v^{\prime}=K(c)$: before-after predicate formalizing abstract init's actions
e.g., BAP of init: $\left\langle n^{\prime}\right\rangle=\langle 0\rangle$
- $L(c)$: effect of concrete init's actions:

$$
\text { e.g., } K(\langle d\rangle) \text { of init } \widehat{\equiv}\langle 0,0,0\rangle
$$

- $w^{\prime}=L(c)$: before-after predicate formalizing concrete init's actions

$$
\text { e.g., BAP of init: }\left\langle\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}\right\rangle=\langle 0,0,0\rangle
$$

- Accordingly, PO of invariant establisment is formulated as a sequent:

Discharging PO of m_{1}

LASSONDE

Concrete Invariant Establishment

- How many sequents to be proved?
[\# concrete invariants]
- Two (of the five) sequents generated for concrete init of m_{1} :

$d \in \mathbb{N}$ $d>0$ \vdash $0+0+0=0$$\quad$ init/inv1_4/INV
$d \in \mathbb{N}$ $d>0$ \vdash $0=0 \vee 0=0$
init/inv1_5/INV

- Can we discharge the $P O$ init/inv1_4/INV?

$d \in \mathbb{N}$ $d>0$ \vdash $0+0+0=0$	ARI, MON $\quad \vdash \mathrm{T}$	TRUE_R
	\therefore init/inv1_4/INV succeeds in being discharged.	

- Can we discharge the $P O$ init/inv1_5/INV?

$\begin{aligned} & d \in \mathbb{N} \\ & d>0 \\ & \vdash \\ & 0=0 \vee 0=0 \end{aligned}$	ARI, MON	\vdash T	TRUE_R	\therefore init/inv1_5/INV succeeds in being discharged.

Model m_{1} : New, Concrete Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in m_{0} : ML_out \& ML_in
- New event IL_in:

IL_in
when
??
then
??
end

- IL_in denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
- The bridge's current traffic flows to the island. Q. Limited number of cars on the bridge and the island? A. Ensured when the earlier ML_out (of same car) occurred
- New event IL_out:
IL_out when
??
then
??
end
- IL_out denotes a car exiting the island (getting on the bridge).
- IL_out enabled only when:
- There is some car on the island.
- The bridge's current traffic flows to the mainland.

Model m_{1} : BA Predicates of Multiple Actions
Consider actions of m_{1} 's two new events:

| IL_in
 when
 $a>0$
 then
 $a:=a-1$
 $b:=b+1$
 end\quadIL_out
 when
 $b>0$$\quad$$a=0$
 then
 $b:=b-1$
 $c:=c+1$
 end |
| :--- | :--- |

- What is the BAP of ML_in's actions?

$$
a^{\prime}=a-1 \wedge b^{\prime}=b+1 \wedge c^{\prime}=c
$$

- What is the BAP of ML_in's actions?

$$
a^{\prime}=a \wedge b^{\prime}=b-1 \wedge c^{\prime}=c+1
$$

690t 124

Visualizing Inv. Preservation in Refinement

- Recall how a concrete event is simulated by its abstract counterpart:

- For each new event:
- Strictly speaking, it does not have an abstract counterpart.
- It is simulated by a special abstract event (transforming v to v^{\prime}):

- The new events $I L_{-}$in and $I L_{-} o u t$ do not exist in m_{0}, but:
- They exist in m_{1} and may impact upon the concrete state space.
- They preserve the concrete invariants, just as ML_out \& ML_in do
- Recall the PO/VC Rule of Invariant Preservation for Refinement:

$A(c)$
$I(c, v)$

$\begin{array}{l}l(c, v) \\ J(c, v, w) \\ H(c, w) \\ \vdash\end{array}$	INV \quad where J_{i} denotes a single concrete invariant

$J_{i}(c, E(c, v), F(c, w))$

- How many sequents to be proved? [\# new evts \times \# concrete invariants]
- Here are two (of the ten) sequents generated:

- Exercises. Specify and prove other eight POs of Invariant Preservation. 710t124

axm0_1	$\left\{\begin{array}{l}d \in \mathbb{N} \\ \text { axm0_2 }\end{array}\right.$	$\left\{\begin{array}{l}d>0 \\ \text { inv0_1 }\end{array}\right.$
inv0_2	$n \in \mathbb{N}$	
$n \leq d$		
inv1_1	$\left\{\begin{array}{l}a \in \mathbb{N} \\ \text { inv1_2 }\end{array}\right.$	$\{b \in \mathbb{N}$
inv1_3	$\left\{\begin{array}{l}c \in \mathbb{N} \\ \text { inv1_4 }\end{array}\right\} a+b+c=n$	
inv1_5	$\left\{\begin{array}{l}a=0 \vee c=0 \\ \text { Guards of IL_in }\end{array}\right.$	$\{a>0$
	\vdash	
with IL_in's effect in the post-state	$\{(a-1)=0 \vee c=0$	
Concrete invariant inv1_5		

IL_in/inv1 5/INV

Proving Refinement: IL_in/inv1_4/INV

```
\(d \in \mathbb{N}\)
```

$d \in \mathbb{N}$
$d>0$
$d>0$
$n \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
$n \leq d$
$a \in \mathbb{N}$
$a \in \mathbb{N}$
$a \in \mathbb{N}$
$b \in \mathbb{N}$
$a \in \mathbb{N}$
$b \in \mathbb{N}$
$c \in \mathbb{N}$
$c \in \mathbb{N}$
$a+b+c=n$
$a+b+c=n$
$a=0 \vee c=0$
$a=0 \vee c=0$
$a>0$

```
\(a>0\)
```

Concrete invariant inv1_4 with $I L$ in's effect in the post-state

$150+124$

Livelock Caused by New Events Diverging

- An alternative m_{1} (with inv1_4, inv1_5, and guards of new events removed):

Concrete invariants are under-specified: only typing constraints.

