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Learning Outcomes

This module is designed to help you understand:
● What a safety-critical system is
● Code of Ethics for Professional Engineers
● What a Formal Method Is
● Verification vs. Validation

● Model-Based System Development
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What is a Safety-Critical System (SCS)?

● A safety-critical system (SCS) is a system whose failure or
malfunction has one (or more) of the following consequences:○ death or serious injury to people○ loss or severe damage to equipment/property○ harm to the environment

● Based on the above definition, do you know of any systems that
are safety-critical?
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Professional Engineers: Code of Ethics

○ Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.○ It is the duty of a practitioner to act at all times with,
1. fairness and loyalty to the practitioner’s associates, employers,

clients, subordinates and employees;
2. fidelity (i.e., dedication, faithfulness) to public needs;
3. devotion to high ideals of personal honour and professional integrity;
4. knowledge of developments in the area of professional engineering

relevant to any services that are undertaken; and
5. competence in the performance of any professional engineering

services that are undertaken.○ Consequence of misconduct?
● suspension or termination of professional licenses● civil law suits

Source: PEO’s Code of Ethics
4 of 13



Developing Safety-Critical Systems

Industrial standards in various domains list acceptance criteria

for mission- or safety-critical systems that practitioners need to
comply with: e.g.,

Aviation Domain: RTCA DO-178C “Software Considerations in

Airborne Systems and Equipment Certification”
Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers

in Safety Systems of Nuclear Power Generating Stations”
Two important criteria are:
1. System requirements are precise and complete
2. System implementation conforms to the requirements
But how do we accomplish these criteria?
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Safety-Critical vs. Mission-Critical?

● Critical :
A task whose successful completion ensures the success of a
larger, more complex operation.
e.g., Success of a pacemaker⇒ Regulated heartbeats of a patient● Safety :
Being free from danger/injury to or loss of human lives.● Mission:
An operation or task assigned by a higher authority.

Q. Formally relate being safety-critical and mission-critical.
A.○ safety-critical⇒ mission-critical○ mission-critical �⇒ safety-critical● Relevant industrial standard: RTCA DO-178C (replacing
RTCA DO-178B in 2012) “Software Considerations in Airborne

Systems and Equipment Certification”
Source: Article from OpenSystems
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Using Formal Methods for Certification

● A formal method (FM) is a mathematically rigorous

technique for the specification, development, and verification of
software and hardware systems.● DO-333 “Formal methods supplement to DO-178C and

DO-278A” advocates the use of formal methods:
The use of formal methods is motivated by the expectation

that, as in other engineering disciplines, performing appropriate

mathematical analyses can contribute to establishing the

correctness and robustness of a design.● FMs, because of their mathematical basis, are capable of:○ Unambiguously describing software system requirements.
○ Enabling precise communication between engineers.○ Providing verification (towards certification) evidence of:● A formal representation of the system being healthy .
● A formal representation of the system satisfying safety properties .
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Verification: Building the Product Right?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of 
Programming 
Components

Informal 
Requirements

○ Implementation built via reusable programming components.○ Goal : Implementation Satisfies Intended Requirements○ To verify this, we formalize them as a system model and a set of
(e.g., safety) properties, using the specification language of a
theorem prover (EECS3342) or a model checker (EECS4315).○ Two Verification Issues:
1. Library components may not behave as intended .
2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...
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Validation: Building the Right Product?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of 
Programming 
Components

Informal 
Requirements

○ Successful checks/proofs �⇒We built the right product .○ The target of our checks/proofs may not be valid:
The requirements may be ambiguous, incomplete, or contradictory .○ Solution: Precise Documentation [ EECS4312 ]
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Catching Defects – When?

● To minimize development costs , minimize software defects.● Software Development Cycle:
Requirements → Design → Implementation → Release
Q. Design or Implementation Phase?
Catch defects as early as possible .

∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.● Discovering defects after release costs up to 30 times more
than catching them in the design phase.● Choice of a design language , amendable to formal

verification, is therefore critical for your project.
Source: IBM Report
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Model-Based System Development

● Modelling and formal reasoning should be performed before

implementing/coding a system.○ A system’s model is its abstraction , filtering irrelevant details.
A system model means as much to a software engineer as a
blueprint means to an architect.○ A system may have a list of models, “sorted” by accuracy:�m0,m1, . . . , mi , mj , . . . ,mn�

● The list starts by the most abstract model with least details.● A more abstract model mi is said to be refined by its subsequent,
more concrete model mj .

● The list ends with the most concrete/refined model with most details.○ It is far easier to reason about:
● a system’s abstract models (rather than its full implementation)
● refinement steps between subsequent models

● The final product is correct by construction .
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Learning through Case Studies

● We will study example models of programs/codes, as well as
proofs on them, drawn from various application domains:○ REACTIVE Systems [ sensors vs. actuators ]○ DISTRIBUTED Systems [ (geographically) distributed parties ]

● What you learn in this course will allow you to explore example
in other application domains:○ SEQUENTIAL Programs [ single thread of control ]○ CONCURRENT Programs [ interleaving processes ]

● The Rodin Platform will be used to:○ Construct system models using the Even-B notation.○ Prove properties and refinements using classical logic

(propositional and predicate calculus) and set theory .

12 of 13



Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based System Development

Learning through Case Studies

13 of 13

Review of Math
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Winter 2023
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Learning Outcomes of this Lecture

This module is designed to help you review:
● Propositional Logic
● Predicate Logic
● Sets, Relations, and Functions
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Propositional Logic (1)
● A proposition is a statement of claim that must be of either

true or false, but not both.● Basic logical operands are of type Boolean: true and false.● We use logical operators to construct compound statements.○ Unary logical operator: negation (¬)
p ¬p

true false

false true

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒ ).

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q p ≡ q

true true true true true true true

true false false true false false false

false true false true true false false

false false false false true true true
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Propositional Logic: Implication (1)
● Written as p⇒ q [ pronounced as “p implies q” ]○ We call p the antecedent, assumption, or premise.○ We call q the consequence or conclusion.● Compare the truth of p⇒ q to whether a contract is honoured :○ antecedent/assumption/premise p ≈ promised terms [ e.g., salary ]○ consequence/conclusion q ≈ obligations [ e.g., duties ]● When the promised terms are met, then the contract is:○ honoured if the obligations fulfilled. [ (true⇒ true) ⇐⇒ true ]○ breached if the obligations violated. [ (true⇒ false) ⇐⇒ false ]● When the promised terms are not met, then:○ Fulfilling the obligation (q) or not (¬q) does not breach the

contract.
p q p⇒ q

false true true

false false true
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Propositional Logic: Implication (2)
There are alternative, equivalent ways to expressing p⇒ q:○ q if p

q is true if p is true○ p only if q

If p is true, then for p⇒ q to be true, it can only be that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.

Note. To prove p ≡ q, prove p ⇐⇒ q (pronounced: “p if and only if q”):
● p if q [ q ⇒ p ]● p only if q [ p⇒ q ]○ p is sufficient for q

For q to be true, it is sufficient to have p being true.○ q is necessary for p [ similar to p only if q ]
If p is true, then it is necessarily the case that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.○ q unless ¬p [ When is p⇒ q true? ]
If q is true, then p⇒ q true regardless of p.
If q is false, then p⇒ q cannot be true unless p is false.