Exercises : Show that Invariant Preservation is provable, but Guard Strengthening is not.

- Say this alternative m_{1} is implemented as is: IL_in and IL_out always enabled and may occur indefinitely, preventing other "old" events (ML_out and ML_in) from ever happening:

$$
\langle\text { init, IL_in, IL_out, IL_in, IL_out, . . . }\rangle
$$

Q: What are the corresponding abstract transitions?
A: 〈init, skip, skip, skip, skip, ...〉 [\approx executing while (true);]

- We say that these two new events diverge , creating a livelock:
- Different from a deadlock \because always an event occurring (IL_in or IL_out).
- But their indefinite occurrences contribute nothing useful.

PO of Convergence of New Events

The PO/VC rule for non-divergence/livelock freedom consists of two parts:

- Interleaving of new events characterized as an integer expr.: variant.
- A variant $V(c, w)$ may refer to constants and/or concrete variables.
- In the original m_{1}, let's try variants : $2 \cdot a+b$

1. Variant Stays Non-Negative

$A(c)$ $I(c, v)$		\bigcirc	Variant $V(c, w)$ measures how many more times the new events can oc
$\begin{aligned} & J(c, v, w) \\ & H(c, w) \end{aligned}$	NAT		If a new event is enabled, then $V(c, w)>0$.
$V(c, w) \in \mathbb{N}$			When $V(c, w)$ reaches 0 , some "old" events must happen s.t. $V(c, w)$ goes back above 0

2. A New Event Occurrence Decreases Variant
```
A(c)
I(c,v)
J(c,v,w)
H(c,w)
```

$V(c, F(c, w))<V(c, w)$
77

PO of Convergence of New Events: NAT

- Recall: PO related to Variant Stays Non-Negative:

- For the new event IL_in:

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

PO of Convergence of New Events: VAR

- Recall: PO related to A New Event Occurrence Decreases Variant
$A(c)$
$I(c, v)$

| $I(c, v)$
 $J(c, v, w)$
 $H(c, w)$$\quad \underline{\text { VAR }} \quad$ How many sequents to be proved? |
| :--- | :--- | $H(c, w)$ VAR

$V(c, F(c, w))<V(c, w)$

- For the new event IL_in:

$d \in \mathbb{N}$	$d>0$	
$n \in \mathbb{N}$	$n \leq d$	
$a \in \mathbb{N}$	$b \in \mathbb{N}$	$c \in \mathbb{N}$
$a+b+c=n$	$a=0 \vee c=0$	
$a>0$		
\vdash		
$2 \cdot(a-1)+(b+1)<2 \cdot a+b$		

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.
$290+124$

Convergence of New Events: Exercise

Given the original m_{1}, what if the following variant expression is used:

$$
\text { variants : } a+b
$$

Are the formulated sequents still provable?

PO of Refinement: Deadlock Freedom

- Recall:
- We proved that the initial model m_{0} is deadlock free (see DLF).
- We proved, according to guard strengthening, that if a concrete event is enabled, then its abstract counterpart is enabled.
- PO of relative deadlock freedom for a refinement model:

| $A(c)$
 $l(c, v)$
 $J(c, v, w)$ If an abstract state does not deadlock
 $G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)$
 \vdash DLF
 $H_{1}(c, w) \vee \cdots \vee H_{n}(c, w)$ (i.e., $\left.G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)\right)$, then
 its concrete counterpart does not deadlock
 (i.e., $\left.H_{1}(c, w) \vee \cdots \vee H_{n}(c, w)\right)$. |
| :--- | :--- |

- Another way to think of the above PO:

The refinement does not introduce, in the concrete, any "new" deadlock scenarios not existing in the abstract state.

To prove a goal with a conjunctive goal, it suffices to prove each conjunct as a separate goal.

To prove a disjunctive goal,
it suffices to prove one of the disjuncts,
with the the negation of the the other disjunct serving as an additional hypothesis.

To prove a goal with a conjunctive hypothesis, it suffices to prove the same goal, with the the two conjuncts serving as two separate hypotheses.

First Refinement: Summary

- The final version of our first refinement m_{1} is provably correct w.r.t.:
- Establishment of Concrete Invariants
- Preservation of Concrete Invariants
[old \& new events]
- Strengthening of guards
[old events]
- Convergence (a.k.a. livelock freedom, non-divergence) [new events]
- Relative Deadlock Freedom
- Here is the final specification of m_{1} :

Model m_{2} : "More Concrete" Abstraction

- 2nd refinement has even more concrete perception of the bridge controller:
- We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:
$m l=t l$: a traffic light for exiting the ML il_tl: a traffic light for exiting the IL abstract variables a, b, c from m_{1} still used (instead of being replaced)

- Nonetheless, sensors remain abstracted away!
- That is, we focus on these three environment constraints:

ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2	The traffic lights control the entrance to the bridge at both ends of it.
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.

- We are obliged to prove this added concreteness is consistent with m_{1}.

8 5

Model m_{2} : Refined, Concrete State Space

1. The static part introduces the notion of traffic light colours:

2. The dynamic part shows the superposition refinement scheme:

- Abstract variables a, b, c from m_{1} are still in use in m_2.
- Two new, concrete variables are introduced: ml_tl and il_tl
- Constrast: In m_{1}, abstract variable n is replaced by concrete variables a, b, c.

	invariants:
$\begin{gathered} \text { variables: } \\ a, b, c \end{gathered}$	inv2_1: ml_tt \in COLOUR inv2.2: il_tt \in COLOUR
$\xrightarrow[\text { il_tıl }]{\text { ild }}$	inv2_3: ??
	inv2-4: ??

\diamond inv2_1 \& inv2_2: typing constraints \diamond inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
\diamond inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

Model m_{2} : New, Concrete Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered events already existing in m_{1} :
- ML_out \& IL_out
- IL_in \& ML_in
- New event ML_tl_green:

ML_tl_green
when
??
then
ml_tl : = green
end

- ML_tl_green denotes the traffic light $m l_{-} t /$ turning green.
- ML_tl_green enabled only when:
- the traffic light not already green
- limited number of cars on the bridge and the island
- No opposite traffic
[\Rightarrow ML_out's abstract guard in m_{1}]
- New event IL_tl_green:

axm0.1	$\{d \in \mathbb{N}$
axm02	$d>0$
axm2_1	COLOUR $=$ \{green, red $\}$
axm2_2	green $=$ red
inv0-1	$n \in \mathbb{N}$
inv0_2	$n \leq d$
inv1_1	$a \in \mathbb{N}$
inv1_2	$b \in \mathbb{N}$
inv1_3	$c \in \mathbb{N}$
inv1_4	$a+b+c=n$
inv1-5	$a=0 \vee c=0$
inv2.1	ml_tl \in COLOUR
inv2_2	il t t C COLOUR
inv2_3	ml -tl $=$ green $\Rightarrow a+b<d \wedge c=0$
inv2_4	il_tl $=$ green $\Rightarrow b>0 \wedge a=0$
Concrete guards of IL_out	il_tl $=$ green
Concrete invariant inv2 3 with ML_out's effect in the post-state	$\left\{m l_{-} t l=\right.$ green $\Rightarrow a+(b-1)<d \wedge(c+1)=0$

IL_out/inv2_3/INV

Example Inference Rules (7)

$H, P, Q \vdash R$
$H, P, P \Rightarrow Q \vdash R$ IMP_L

If a hypothesis P matches the assumption of another implicative hypothesis $P \Rightarrow Q$, then the conclusion Q of the implicative hypothesis can be used as a new hypothesis for the sequent.
$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad$ IMP_R

To prove an implicative goal $P \Rightarrow Q$,
it suffices to prove its conclusion Q, with its assumption P serving as a new hypotheses.

$$
\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \text { NOT_L }
$$

To prove a goal Q with a negative hypothesis $\neg P$, it suffices to prove the negated hypothesis $\neg(\neg P) \equiv P$ with the negated original goal $\neg \boldsymbol{Q}$ serving as a new hypothesis.

- Our first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both failed the 2nd case (resulted from applying IR AND_R):

$$
\text { green } \neq \text { red } \wedge i l_{-} t l=\text { green } \wedge m l_{-} t l=\text { green } \vdash 1=0
$$

- This unprovable sequent gave us a good hint:
- Goal $1=0 \equiv$ false suggests that the safety requirements $a=0$ (for inv2_4) and $c=0$ (for inv2_3) contradict with the current m_{2}.
- Hyp. $i l_{-} t l=$ green $=m l_{-} t l$ suggests a possible, dangerous state of m_{2}, where two cars heading different directions are on the one-way bridge:

420

Fixing m_{2} : Adding an Invariant

- Having understood the failed proofs, we add a proper invariant to m_{2} :

invariants:

inv2_5 : ml_tl = red \vee il_tl = red

- We have effectively resulted in an improved m_{2} more faithful w.r.t. REQ3:

REQ3 The bridge is one-way or the other, not both at the same time.

- Having added this new invariant inv2_5:
- Original 6×4 generated sequents to be updated: inv2_5 a new hypothesis e.g., Are ML_out/inv2_4/INV and IL_out/inv2_3/INV now provable?
- Additional 6×1 sequents to be generated due to this new invariant e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?