5 of 41

Propositional Logic: Implication (3)

Given an implication p⇒ q, we may construct its:
● Inverse: ¬p⇒ ¬q [ negate antecedent and consequence ]
● Converse: q ⇒ p [ swap antecedent and consequence ]
● Contrapositive: ¬q ⇒ ¬p [inverse of converse]
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Propositional Logic (2)
● Axiom: Definition of⇒

p⇒ q ≡ ¬p ∨ q● Theorem: Identity of⇒
true⇒ p ≡ p● Theorem: Zero of⇒

false⇒ p ≡ true● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)
● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
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Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.● We use the following symbols for common numerical ranges:○ Z: the set of integers [ −∞, . . . ,−1,0,1, . . . ,+∞ ]○ N: the set of natural numbers [ 0,1, . . . ,+∞ ]● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.
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Predicate Logic (2.1): Universal Q. (∀)
● A universal quantification has the form (∀X ● R ⇒ P)○ X is a comma-separated list of variable names○ R is a constraint on types/ranges of the listed variables○ P is a property to be satisfied● For all (combinations of) values of variables listed in X that

satisfies R, it is the case that P is satisfied.○ ∀i ● i ∈ N⇒ i ≥ 0 [ true ]○ ∀i ● i ∈ Z⇒ i ≥ 0 [ false ]○ ∀i , j ● i ∈ Z ∧ j ∈ Z⇒ i < j ∨ i > j [ false ]● Proof Strategies

1. How to prove (∀X ● R ⇒ P) true?● Hint. When is R ⇒ P true? [ true⇒ true, false⇒ ]● Show that for all instances of x ∈ X s.t. R(x), P(x) holds.● Show that for all instances of x ∈ X it is the case ¬R(x).
2. How to prove (∀X ● R ⇒ P) false?● Hint. When is R ⇒ P false? [ true⇒ false ]

● Give a witness/counterexample of x ∈ X s.t. R(x), ¬P(x) holds.
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Predicate Logic (2.2): Existential Q. (∃)
● An existential quantification has the form (∃X ● R ∧P)○ X is a comma-separated list of variable names○ R is a constraint on types/ranges of the listed variables○ P is a property to be satisfied● There exist (a combination of) values of variables listed in X

that satisfy both R and P.○ ∃i ● i ∈ N ∧ i ≥ 0 [ true ]○ ∃i ● i ∈ Z ∧ i ≥ 0 [ true ]○ ∃i , j ● i ∈ Z ∧ j ∈ Z ∧ (i < j ∨ i > j) [ true ]● Proof Strategies

1. How to prove (∃X ● R ∧P) true?● Hint. When is R ∧ P true? [ true ∧ true ]
● Give a witness of x ∈ X s.t. R(x), P(x) holds.

2. How to prove (∃X ● R ∧P) false?● Hint. When is R ∧ P false? [ true ∧ false, false ∧ ]● Show that for all instances of x ∈ X s.t. R(x), ¬P(x) holds.● Show that for all instances of x ∈ X it is the case ¬R(x).
10 of 41

Predicate Logic (3): Exercises

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10)⇒ x > 0.
All 10 integers between 1 and 10 are greater than 0.

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10)⇒ x > 1.
Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

● Prove or disprove: ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

● Prove or disprove that ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
All integers in the range between 1 and 10 are not greater than 10.
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Predicate Logic (4): Switching Quantifications

Conversions between ∀ and ∃:
(∀X ● R ⇒ P) ⇐⇒ ¬(∃X ● R ∧ ¬P)(∃X ● R ∧P) ⇐⇒ ¬(∀X ● R ⇒ ¬P)
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Sets: Definitions and Membership
● A set is a collection of objects.○ Objects in a set are called its elements or members.○ Order in which elements are arranged does not matter.○ An element can appear at most once in the set.● We may define a set using:○ Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}○ Set Comprehension: Implicitly specify the condition that all
members satisfy.
e.g., {x � 1 ≤ x ≤ 10 ∧ x is an odd number}● An empty set (denoted as {} or �) has no members.● We may check if an element is a member of a set:
e.g., 5 ∈ {1,3,5,7,9} [ true ]
e.g., 4 �∈ {x � x ≤ 1 ≤ 10,x is an odd number} [ true ]● The number of elements in a set is called its cardinality .

e.g., ��� = 0, �{x � x ≤ 1 ≤ 10,x is an odd number}� = 5
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Set Relations
Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ �S1� < �S2�
14 of 41

Set Relations: Exercises

? ⊆ S always holds [ � and S ]
? ⊂ S always fails [ S ]
? ⊂ S holds for some S and fails for some S [ � ]
S1 = S2 ⇒ S1 ⊆ S2? [ Yes ]
S1 ⊆ S2 ⇒ S1 = S2? [ No ]
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Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x � x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x � x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 �S2 = {x � x ∈ S1 ∧ x �∈ S2}
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Power Sets

The power set of a set S is a set of all S’s subsets.

P(S) = {s � s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , �S�.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

�������������

�,{1}, {2}, {3},{1,2}, {2,3}, {3,1},{1,2,3}

�������������
Exercise: What is P({1,2,3,4,5}) � P({1,2,3})?
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Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross/Cartesian product of
theses sets is a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) � ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}= { (e1,e2,e3) � e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }
= � (a,2,$), (a,2,&), (a,4,$), (a,4,&),(b,2,$), (b,2,&), (b,4,$), (b,4,&) �
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Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}○ � is an empty relation.○ S × T is the maximum relation (say r1) between S and T ,

mapping from each member of S to each member in T :

{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}
○ {(x ,y) � (x ,y) ∈ S × T ∧ x ≠ 1} is a relation (say r2) that maps only

some members in S to every member in T :

{(2,a), (2,b), (3,a), (3,b)}
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Relations (2.1): Set of Possible Relations

● We use the power set operator to express the set of all possible

relations on S and T :
P(S × T )

Each member in P(S × T ) is a relation.

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T )
● Or alternatively, we write:

r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T )
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Relations (2.2): Exercise
Enumerate {a,b}↔ {1,2,3}.
● Hints:○ You may enumerate all relations in P({a,b} × {1,2,3}) via their

cardinalities: 0, 1, . . . , �{a,b} × {1,2,3}�.○ What’s the maximum relation in P({a,b} × {1,2,3})?{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }● The answer is a set containing all of the following relations:○ Relation with cardinality 0: �○ How many relations with cardinality 1? [ ��{a,b}×{1,2,3}�1 � = 6 ]
○ How many relations with cardinality 2? [ ��{a,b}×{1,2,3}�2 � = 6×5

2! = 15 ]

. . .