$\left.\begin{array}{rl} & \begin{array}{r}\text { axm0_1 } \\ \text { axm0_2 } \\ \text { axm2_1 } \\ \text { axm2_2 } \\ \text { inv0_1 }\end{array} \\ \text { inv0_2 } \\ \text { inv1_1 } \\ \text { inv1_2 } \\ \text { inv1_3 } \\ \text { inv1_4 } \\ \text { inv1_5 } \\ \text { inv2_1 } \\ \text { inv2_2 } \\ \text { inv2_3 } \\ \text { inv2_4 } \\ \text { inv2_5 }\end{array}\right\}$	

IL_out/inv2_3/INV

Proving IL_out/inv2 3/INV: Second Attempt

- Recall that an invariant was added to m_{2} :

> invariants:
> inv2_5 : ml_t $=r e d \vee$ il_t $=$ red

- Additional 6×1 sequents to be generated due to this new invariant:
- e.g., ML_tl_green/inv2_5/INV [for ML_tl_green to preserve inv2_5]
- e.g., IL_tl_green/inv2_5/INV [for IL_tl_green to preserve inv2_5]
- For the above sequents to be provable, we need to revise the two events:

Exercise: Specify and prove ML_tl_green/inv2_5/INV \& IL_tl_green/inv2_5/INV 1030t124

INV PO of m_{2} : ML_out/inv2 3/INV

ML_out/inv2_3/INV

Failed: ML out/inv2 3/INV

- Our first attempt of proving ML_out/inv2_3/INV failed the 1st case (resulted from applying IR AND_R):

$$
a+b<d \wedge c=0 \wedge m l_{-} t l=\text { green } \vdash(a+1)+b<d
$$

- This unprovable sequent gave us a good hint:
- Goal $(a+1)+b<d$ specifies the capacity requirement.

$$
\underbrace{}_{a^{\prime}} \underbrace{}_{b^{\prime}}
$$

- Hypothesis $c=0 \wedge m l_{-} t l=$ green assumes that it's safe to exit the ML.
- Hypothesis $a+b<d$ is not strong enough to entail $(a+1)+b<d$.
e.g., $d=3, b=0, a=0$ e.g., $d=3, b=1, a=0$ e.g., $d=3, b=0, a=1$ e.g., $d=3, b=0, a=2$ e.g., $d=3, b=1, a=1$ e.g., $d=3, b=2, a=0$
$[(a+1)+b<d$ evaluates to true $]$ $[(a+1)+b<d$ evaluates to true $]$ $[(a+1)+b<d$ evaluates to true $]$ $[(a+1)+b<d$ evaluates to false] [$(a+1)+b<d$ evaluates to false]
$[(a+1)+b<d$ evaluates to false $]$
- Therefore, $a+b<d$ (allowing one more car to exit ML) should be split: $a+b+1 \neq d$
[more later cars may exit ML, ml_tl remains green]

Fixing m_{2} : Splitting ML out and $/ L$ out

- Recall that ML_out/inv2_3/INV failed \because two cases not handled separately: $a+b+1 \neq d \quad$ [more later cars may exit ML, ml_tl remains green] $a+b+1=d$ [no more later cars may exit ML, ml_tl turns red]
- Similarly, IL_out/inv2_4/INV would fail \because two cases not handled separately: $b-1 \neq 0$
$b-1=0$
[more later cars may exit IL, il_tl remains green] [no more later cars may exit IL, il_tl turns red]
- Accordingly, we split ML_out and IL_out into two with corresponding guards.

ML_out_1
when
ml_tl $=$ green
$a+b+1 \neq d$
then
$a:=a+1$
end

ML_out_2
when
$m l^{t l}=$ green
$a+b+1=d$
then
$a:=a+1$
$m l_{-} t l:=$ red
end

IL_out_1
when
il_t $t=$ green
$b \neq 1$
then
$b:=b-1$
$c:=c+1$
end

IL_out_2
when
il_tl $=$ green
$b=1$
then
$b:=b-1$
$c:=c+1$
il_tl:= red
end

Exercise: Given the latest m_{2}, how many sequents to prove for invariant preservation? Exercise: Specify and prove ML_out_i/inv2_3/INV \& IL_out_i/inv2_4/INV (where i $\in 1$.. 2). Exercise: Each split event (e.g., ML_out_1) refines its abstract counterpart (e.g., ML_out)? 10/ ot 124

m_{2} Livelocks: New Events Diverging

- Recall that a system may livelock if the new events diverge.
- Current m_{2} 's two new events ML_tl_green and IL_tl_green may diverge :

- ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

\Rightarrow Two traffic lights keep changing colors so rapidly that no drivers can ever pass!
Solution: Allow color changes between traffic lights in a disciplined way. 108 of 124

Fixing m_{2} : Regulating Traffic Light Changes $\underset{\text { Lassonot }}{=}$

We introduce two variables/flags for regulating traffic light changes:

- ml_pass is $1 \underline{i f}$, since $m l _t l$ was last turned green, at least one car exited the ML onto the bridge. Otherwise, ml _pass is 0 .
- il_pass is 1 if, since il_tl was last turned green, at least one car exited the IL onto the bridge. Otherwise, il_pass is 0 .

$$
\begin{aligned}
& \text { variables: ml_pass, il_pass } \\
& \begin{array}{l}
\text { invariants: } \\
\text { inv2_6: } \\
\text { ml_pass } \in\{0,1\}
\end{array} \\
& \text { inv2_7: il_pass } \in\{0,1 \\
& \text { inv2.8: } \text { ml_t }=\text { red } \Rightarrow \text { ml_pass }=1 \\
& \text { inv2.9: il_tl = red } \Rightarrow \text { il_pass = } 1
\end{aligned}
$$