○ Relation with cardinality �{a,b} × {1,2,3}�:{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }
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Relations (3.1): Domain, Range, Inverse

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain of r : set of first-elements from r○ Definition: dom(r) = { d � (d , r ′) ∈ r }○ e.g., dom(r) = {a,b,c,d ,e, f}○ ASCII syntax: dom(r)
● range of r : set of second-elements from r

○ Definition: ran(r) = { r
′ � (d , r ′) ∈ r }○ e.g., ran(r) = {1,2,3,4,5,6}○ ASCII syntax: ran(r)

● inverse of r : a relation like r with elements swapped
○ Definition: r

−1 = { (r ′,d) � (d , r ′) ∈ r }○ e.g., r
−1 = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}○ ASCII syntax: r∼
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Relations (3.2): Image

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

relational image of r over set s : sub-range of r mapped by s.

○ Definition: r[s] = { r
′ � (d , r ′) ∈ r ∧ d ∈ s }○ e.g., r[{a,b}] = {1,2,4,5}○ ASCII syntax: r[s]
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Relations (3.3): Restrictions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain restriction of r over set ds : sub-relation of r with domain ds.○ Definition: ds � r = { (d , r ′) � (d , r ′) ∈ r ∧ d ∈ ds }○ e.g., {a,b}� r = {(a,1), (b,2), (a,4), (b,5)}○ ASCII syntax: ds <| r

● range restriction of r over set rs : sub-relation of r with range rs.

○ Definition: r ⇤ rs = { (d , r ′) � (d , r ′) ∈ r ∧ r
′ ∈ rs }○ e.g., r ⇤ {1,2} = {(a,1), (b,2), (d ,1), (e,2)}○ ASCII syntax: r |> rs
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Relations (3.4): Subtractions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain subtraction of r over set ds : sub-relation of r with domain not ds.○ Definition: ds �− r = { (d , r ′) � (d , r ′) ∈ r ∧ d �∈ ds }○ e.g., {a,b}�− r = {(c,3), (c,6), (d,1), (e,2), (f,3)}○ ASCII syntax: ds <<| r

● range subtraction of r over set rs : sub-relation of r with range not rs.

○ Definition: r ⇤− rs = { (d , r ′) � (d , r ′) ∈ r ∧ r
′ �∈ rs }○ e.g., r ⇤− {1,2} = {{(c,3), (a,4), (b,5), (c,6), (f ,3)}}○ ASCII syntax: r |>> rs
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Relations (3.5): Overriding

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

overriding of r with relation t : a relation which agrees with t within
dom(t), and agrees with r outside dom(t)
○ Definition: r �− t = { (d , r ′) � (d , r ′) ∈ t ∨ ((d , r ′) ∈ r ∧ d �∈ dom(t)) }○ e.g.,

r �− {(a,3), (c,4)}
= {(a,3), (c,4)}������������������������������������������������������������������������������{(d,r ′)�(d,r ′)∈t}

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������{(d,r ′)�(d,r ′)∈r∧d�∈dom(t)}
= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}

○ ASCII syntax: r <+ t
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Relations (4): Exercises

1. Define r[s] in terms of other relational operations.

Answer: r[s] = ran(s � r)
e.g.,

r[{a,b}�������������
s

] = ran({(a,1), (b,2), (a,4), (b,5)}������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������{a,b}�r

) = {1,2,4,5}

2. Define r �− t in terms of other relational operators.

Answer: r �− t = t ∪ (dom(t)�− r)
e.g.,

r �− {(a,3), (c,4)}������������������������������������������������������������������������������
t= {(a,3), (c,4)}������������������������������������������������������������������������������

t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
dom(t)�������������������
{a,c}

�− r

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}
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Functions (1): Functional Property
● A relation r on sets S and T (i.e., r ∈ S↔ T ) is also a function

if it satisfies the functional property :
isFunctional(r)⇐⇒∀s, t1, t2 ● (s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T )⇒ ((s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)
○ That is, in a function, it is forbidden for a member of S to map to

more than one members of T .○ Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.● e.g., Say S = {1,2,3} and T = {a,b}, which of the following

relations satisfy the above functional property?○ S × T [ No ]
Witness 1: (1,a), (1,b); Witness 2: (2,a), (2,b); Witness 3: (3,a), (3,b).○ (S × T ) � {(x , y) � (x , y) ∈ S × T ∧ x = 1} [ No ]
Witness 1: (2,a), (2,b); Witness 2: (3,a), (3,b)○ {(1,a), (2,b), (3,a)} [ Yes ]○ {(1,a), (2,b)} [ Yes ]
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Functions (2.1): Total vs. Partial

Given a relation r ∈ S↔ T

● r is a partial function if it satisfies the functional property :
r ∈ S � T ⇐⇒ (isFunctional(r) ∧ dom(r) ⊆ S)

Remark. r ∈ S � T means there may (or may not) be s ∈ S s.t.
r(s) is undefined .○ e.g., { {(2,a), (1,b)},{(2,a), (3,a), (1,b)} } ⊆ {1,2,3}� {a,b}○ ASCII syntax: r : +->

● r is a total function if there is a mapping for each s ∈ S:

r ∈ S→ T ⇐⇒ (isFunctional(r) ∧ dom(r) = S)
Remark. r ∈ S→ T implies r ∈ S � T , but not vice versa. Why?○ e.g., {(2,a), (3,a), (1,b)} ∈ {1,2,3}→ {a,b}○ e.g., {(2,a), (1,b)} �∈ {1,2,3}→ {a,b}○ ASCII syntax: r : -->
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Functions (2.2):
Relation Image vs. Function Application
● Recall: A function is a relation, but a relation is not necessarily a function.● Say we have a partial function f ∈ {1,2,3}� {a,b}:

f = {(3,a), (1,b)}
○ With f wearing the relation hat, we can invoke relational images :

f [{3}] = {a}
f [{1}] = {b}
f [{2}] = �

Remark. Given that the inputs are singleton sets (e.g., {3}), so are the
output sets (e.g., {a}). ∵ Each member in the domain is mappe to
at most one member in the range.

○ With f wearing the function hat, we can invoke functional applications :

f (3) = a

f (1) = b

f (2) is undefined
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Functions (2.3): Modelling Decision
An organization has a system for keeping track of its employees as to where
they are on the premises (e.g., ‘‘Zone A, Floor 23’’). To achieve this,
each employee is issued with an active badge which, when scanned,
synchronizes their current positions to a central database.

Assume the following two sets:○ Employee denotes the set of all employees working for the organization.○ Location denotes the set of all valid locations in the organization.

1. Is it appropriate to model/formalize such a track functionality as a
relation (i.e., where is ∈ Employee↔ Location)?
Answer. No – an employee cannot be at distinct locations simultaneously.
e.g., where is[Alan] = { ‘‘Zone A, Floor 23’’,‘‘Zone C, Floor 46’’ }

2. How about a total function (i.e., where is ∈ Employee→ Location)?
Answer. No – in reality, not necessarily all employees show up.
e.g., where is(Mark) should be undefined if Mark happens to be on vacation.