1090124

Fixing m_{2} : Measuring Traffic Light Changes

- Recall:
- Interleaving of new events charactered as an integer expression: variant.
- A variant $V(c, w)$ may refer to constants and/or concrete variables.
- In the latest m_{2}, let's try variants : ml_pass + il_pass
- Accordingly, for the new event ML_tl_green:

$d \in \mathbb{N}$	$d>0$	
COLOUR $=\{$ green, red $\}$	green $=$ red	
$n \in \mathbb{N}$	$n \leq d$	
$a \in \mathbb{N}$	$b \in \mathbb{N}$	$c \in \mathbb{N}$
$a+b+c=n$	$a=0 \vee c=0$	
$m l_{-} t$ ¢ COLOUR	il_tl COLOUR	
$\begin{aligned} & m l_{-} t l=\text { green } \Rightarrow a+b<d \wedge c=0 \\ & m l_{-} t l=r e d \vee i l_{-} t l=r e d \end{aligned}$	$i l_{-} t l=$ green $\Rightarrow b>0 \wedge a=0$	
ml_pass $\in\{0,1\}$	il_pass $\in\{0,1\}$	
$m l_{-} t=r e d \Rightarrow m l_{-}$pass $=1$	il_tl $=$ red \Rightarrow il_pass $=1$	
$m l_{-} t /=r e d$	$a+b<d$	$c=0$
il_pass = 1		
\vdash		
0 + il_pass < ml_pass + il_pass		

Second Refinement: Summary

- The final version of our second refinement m_{2} is provably correct w.r.t.:
- Establishment of Concrete Invariants
- Preservation of Concrete Invariants
- Strengthening of guards
- Convergence (a.k.a. livelock freedom, non-divergence) [old \& new events] [old events] [new events]
Relative Deadlock Freedom
- Here is the final specification of m_{2} :

Learning Outcomes
Recall: Correct by Construction
State Space of a Model
Roadmap of this Module
Requirements Document: Mainland, Island
Requirements Document: E-Descriptions
Requirements Document: R-Descriptions
Requirements Document:
Visual Summary of Equipment Pieces
Refinement Strategy
Model m_{0} : Abstraction
$1140+124$

Index (6)	
PO Rule: Guard Strengthening of ML_in	
Proving Refinement: ML_out/GRD	
Proving Refinement: ML_in/GRD	
Refinement Rule: Invariant Preservation	
Visualizing Inv. Preservation in Refinement	
INVPO of m_{1} : ML_out/inv1_4/INV	
INVPO of m_{1} : ML_in/Inv1_5/INV	
Proving Refinement: ML_out/inv1_4/INV	
Proving Refinement: ML_in/inv1_5/INV	
Initializing the Refined System m_{1}	
PO of m_{1} Concrete Invariant Establishment	
[900729	
Index (7)	
Discharging PO of m_{1}	
Concrete Invariant Establishment	
Model m_{1} : New, Concrete Events	
Model m_{1} : BA Predicates of Multiple Actions	
Visualizing Inv. Preservation in Refinement	
Refinement Rule: Invariant Preservation	
INVPO of m_{1} : IL_in/inv1 4/INV	
INV PO of m_{1} : IL in/inv1 $5 / \mathrm{INV}$	
Proving Refinement: IL_in/inv1_4/INV	
Proving Refinement: IL_in/inv1_5/INV	
Livelock Caused by New Events Diverging	
12001729	

Index (8)

PO of Convergence of New Events
PO of Convergence of New Events: NAT
PO of Convergence of New Events: VAR
Convergence of New Events: Exercise
PO of Refinement: Deadlock Freedom
PO Rule: Relative Deadlock Freedom of m_{1}
Example Inference Rules (6)
Proving Refinement: DLF of m_{1}
Proving Refinement: DLF of m_{1} (continued)
First Refinement: Summary
Model m_{2} : "More Concrete" Abstraction
$1210+124$

Index (9)

Model m_{2} : Refined, Concrete State Space
Model m_{2} : Refining Old, Abstract Events
Model m_{2} : New, Concrete Events
Invariant Preservation in Retinement m_{2}
INV PO of m_{2} : ML out/Inv2_4/INV
INV PO of m_{2} : IL_out/inv2_3/INV
Example Inference Rules (7)
Proving ML_out/inv2_4/INV: First Attempt
Proving IL out/inv2 3/INV: First Attempt
Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV
Fixing m_{2} : Adding an Invariant
$1220+124$

- The bridge controller we specified, refined, and proved exemplifies a reactive system, working with the physical world via:
- sensors
[a, b, c, ml_pass, il_pass]
- actuators
[ml_tl, il_tl]
- We now study an example exemplifying a distributed program :
- A protocol followed by two agents, residing on distinct geographical locations, on a computer network
- Each file is transmitted asynchronously: bytes of the file do not arrive at the receiver all at one go.
- Language of predicates, sets, and relations required
- The same principles of generating proof obligations apply.

30128

Requirements Document: File Transfer Protocol (FTP)

You are required to implement a system for transmitting files between agents over a computer network.

Page Source: https://www.venafi.com

Each R-Description is an atomic specification of an intended functionality or a desired property of the working system.