3. How about a partial function (i.e., where is ∈ Employee � Location)?
Answer. Yes – this addresses the inflexibility of the total function.
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Functions (3.1): Injective Functions
Given a function f (either partial or total):● f is injective/one-to-one/an injection if f does not map

more than one members of S to a single member of T .
isInjective(f)⇐⇒∀s1,s2, t ● (s1 ∈ S ∧ s2 ∈ S ∧ t ∈ T )⇒ ((s1, t) ∈ f ∧ (s2, t) ∈ f ⇒ s1 = s2)● If f is a partial injection, we write: f ∈ S � T○ e.g., { �,{(1,a)},{(2,a), (3,b)} } ⊆ {1,2,3}� {a,b}○ e.g., {(1,b), (2,a), (3,b)} �∈ {1,2,3}� {a,b} [ total, not inj. ]○ e.g., {(1,b), (3,b)} �∈ {1,2,3}� {a,b} [ partial, not inj. ]○ ASCII syntax: f : >+>● If f is a total injection, we write: f ∈ S � T○ e.g., {1,2,3}� {a,b} = �○ e.g., {(2,d), (1,a), (3, c)} ∈ {1,2,3}� {a,b, c,d}○ e.g., {(2,d), (1, c)} ∉ {1,2,3}� {a,b, c,d} [ not total, inj. ]○ e.g., {(2,d), (1, c), (3,d)} ∉ {1,2,3}� {a,b, c,d} [ total, not inj. ]○ ASCII syntax: f : >->
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Functions (3.2): Surjective Functions

Given a function f (either partial or total):
● f is surjective/onto/a surjection if f maps to all members of T .

isSurjective(f) ⇐⇒ ran(f ) = T

● If f is a partial surjection, we write: f ∈ S� T○ e.g., { {(1,b), (2,a)},{(1,b), (2,a), (3,b)} } ⊆ {1,2,3}� {a,b}○ e.g., {(2,a), (1,a), (3,a) } �∈ {1,2,3}� {a,b} [ total, not sur. ]○ e.g., {(2,b), (1,b)} �∈ {1,2,3}� {a,b} [ partial, not sur. ]○ ASCII syntax: f : +->>

● If f is a total surjection, we write: f ∈ S� T○ e.g., { {(2,a), (1,b), (3,a)},{(2,b), (1,a), (3,b)} } ⊆ {1,2,3}� {a,b}○ e.g., {(2,a), (3,b)} �∈ {1,2,3}� {a,b} [ not total, sur. ]○ e.g., {(2,a), (3,a), (1,a)} �∈ {1,2,3}� {a,b} [ total., not sur ]○ ASCII syntax: f : -->>
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Functions (3.3): Bijective Functions

Given a function f :
f is bijective/a bijection/one-to-one correspondence if f is
total , injective, and surjective.
○ e.g., {1,2,3}�� {a,b} = �○ e.g., { {(1,a), (2,b), (3, c)},{(2,a), (3,b), (1, c)} } ⊆ {1,2,3}�� {a,b, c}○ e.g., {(2,b), (3, c), (4,a)} �∈ {1,2,3,4}�� {a,b, c}

[ not total, inj., sur. ]○ e.g., {(1,a), (2,b), (3, c), (4,a)} �∈ {1,2,3,4}�� {a,b, c}
[ total, not inj., sur. ]○ e.g., {(1,a), (2,c)} �∈ {1,2}�� {a,b, c}
[ total, inj., not sur. ]○ ASCII syntax: f : >->>
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Functions (4.1): Exercises

35 of 41



Functions (4.2): Modelling Decisions
1. Should an array a declared as “String[] a” be modelled/formalized as a

partial function (i.e., a ∈ Z� String) or a total function (i.e., a ∈ Z→ String)?
Answer. a ∈ Z→ String is not appropriate as:○ Indices are non-negative (i.e., a(i), where i < 0, is undefined).○ Each array size is finite: not all positive integers are valid indices.

2. What does it mean if an array is modelled/formalized

as a partial injection (i.e., a ∈ Z� String)?
Answer. It means that the array does not contain any duplicates.

3. Can an integer array “int[] a” be modelled/formalized

as a partial surjection (i.e., a ∈ Z� Z)?
Answer. Yes, if a stores all 232 integers (i.e., [−231, 231 − 1]).

4. Can a string array “String[] a” be modelled/formalized

as a partial surjection (i.e., a ∈ Z� String)?
Answer. No ∵ # possible strings is∞.

5. Can an integer array “int[]” storing all 232 values be modelled/formalized

as a bijection (i.e., a ∈ Z�� Z)?
Answer. No, because it cannot be total (as discussed earlier).
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Beyond this lecture . . .

● For the where is ∈ Employee � Location model, what does it
mean when it is:○ Injective [ where is ∈ Employee � Location ]○ Surjective [ where is ∈ Employee� Location ]○ Bijective [ where is ∈ Employee �� Location ]

● Review examples discussed in your earlier math courses on
logic and set theory .

● Ask questions in the Q&A sessions to clarify the reviewed
concepts.
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Specifying & Refining a Bridge Controller
MEB: Chapter 2

EECS3342 Z: System
Specification and Refinement

Winter 2023

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:
● What a Requirement Document (RD) is
● What a refinement is
● Writing formal specifications○ (Static) contexts: constants, axioms, theorems○ (Dynamic) machines: variables, invariants, events, guards, actions
● Proof Obligations (POs) associated with proving:○ refinements○ system properties

● Applying inference rules of the sequent calculus
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Recall: Correct by Construction

● Directly reasoning about source code (written in a programming
language) is too complicated to be feasible.

● Instead, given a requirements document , prior to implementation,
we develop models through a series of refinement steps:○ Each model formalizes an external observer ’s perception of the system.○ Models are “sorted” with increasing levels of accuracy w.r.t. the system.○ The first model , though the most abstract , can already be proved

satisfying some requirements.○ Starting from the second model , each model is analyzed and proved
correct relative to two criteria:
1. Some requirements (i.e., R-descriptions)
2. Proof Obligations (POs) related to the preceding model being

refined by the current model (via “extra” state variables and
events).○ The last model (which is correct by construction ) should be

sufficiently close to be transformed into a working program (e.g., in C).
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State Space of a Model
● A model’s state space is the set of all configurations:○ Each configuration assigns values to constants & variables, subject to:

● axiom (e.g., typing constraints, assumptions)● invariant properties/theorems○ Say an initial model of a bank system with two constants and a variable:
c ∈ N1 ∧ L ∈ N1 ∧ accounts ∈ String � Z /* typing constraint */∀id ● id ∈ dom(accounts)⇒ −c ≤ accounts(id) ≤ L /* desired property */

Q. What is the state space of this initial model?
A. All valid combinations of c, L, and accounts.● Configuration 1: (c = 1,000,L = 500,000,b = �)● Configuration 2: (c = 2,375,L = 700,000,b = {(”id1”,500), (”id2”,1,250)})

. . . [ Challenge: Combinatorial Explosion ]○ Model Concreteness ↑ ⇒ (State Space ↑ ∧ Verification Difficulty ↑)● A model’s complexity should be guided by those properties intended to be
verified against that model.
⇒ Infeasible to prove all desired properties on a model.

⇒ Feasible to distribute desired properties over a list of refinements.
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Roadmap of this Module

● We will walk through the development process of constructing
models of a control system regulating cars on a bridge.

Such controllers exemplify a reactive system.
(with sensors and actuators)

● Always stay on top of the following roadmap:
1. A Requirements Document (RD) of the bridge controller
2. A brief overview of the refinement strategy

3. An initial, the most abstract model
4. A subsequent model representing the 1st refinement

5. A subsequent model representing the 2nd refinement

6. A subsequent model representing the 3rd refinement
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Requirements Document: Mainland, Island
Imagine you are asked to build a bridge (as an alternative to ferry) connecting
the downtown and Toronto Island.

Page Source: https://soldbyshane.com/area/toronto-islands/
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Requirements Document: E-Descriptions

Each E-Description is an atomic specification of a constraint or
an assumption of the system’s working environment.

ENV1 The system is equipped with two traffic lights with two colors: green and red.

ENV2 The traffic lights control the entrance to the bridge at both ends of it.

ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

ENV4 The system is equipped with four sensors with two states: on or off.

ENV5 The sensors are used to detect the presence of a car entering or leaving the bridge:
“on” means that a car is willing to enter the bridge or to leave it.
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Requirements Document: R-Descriptions

Each R-Description is an atomic specification of an intended
functionality or a desired property of the working system.

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.

REQ2 The number of cars on bridge and island is limited.

REQ3 The bridge is one-way or the other, not both at the same time.
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Requirements Document:
Visual Summary of Equipment Pieces

A Requirements Document (4) 8

- One of the traffic lights is situated on the mainland and the other

one on the island. Both are close to the bridge.

- This can be illustrated as follows

Bridge MainlandIsland

8
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Refinement Strategy
● Before diving into details of the models, we first clarify the adopted

design strategy of progressive refinements.
0. The initial model (m0) will address the intended functionality of

a limited number of cars on the island and bridge.
[ REQ2 ]

1. A 1st refinement (m1 which refines m0) will address
the intended functionality of the bridge being one-way .

[ REQ1, REQ3 ]
2. A 2nd refinement (m2 which refines m1) will address

the environment constraints imposed by traffic lights.
[ ENV1, ENV2, ENV3 ]

3. A final, 3rd refinement (m3 which refines m2) will address
the environment constraints imposed by sensors and
the architecture: controller, environment, communication channels.

[ ENV4, ENV5 ]● Recall Correct by Construction :
From each model to its refinement , only a manageable amount of details

are added, making it feasible to conduct analysis and proofs.
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Model m0: Abstraction
● In this most abstract perception of the bridge controller, we do not

even consider the bridge, traffic lights, and sensors!● Instead, we focus on this single requirement :

● Analogies:○ Observe the system from the sky: island and bridge appear only as a
compound.

○ “Zoom in” on the system as refinements are introduced.
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Model m0: State Space
1. The static part is fixed and may be seen/imported.

A constant d denotes the maximum number of cars allowed to be on the
island-bridge compound at any time.

(whereas cars on the mainland is unbounded)

constants: d
axioms:

axm0 1 ∶ d ∈ N
Remark. Axioms are assumed true and may be used to prove theorems.

2. The dynamic part changes as the system evolves.
A variable n denotes the actual number of cars, at a given moment, in the
island-bridge compound .

variables: n
invariants:

inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

Remark. Invariants should be (subject to proofs):● Established when the system is first initialized● Preserved /Maintained after any enabled event ’s actions take effect
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Model m0: State Transitions via Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● At any given state (a valid configuration of constants/variables):○ An event is said to be enabled if its guard evaluates to true.○ An event is said to be disabled if its guard evaluates to false.○ An enabled event makes a state transition if it occurs and its
actions take effect.● 1st event : A car exits mainland (and enters the island-bridge compound).

ML out
begin

n ∶= n + 1
end

Correct Specification? Say d = 2.
Witness: Event Trace �init ,ML out ,ML out ,ML out�

● 2nd event : A car enters mainland (and exits the island-bridge compound).

ML in
begin

n ∶= n − 1
end

Correct Specification? Say d = 2.
Witness: Event Trace �init ,ML in�
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Model m0: Actions vs. Before-After Predicates
● When an enabled event e occurs there are two notions of state:○ Before-/Pre-State: Configuration just before e’s actions take effect○ After-/Post-State: Configuration just after e’s actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the
pre-state to the post-state.● As examples, consider actions of m0’s two events:

2.4 Initial model: limiting the number of cars 31

that exists between the value of the concerned variable just before and just after the
transition. This is indicated as shown below:

Events

before–after predicates

ML_out
n := n + 1

n� = n + 1

ML_in
n := n � 1

n� = n � 1

As can be seen, the before–after predicate is easily obtained from the action: the
variable on the left-hand side of the action symbol “:=” is primed, the action symbol
“:=” is changed to an equality symbol “=”, and, finally, the expression on the right-hand
side of the action symbol is taken as is.

In a before–after predicate, a primed variable such as n� denotes, by convention, the
value of the variable n just after the transition has occurred, whereas n represents its
value just before. For instance, just after an occurrence of the event ML_out, the value
of the variable n is equal to the value it had just before plus one, that is n� = n + 1.

The before–after predicates we present here have got very simple shapes, where
the primed value is equal to some expression depending on the non-primed value. Of
course, more complicated shapes can be encountered, but in this example, which is
deterministic, we shall not encounter more complicated cases.

2.4.5 Proving invariant preservation
When writing the actions corresponding to the events ML_in and ML_out, we did
not necessarily take into account invariants inv0_1 and inv0_2, because we only
concentrated on the way the variable n was modified. As a consequence, there is no
reason a priori for these invariants to be preserved by these events. In fact, it has to
be proved in a rigorous fashion. The purpose of this section is thus to define precisely
what we have to prove in order to ensure that the invariants are indeed invariant!

The statement to be proved is generated in a systematic fashion by means of a rule,
called INV, which is defined once and for all. Such a rule is called a proof obligation
rule or a verification condition rule.

Generally speaking, suppose that our constants are collectively called c. And let
A(c) denote the axioms associated with these constants c. More precisely, A(c) stands
for the list: A1(c), A2(c), . . . of axioms associated with the constants. In our example
model, A(c) is reduced to a list consisting of the single element axm0_1. Likewise,
let v denote the variables and let I(c, v) denote the invariants of these variables. As for

○ An event action “n ∶= n + 1” is not a variable assignment; instead, it is a
specification: “n becomes n + 1 (when the state transition completes)”.○ The before-after predicate (BAP) “n’ = n + 1” expresses that
n′ (the post-state value of n) is one more than n (the pre-state value of n).

● When we express proof obligations (POs) associated with events, we use BAP.
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Design of Events: Invariant Preservation
● Our design of the two events

ML out
begin

n ∶= n + 1
end

ML in
begin

n ∶= n − 1
end

only specifies how the variable n should be updated.● Remember, invariants are conditions that should never be violated !

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

● By simulating the system as an ASM , we discover witnesses

(i.e., event traces) of the invariants not being preserved all the time.
∃s ● s ∈ STATE SPACE⇒ ¬invariants(s)

● We formulate such a commitment to preserving invariants as a proof

obligation (PO) rule (a.k.a. a verification condition (VC) rule).
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Sequents: Syntax and Semantics
● We formulate each PO/VC rule as a (horizontal or vertical) sequent :

H � G
H�
G

○ The symbol � is called the turnstile.○ H is a set of predicates forming the hypotheses/assumptions.
[ assumed as true ]○ G is a set of predicates forming the goal /conclusion.