Refinement Strategy

- Recall the design strategy of progressive refinements.

0. initial model $\left(m_{0}\right)$: a file is transmitted from the sender to the receiver. [REQ1] However, at this most abstract model:

- file transmitted from sender to receiver synchronously \& instantaneously
- transmission process abstracted away

1. 1st refinement (m_{1} refining m_{0}):

However, at this more concrete model:

- no communication between sender and receiver
- exchanges of messages and acknowledgements abstracted away

2. 2nd refinement (m_{2} refining m_{1}):
communication mechanism elaborated
3. final, 3rd refinement (m_{3} refining m_{2}):
communication mechanism optimized
[REQ2, REQ3]

- Recall Correct by Construction:

From each model to its refinement, only a manageable amount of details are added, making it feasible to conduct analysis and proofs.

Model m_{0} : Abstraction

- In this most abstract perception of the protocol, we do not consider the sender and receiver:
- residing in geographically distinct locations
- communicating via message exchanges
- Instead, we focus on this single requirement:

- Abstraction Strategy :

- Observe the system with the process of transmission abstracted away
- only meant to inform what the protocol is supposed to achieve
- not meant to detail
how the transmission is achieved

Math Background Review

Refer to Lecture 1 for reviewing:

- Predicates
[e.g., \forall]
- Sets
- Relations and Operations
- Functions

Model m_{0} : Abstract State Space

1. The static part formulates the file (from the sender's end) as a sequence of data items:

2. The dynamic part of the state consists of two variables:
$\checkmark g$: file from the receiver's end
$\checkmark \quad b$: whether or not the transmission is completed

\checkmark inv0_1a and inv0_1b are typing constraints.
\checkmark inv0_2 specifies what happens before the transmission
\checkmark inv0_3 specifies what happens after the transmission

40128

Model m_{0} : State Transitions via Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Initially, before the transmission:
init
begin
??
end
- Nothing has been transmitted to the receiver.
- The transmission process has not been completed.
- Finally, after the transmission:

final	-	The entire file f has been transmitted to the receiver.
when	-	The transmission process has been completed.
??		
then	\bigcirc	In this abstract model:
??		- Think of the transmission being instantaneous.
end		- A later refinement specifies how f is transmitted asynchronously.

PO of Invariant Establishment

- How many sequents to be proved?
- We have four sequents generated for event init of model m_{0} :

1.	$\begin{aligned} & n>0 \\ & t \in 1 . . n \rightarrow D \\ & B O O L E A N=\{T R U E, F A L S E\} \\ & \triangleright \\ & \varnothing \in 1 \ldots n \rightarrow D \end{aligned}$	init/inv0_1a/INV
2.	```n>0 f\in1..n->D BOOLEAN = {TRUE,FALSE } \vdash FALSE \in BOOLEAN```	init/inv0_1b/INV
3.	```n>0 f\in1..n->D BOOLEAN = {TRUE,FALSE } \vdash FALSE = FALSE => }\varnothing=```	init/inv0_2/INV
4.	```n>0 f\in1..n->D BOOLEAN = {TRUE,FALSE } \vdash FALSE = TRUE = \varnothing=f```	init/inv0_3/INV

- Exercises: Prove the above sequents related to invariant establishment.

110 c 28

PO of Invariant Preservation

- How many sequents to be proved?
[\# non-init events \times \# invariants]
- We have four sequents generated for event final of model m_{0} :

$n>0$
$f \in 1 \ldots n \rightarrow D$
$B O O L E A N=\{$ TRUE, FALSE $\}$
$g \in 1 \ldots n \rightarrow D$
$b \in B O O L E A N$
$b=F A L S E \Rightarrow g=\varnothing$
$b=T R U E \Rightarrow g=f$
$b=F A L S E$
\vdash
$f \in 1 \ldots n \rightarrow D$

final/inv0_1a/INV

$n>0$
$t \in 1 \ldots n \rightarrow D$
$B O O E A N=\{T R U E, F A L S E\}$
$g \in 1 \ldots n \rightarrow D$
$b \in B O O L E A N$
$b=F A L S E \Rightarrow g=\varnothing$
$b=T R U E \Rightarrow g=f$
$b=F A L S E$
\vdash
TRUE $=$ FALSE $\Rightarrow f=\varnothing$

final/inv0_1b/INV

- Exercises: Prove the above sequents related to invariant preservation. 120128

Initial Model: Summary

- Our initial model m_{0} is provably correct w.r.t.:
- Establishment of Invariants
- Preservation of Invariants
- Deadlock Freedom
- Here is the specification of m_{0} :

130 C 28

Model m_{1} : "More Concrete" Abstraction

- In m_{0}, the transmission (evt. final) is synchronous and instantaneous.
- The 1 st refinement has a more concrete perception of the file transmission
- The sender's file is coped gradually, element by element, to the receiver.
\rightarrow Such progress is denoted by occurrences of a new event receive.
h : elements transmitted so far
r : index of element to be sent abstract variable g is replaced by concrete variables h and r.
- Nonetheless, communication between two agents remain abstracted away!
- That is, we focus on these two intended functionalities:

REQ2	The file is supposed to be made of a sequence of items.
REQ3	The file is sent piece by piece between the two sites.