[ claimed to be provable from H ]● Informally:○ H � G is true if G can be proved by assuming H.
[ i.e., We say “H entails G” or “H yields G” ]○ H � G is false if G cannot be proved by assuming H.

● Formally: H � G ⇐⇒ (H⇒G)
Q. What does it mean when H is empty (i.e., no hypotheses)?
A. � G ≡ true � G [ Why not � G ≡ false � G ? ]
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PO of Invariant Preservation: Sketch

● Here is a sketch of the PO/VC rule for invariant preservation :

Axioms
Invariants Satisfied at Pre-State
Guards of the Event�
Invariants Satisfied at Post-State

INV

● Informally, this is what the above PO/VC requires to prove :
Assuming all axioms, invariants, and the event’s guards hold at the pre-state,

after the state transition is made by the event,

all invariants hold at the post-state.
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PO of Invariant Preservation: Components

constants: d

axioms:
axm0 1 ∶ d ∈ N

variables: n

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

ML out
begin

n ∶= n + 1
end

ML in
begin

n ∶= n − 1
end

● c: list of constants �d�● A(c): list of axioms �axm0 1�● v and v’: list of variables in pre- and post-states v =̂ �n�, v’ =̂ �n′�● I(c, v): list of invariants �inv0 1, inv0 2�● G(c, v): the event ’s list of guards
G(�d�, �n�) of ML out =̂ �true�, G(�d�, �n�) of ML in =̂ �true�● E(c, v): effect of the event ’s actions i.t.o. what variable values become

E(�d�, �n�) of ML out =̂ �n + 1�, E(�d�, �n�) of ML out =̂ �n − 1�● v ′ = E(c, v): before-after predicate formalizing E ’s actions
BAP of ML out : �n’� = �n + 1�, BAP of ML in: �n’� = �n − 1�
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Rule of Invariant Preservation: Sequents
● Based on the components (c, A(c), v , I(c, v), E(c, v)), we are able to

formally state the PO/VC Rule of Invariant Preservation:
A(c)
I(c,v)
G(c,v)�
Ii(c,E(c, v))

INV where Ii denotes a single invariant condition

○ Accordingly, how many sequents to be proved? [ # events × # invariants ]○ We have two sequents generated for event ML out of model m0:
d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

ML out/inv0 1/INV

d ∈ N
n ∈ N
n ≤ d�
n + 1 ≤ d

ML out/inv0 2/INV

Exercise. Write the POs of invariant preservation for event ML in.

● Before claiming that a model is correct , outstanding sequents associated
with all POs must be proved/discharged.
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Inference Rules: Syntax and Semantics
● An inference rule (IR) has the following form:

A

C

L

Formally: A⇒C is an axiom.

Informally: To prove C, it is sufficient to prove A instead.

Informally: C is the case, assuming that A is the case.

○ L is a name label for referencing the inference rule in proofs.○ A is a set of sequents known as antecedents of rule L.○ C is a single sequent known as consequent of rule L.● Let’s consider inference rules (IRs) with two different flavours:

H1 � G

H1,H2 � G
MON

n ∈ N � n + 1 ∈ N P2

○ IR MON: To prove H1,H2 � G , it suffices to prove H1 � G instead.○ IR P2: n ∈ N � n + 1 ∈ N is an axiom.
[ proved automatically without further justifications ]
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Proof of Sequent: Steps and Structure
● To prove the following sequent (related to invariant preservation):

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

ML out/inv0 1/INV

1. Apply a inference rule, which transforms some “outstanding” sequent
to one or more other sequents to be proved instead.

2. Keep applying inference rules until all transformed sequents are
axioms that do not require any further justifications.

● Here is a formal proof of ML out/inv0 1/INV, by applying IRs MON and P2:

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2
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Example Inference Rules (1)

� 0 ∈ N P1 1st Peano axiom: 0 is a natural number.

n ∈ N � n + 1 ∈ N P2
2nd Peano axiom: n + 1 is a natural number,
assuming that n is a natural number.

0 < n � n − 1 ∈ N P2’
n − 1 is a natural number,
assuming that n is positive.

n ∈ N � 0 ≤ n
P3

3rd Peano axiom: n is non-negative,
assuming that n is a natural number.
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Example Inference Rules (2)

n <m � n + 1 ≤m
INC

n + 1 is less than or equal to m,
assuming that n is strictly less than m.

n ≤m � n − 1 <m
DEC

n − 1 is strictly less than m,
assuming that n is less than or equal to m.
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Example Inference Rules (3)

H1 � G

H1,H2 � G
MON

To prove a goal under certain hypotheses,
it suffices to prove it under less hypotheses.

H,P � R H,Q � R

H,P ∨Q � R
OR L

Proof by Cases:
To prove a goal under a disjunctive assumption,
it suffices to prove independently
the same goal, twice, under each disjunct.

H � P

H � P ∨Q
OR R1

To prove a disjunction,
it suffices to prove the left disjunct.

H � Q

H � P ∨Q
OR R2

To prove a disjunction,
it suffices to prove the right disjunct.
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Revisiting Design of Events: ML out
● Recall that we already proved PO ML out/inv0 1/INV :

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2

∴ ML out/inv0 1/INV succeeds in being discharged.
● How about the other PO ML out/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d�
n + 1 ≤ d

MON
n ≤ d�
n + 1 ≤ d

?

∴ ML out/inv0 2/INV fails to be discharged.
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Revisiting Design of Events: ML in
● How about the PO ML in/inv0 1/INV for ML in:

d ∈ N
n ∈ N
n ≤ d�
n − 1 ∈ N

MON
n ∈ N�
n − 1 ∈ N ?

∴ ML in/inv0 1/INV fails to be discharged.
● How about the other PO ML in/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d�
n − 1 ≤ d

MON
n ≤ d�
n − 1 < d ∨ n − 1 = d

OR 1
n ≤ d�
n − 1 < d

DEC

∴ ML in/inv0 2/INV succeeds in being discharged.
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Fixing the Design of Events

● Proofs of ML out/inv0 2/INV and ML in/inv0 1/INV fail due to the
two events being enabled when they should not .

● Having this feedback, we add proper guards to ML out and ML in:

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end

● Having changed both events, updated sequents will be generated for
the PO/VC rule of invariant preservation.