- We are obliged to prove this added concreteness is consistent with m_{0}. $140 \mathrm{H}^{2} 8$

Model m_{1} : Refined, Concrete State Space

1. The static part remains the same as m_{0} :

2. The dynamic part formulates the gradual transmission process:
\diamond inv1_1: typing constraint
\diamond inv2_2: elements up to index $r-1$
have been transmitted

\diamond inv2_3: transmission completed means no more elements to be transmitted
\diamond thm1_1: transmission completed means receiver has a complete copy of sender's file
\diamond A theorem, once proved as
derivable from invariants, needs not be proved for preservation by events.
15 Ot 28

Model m_{1} : Property Provable from Invariantstassono

- To prove that a theorem can be derived from the invariants:

variables:	
b, h, r	
	invariants: inv1_1: $r \in 1 \ldots n+1$ inv1_2: $h=(1 \ldots r-1) \triangleleft f$ inv1_3: $b=T R U E \Rightarrow r=n+1$ thm1_1: $b=T R U E \Rightarrow h=f$

- We need to prove the following sequent:

$$
\begin{aligned}
& n>0 \\
& f \in 1 \ldots n \rightarrow D \\
& B O O L E A N=\{T R U E, F A L S E\} \\
& r \in 1 \ldots n+1 \\
& h=(1 \ldots r-1) \triangleleft f \\
& b=T R U E \Rightarrow r=n+1 \\
& \vdash \\
& b=T R U E \Rightarrow h=f \\
& \hline
\end{aligned}
$$

- Exercise: Prove the above sequent.

160128

Model m_{1} : Old and New Concrete Events

- Initially, before the transmission:
init \diamond The transmission process has not been completed.
begin
??
\diamond Nothing has been transmitted to the receiver.
\diamond First file element is available for transmission.
- While the transmission is ongoing:
receive
when
??
then
end?
\diamond While sender has more file elements available for transmission:
- Next file element is received and accumulated to the receiver's copy.
- Sender's next available file element is updated.
\diamond In this concrete model:
- Receiver having access to sender's private variable r is unrealistic.
- A later refinement specifies how two agents communicate.
- Finally, after the transmission:
final
when
?? $\quad \diamond$ When sender has no more file element available for transmission:
then
??
end
- The transmission process is marked as completed.

PO of Invariant Establishment

- How many sequents to be proved?
[\# invariants]
- We have three sequents generated for event init of model m_{1} :

$\begin{aligned} & n>0 \\ & f \in 1 \ldots n \rightarrow D \\ & B O O L E A N=\{T R U E, F A L S E\} \\ & \vdash \\ & 1 \in 1 \ldots n+1 \end{aligned}$	init/inv1_1/INV
$\begin{aligned} & n>0 \\ & f \in 1 \ldots n \rightarrow D \\ & B O O L E A N=\{T R U E, F A L S E\} \\ & \vdash \\ & \varnothing \in(1 \ldots 1-1) \triangleleft f \end{aligned}$	init/inv1_2/INV
$\begin{aligned} & n>0 \\ & f \in 1 \ldots n \rightarrow D \\ & B O O L E A N=\{T R U E, F A L S E\} \\ & \vdash \\ & F A L S E=T R U E \Rightarrow 1=n+1 \end{aligned}$	init/inv1_3/INV

- Exercises: Prove the above sequents related to invariant establishment.

180128

- We have three sequents generated for old event final of model m_{1}.
- Here is one of the sequents:

```
n>0
BOOLEAN = {TRUE,FALSE }
g\in1..n->D
b\inBOOLEAN
b}=FALSE=>g=
b=TRUE =>g=f
r\in1..n+1
h=(1..r-1)}\triangleleft
b=TRUE }=>r=n+
b=FALSE
b}=\mp@code{FALSE
r=n+1
r\in1..n+1
```

- Exercises: Formulate \& prove other sequents of invariant preservation.

19 Ot 28
final/inv1_1/INV

```
l
l
b=FALSE = व g=\varnothing
b=1\ldotsn+1
h=(1.r-1)\triangleleftf
h=(1..r-1)\triangleleftf
r\leqn
(r+1)\in1..n+1
```


$210+28$

Proving Refinement: receive/inv1_2/INV

- We have three sequents generated for new event receive of model m_{1} :

receive/inv1_1/INV	receive/inv1_2/INV	receive/inv1_3/I
$n>0$		$n>0$
$f \in 1 . n \rightarrow D$	$t \in 1 \ldots n \rightarrow D$	$f \in 1 . . n \rightarrow D$
BOOLEAN = \{TRUE, FALSE $\}$	BOOLEAN $=\{$ TRUE, FALSE $\}$	BOOLEAN $=\{$ TRUE, FALSE $\}$
$g_{\text {g }} \in 1 . n \rightarrow D$	$g \in 1 . . n \rightarrow D$	
$b \in B O O L E A N$ $b=F A L S E \Rightarrow g$	$b \in B O O L E A N$ $b=F A L S E \Rightarrow g$	$b \in B O O L E A N$ $b=F A L S E \Rightarrow g$
	$b=$ PALS $\Rightarrow g=0$ $b=T R U E \Rightarrow g=$	
$r \in 1 \ldots n+1$	-1	
	$h=(1 . r-1)$ $b=T R U E \Rightarrow r$	=
	b $r \leq n$	$b=1$ $r \leq n$
\vdash r	-	- TRUE $\rightarrow(r+1)=n+1$