● All sequents ({ML out , ML in} × {inv0 1, inv0 2}) now provable?
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Revisiting Fixed Design of Events: ML out
● How about the PO ML out/inv0 1/INV for ML out :

d ∈ N
n ∈ N
n ≤ d
n < d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2

∴ ML out/inv0 1/INV still succeeds in being discharged!
● How about the other PO ML out/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d
n < d�
n + 1 ≤ d

MON
n < d�
n + 1 ≤ d

INC

∴ ML out/inv0 2/INV now succeeds in being discharged!
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Revisiting Fixed Design of Events: ML in
● How about the PO ML in/inv0 1/INV for ML in:

d ∈ N
n ∈ N
n ≤ d
n > 0�
n − 1 ∈ N

MON
n > 0�
n − 1 ∈ N P2’

∴ ML in/inv0 1/INV now succeeds in being discharged!
● How about the other PO ML in/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d
n > 0�
n − 1 ≤ d

MON
n ≤ d�
n − 1 < d ∨ n − 1 = d

OR 1
n ≤ d�
n − 1 < d

DEC

∴ ML in/inv0 2/INV still succeeds in being discharged!
29 of 124

Initializing the Abstract System m0
● Discharging the four sequents proved that both invariant conditions are

preserved between occurrences/interleavings of events ML out and ML in.● But how are the invariants established in the first place?
Analogy. Proving P via mathematical induction, two cases to prove:○ P(1), P(2), . . . [ base cases ≈ establishing inv. ]○ P(n)⇒P(n + 1) [ inductive cases ≈ preserving inv. ]● Therefore, we specify how the ASM ’s initial state looks like:

init
begin

n ∶= 0
end

✓ The IB compound, once initialized , has no cars.

✓ Initialization always possible: guard is true.

✓ There is no pre-state for init .

∴ The RHS of ∶= must not involve variables.

∴ The RHS of ∶= may only involve constants.

✓ There is only the post-state for init .

∴ Before-After Predicate: n′ = 0
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PO of Invariant Establishment

init
begin

n ∶= 0
end

✓ An reactive system, once initialized , should never terminate.

✓ Event init cannot “preserve” the invariants.

∵ State before its occurrence (pre-state) does not exist.

✓ Event init only required to establish invariants for the first time

○ A new formal component is needed:
● K (c): effect of init ’s actions i.t.o. what variable values become

e.g., K (�d�) of init =̂ �0�● v ′ = K (c): before-after predicate formalizing init ’s actions
e.g., BAP of init : �n’� = �0�○ Accordingly, PO of invariant establisment is formulated as a sequent :

Axioms�
Invariants Satisfied at Post-State

INV
A(c)�
Ii(c,K(c)) INV
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Discharging PO of Invariant Establishment
● How many sequents to be proved? [ # invariants ]● We have two sequents generated for event init of model m0:

d ∈ N�
0 ∈ N init/inv0 1/INV

d ∈ N�
0 ≤ d

init/inv0 2/INV

● Can we discharge the PO init/inv0 1/INV ?

d ∈ N�
0 ∈ N MON �

0 ∈ N P1 ∴ init/inv0 1/INV

succeeds in being discharged.

● Can we discharge the PO init/inv0 2/INV ?

d ∈ N�
0 ≤ d

P3 ∴ init/inv0 2/INV

succeeds in being discharged.
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System Property: Deadlock Freedom

● So far we have proved that our initial model m0 is s.t. all invariant

conditions are:○ Established when system is first initialized via init○ Preserved whenevner there is a state transition

(via an enabled event: ML out or ML in)
● However, whenever event occurrences are conditional (i.e., guards

stronger than true), there is a possibility of deadlock :○ A state where guards of all events evaluate to false○ When a deadlock happens, none of the events is enabled .⇒ The system is blocked and not reactive anymore!
● We express this non-blocking property as a new requirement:

REQ4 Once started, the system should work for ever.
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PO of Deadlock Freedom (1)
● Recall some of the formal components we discussed:○ c: list of constants �d�○ A(c): list of axioms �axm0 1�○ v and v’: list of variables in pre- and post-states v =̂ �n�, v’ =̂ �n′�○ I(c, v): list of invariants �inv0 1, inv0 2�○ G(c, v): the event’s list of guards

G(�d�, �n�) of ML out =̂ �n < d�, G(�d�, �n�) of ML in =̂ �n > 0�
● A system is deadlock-free if at least one of its events is enabled :

Axioms
Invariants Satisfied at Pre-State�
Disjunction of the guards satisfied at Pre-State

DLF

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

To prove about deadlock freedom○ An event’s effect of state transition is not relevant.○ Instead, the evaluation of all events’ guards at the pre-state is relevant.
34 of 124



PO of Deadlock Freedom (2)

● Deadlock freedom is not necessarily a desired property.
⇒When it is (like m0), then the generated sequents must be discharged.● Applying the PO of deadlock freedom to the initial model m0:

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

DLF

Our bridge controller being deadlock-free means that cars can always

enter (via ML out) or leave (via ML in) the island-bridge compound.

● Can we formally discharge this PO for our initial model m0?
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Example Inference Rules (4)

H,P � P
HYP A goal is proved if it can be assumed.

� � P
FALSE L

Assuming false (�),
anything can be proved.

P � � TRUE R
true (�) is proved,

regardless of the assumption.

P � E = E
EQ

An expression being equal to itself is proved,
regardless of the assumption.

36 of 124

Example Inference Rules (5)

H(F),E = F � P(F)
H(E),E = F � P(E) EQ LR

To prove a goal P(E) assuming H(E),
where both P and H depend on expression E,

it suffices to prove P(F) assuming H(F),
where both P and H depend on expresion F,

given that E is equal to F.

H(E),E = F � P(E)
H(F),E = F � P(F) EQ RL

To prove a goal P(F) assuming H(F),
where both P and H depend on expression F,

it suffices to prove P(E) assuming H(E),
where both P and H depend on expresion E,

given that E is equal to F.

37 of 124

Discharging PO of DLF: Exercise

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

??
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Discharging PO of DLF: First Attempt

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

≡
d ∈ N
n ∈ N
n < d ∨ n = d�
n < d ∨ n > 0

MON
n < d ∨ n = d�
n < d ∨ n > 0

OR L

�����������������������������

n < d�
n < d ∨ n > 0

OR R1
n < d�
n < d

HYP

n = d�
n < d ∨ n > 0

EQ LR,MON �
d < d ∨ d > 0

OR R2 �
d > 0

?
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Why Did the DLF PO Fail to Discharge?
● In our first attempt, proof of the 2nd case failed: � d > 0● This unprovable sequent gave us a good hint:○ For the model under consideration (m0) to be deadlock-free,

it is required that d > 0. [ ≥ 1 car allowed in the IB compound ]○ But current specification of m0 not strong enough to entail this:● ¬(d > 0) ≡ d ≤ 0 is possible for the current model● Given axm0 1 ∶ d ∈ N⇒ d = 0 is allowed by m0 which causes a deadlock .● Recall the init event and the two guarded events:

init
begin

n ∶= 0
end

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end

When d = 0, the disjunction of guards evaluates to false: 0 < 0 ∨ 0 > 0⇒ As soon as the system is initialized, it deadlocks immediately

as no car can either enter or leave the IR compound!!
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Fixing the Context of Initial Model

● Having understood the failed proof, we add a proper axiom to m0:

axioms:
axm0 2 ∶ d > 0

● We have effectively elaborated on REQ2:

REQ2 The number of cars on bridge and island is limited
but positive.

● Having changed the context, an updated sequent will be generated
for the PO/VC rule of deadlock freedom.