- Exercises: Prove the above sequents of invariant preservation.
lol
lol
g\in1..n->D
g\in1..n->D
b b BOOLEAN
b b BOOLEAN
b= FALSE =>g=\varnothing
b= FALSE =>g=\varnothing
r\in1..n+1
r\in1..n+1
l}\begin{array}{l}{h=(1.r-1)\triangleleftf}
{b=TRUE =>r=n+1}
l}\begin{array}{l}{h=(1.r-1)\triangleleftf}
{b=TRUE =>r=n+1}
b=TR
b=TR
hu{(r,f(r))}=(1..(r+1)-1)\triangleleftf
hu{(r,f(r))}=(1..(r+1)-1)\triangleleftf
mon


```
BOOLEAN \(=\{\) TRUE, FALSE \(\}\)
```

BOOLEAN $=\{$ TRUE, FALSE $\}$
$c \in B O O L E A N$
$b=F A L S E \Rightarrow$
$b=1$
$c \in B O O L E A N$
$b=F A L S E \Rightarrow$
$b=1$
$b=$ FALSE $\Rightarrow g=\varnothing$
$b=T R U E \Rightarrow g=f$
$b=$ FALSE $\Rightarrow g=\varnothing$
$b=T R U E \Rightarrow g=f$
$b=1 \ldots n+1$
$\in=(n+r-1) \triangleleft t$
$b=1 \ldots n+1$
$\in=(n+r-1) \triangleleft t$
$h=(1, r-1) \triangleleft f$
$b=$ TRUE $\Rightarrow r=n+1$
$r \leq n$
$h=(1, r-1) \triangleleft f$
$b=$ TRUE $\Rightarrow r=n+1$
$r \leq n$
$b=$ TRUE $\Rightarrow(r+1)=n+1$
$b=$ TRUE $\Rightarrow(r+1)=n+1$
mon

```

230128

\section*{\(m_{1}\) : PO of Convergence of New Events}
- Recall:
- Interleaving of new events charactered as an integer expression: variant.
- A variant \(V(c, w)\) may refer to constants and/or concrete variables.
- For \(m_{1}\), let's try variants : \(n+1-r\)
- Accordingly, for the new event receive:
```

```
f\in1..n->D
```

```
f\in1..n->D
BOOLEAN = {TRUE, FALSE }
BOOLEAN = {TRUE, FALSE }
g\in1..n->D
g\in1..n->D
b BOOLEAN
b BOOLEAN
b=FALSE =>g=\varnothing
b=FALSE =>g=\varnothing
b=TRUE =>g=f
b=TRUE =>g=f
r\in1..n+1
r\in1..n+1
h=(1..r-1)\triangleleftf
h=(1..r-1)\triangleleftf
h=(1..r-1)
h=(1..r-1)
r\leqn
r\leqn
\vdash
\vdash
n+1-(r+1)<n+1-r
n+1-(r+1)<n+1-r
\in1..n+
```

```
\in1..n+
```

```
```

 RUE =>g=f
    ```
    RUE =>g=f
*)
```

*)

```

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.

\section*{First Refinement: Summary}
- The first refinement \(m_{1}\) is provably correct w.r.t.:
- Establishment of Concrete Invariants

Preservation of Concrete Invariants
Strengthening of guards [ old events, EXERCISE ]
Convergence (a.k.a. livelock freedom, non-divergence) new events, EXERCISE]
- Relative Deadlock Freedom
- Here is the specification of \(m_{1}\) :


\section*{Index (1)}

Learning Outcomes
A Different Application Domain
Requirements Document:
File Transfer Protocol (FTP)
Requirements Document: R-Descriptions
Refinement Strategy
Model \(m_{0}\) : Abstraction
Math Background Review
Model \(m_{0}\) : Abstract State Space
Model \(m_{0}\) : State Transitions via Events
PO of Invariant Establishment

\section*{600t28}

\section*{Index (2)}

\section*{PO of Invariant Preservation}

Initial Model: Summary
Model \(m_{1}\) : "More Concrete" Abstraction
Model \(m_{1}\) : Refined, Concrete State Space
Model \(m_{1}\) : Property Provable from Invariants
Model \(m_{1}\) : Old and New Concrete Events
PO of Invariant Establishment
PO of Invariant Preservation - final
PO of Invariant Preservation - receive
Proving Refinement: receive/inv1_1/INV
Proving Refinement: receive/inv1_2/INV
Prove
\begin{tabular}{l} 
Index (3) \\
\hline Proving Refinement: receive/inv1_3/INV \\
\hline\(m_{1}:\) PO of Convergence of New Events \\
First Refinement: Summary
\end{tabular}```


[^0]:    - Definition: $r \triangleright r s=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge r^{\prime} \in r s\right\}$
    - e.g., $r \triangleright\{1,2\}=\{(a, \mathbf{1}),(b, \mathbf{2}),(d, \mathbf{1}),(e, \mathbf{2})\}$
    - ASCII syntax: $r$ |> rs

[^1]:    $\therefore$ ML_in/inv0_2/INV succeeds in being discharged.