● Is this new sequent now provable?
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Discharging PO of DLF: Second Attempt

d ∈ N
d > 0
n ∈ N
n ≤ d�
n < d ∨ n > 0

≡
d ∈ N
d > 0
n ∈ N
n < d ∨ n = d�
n < d ∨ n > 0

MON

d > 0
n < d ∨ n = d�
n < d ∨ n > 0

OR L

���������������������������������������

d > 0
n < d�
n < d ∨ n > 0

OR R1

d > 0
n < d�
n < d

HYP

d > 0
n = d�
n < d ∨ n > 0

EQ LR,MON
d > 0�
d < d ∨ d > 0

OR R2
d > 0�
d > 0

HYP
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Initial Model: Summary
● The final version of our initial model m0 is provably correct w.r.t.:○ Establishment of Invariants○ Preservation of Invariants○ Deadlock Freedom● Here is the final specification of m0:

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: n

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

init
begin

n ∶= 0
end

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end
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Model m1: “More Concrete” Abstraction
● First refinement has a more concrete perception of the bridge controller:○ We “zoom in” by observing the system from closer to the ground,

so that the island-bridge compound is split into:

● the island
● the (one-way) bridge

○ Nonetheless, traffic lights and sensors remain abstracted away!● That is, we focus on these two requirement :

● We are obliged to prove this added concreteness is consistent with m0.
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Model m1: Refined State Space

1. The static part is the same as m0’s: constants: d
axioms:

axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

2. The dynamic part of the concrete state consists of three variables:
● a: number of cars on the bridge,

heading to the island
● b: number of cars on the island
● c: number of cars on the bridge,

heading to the mainland

variables: a,b, c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ ??
inv1 5 ∶ ??

✓ inv1 1, inv1 2, inv1 3 are
typing constraints.

✓ inv1 4 links/glues the
abstract and concrete states.

✓ inv1 5 specifies
that the bridge is one-way.
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Model m1: State Transitions via Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● We first consider the “old” events already existing in m0.● Concrete/Refined version of event ML out :

ML out
when

??
then

a ∶= a + 1
end

○ Meaning of ML out is refined :
a car exits mainland (getting on the bridge).

○ ML out enabled only when:

● the bridge’s current traffic flows to the island● number of cars on both the bridge and the island is limited● Concrete/Refined version of event ML in:

ML in
when

??
then

c ∶= c − 1
end

○ Meaning of ML in is refined :
a car enters mainland (getting off the bridge).

○ ML in enabled only when:

there is some car on the bridge heading to the mainland.
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Model m1: Actions vs. Before-After Predicates● Consider the concrete/refined version of actions of m0’s two events:

○ An event’s actions are a specification: “c becomes c - 1 after the transition”.○ The before-after predicate (BAP) “c’ = c − 1” expresses that
c′ (the post-state value of c) is one less than c (the pre-state value of c).○ Given that the concrete state consists of three variables:● An event’s actions only specify those changing from pre-state to post-state.

[ e.g., c
′ = c − 1 ]● Other unmentioned variables have their post-state values remain unchanged.

[ e.g., a
′ = a ∧ b

′ = b ]

● When we express proof obligations (POs) associated with events, we use BAP.
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States & Invariants: Abstract vs. Concrete
● m0 refines m1 by introducing more variables:

○ Abstract State
(of m0 being refined): variables: n

○ Concrete State
(of the refinement model m1): variables: a,b, c

● Accordingly, invariants may involve different states:

○ Abstract Invariants
(involving the abstract state only):

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

○ Concrete Invariants
(involving at least the concrete state):

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0
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Events: Abstract vs. Concrete
● When an event exists in both models m0 and m1, there are two versions of it:○ The abstract version modifies the abstract state.

(abstract )ML out
when

n < d
then

n ∶= n + 1
end

(abstract )ML in
when

n > 0
then

n ∶= n − 1
end

○ The concrete version modifies the concrete state.

(concrete )ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

(concrete )ML in
when

c > 0
then

c ∶= c − 1
end

● A new event may only exist in m1 (the concrete model): we will deal with
this kind of events later, separately from “redefined/overridden” events.
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PO of Refinement: Components (1)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● c: list of constants �d�● A(c): list of axioms �axm0 1�● v and v ′: abstract variables in pre- & post-states v =̂ �n�, v ′ =̂ �n�● w and w ′: concrete variables in pre- & post-states w =̂ �a,b, c�, w ′ =̂ �a′,b′, c′�● I(c, v): list of abstract invariants �inv0 1, inv0 2�● J(c, v,w): list of concrete invariants �inv1 1, inv1 2, inv1 3, inv1 4, inv1 5�
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PO of Refinement: Components (2)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● G(c, v): list of guards of the abstract event

G(�d�, �n�) of ML out =̂ �n < d�, G(c, v) of ML in =̂ �n > 0�● H(c,w): list of guards of the concrete event

H(�d�, �a,b, c�) of ML out =̂ �a + b < d , c = 0�, H(c,w) of ML in =̂ �c > 0�
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PO of Refinement: Components (3)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● E(c, v): effect of the abstract event ’s actions i.t.o. what variable values become

E(�d�, �n�) of ML out =̂ �n + 1�, E(�d�, �n�) of ML out =̂ �n − 1�● F(c,w): effect of the concrete event ’s actions i.t.o. what variable values become

F(c, v) of ML out =̂ �a + 1,b, c�, F(c,w) of ML out =̂ �a,b,c − 1�
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Sketching PO of Refinement
The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event�
Guards of the Abstract Event

GRD

○ A concrete transition always has an
abstract counterpart.

○ A concrete event is enabled only if
abstract counterpart is enabled.

2. Invariant Preservation

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event�
Concrete Invariants Satisfied at Post-State

INV

○ A concrete event performs a
transition on concrete states.

○ This concrete state transition must
be consistent with how
its abstract counterpart performs a
corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable
to events that might be enabled after the system is launched.

The special, non-guarded init event will be discussed separately later.
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Refinement Rule: Guard Strengthening
● Based on the components, we are able to formally state the PO/VC Rule of

Guard Strengthening for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Gi(c,v)

GRD where Gi denotes a single guard condition
of the abstract event

○ How many sequents to be proved? [ # abstract guards ]○ For ML out , only one abstract guard, so one sequent is generated :
d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N a + b + c = n a = 0 ∨ c = 0
a + b < d c = 0�
n < d

ML out/GRD

● Exercise. Write ML in’s PO of Guard Strengthening for Refinement .
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PO Rule: Guard Strengthening of ML out

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML out � a + b < d
c = 0�

Abstract guards of ML out � n < d

ML out/GRD
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PO Rule: Guard Strengthening of ML in

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML in � c > 0�
Abstract guards of ML in � n > 0

ML in/GRD
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Proving Refinement: ML out/GRD

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�
n < d

MON

a + b + c = n
a + b < d
c = 0�
n < d

EQ LR,MON

a + b + 0 = n
a + b < d�
n < d

ARI

a + b = n
a + b < d�
n < d

EQ LR,MON
n < d�
n < d

HYP
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Proving Refinement: ML in/GRD

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
n > 0

MON

b ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
n > 0

OR L

�����������������������������������������������������������

b ∈ N
a + b + c = n
a = 0
c > 0�
n > 0

EQ LR,MON

b ∈ N
0 + b + c = n
c > 0�
n > 0

ARI

b ∈ N
b + c = n
c > 0�
n > 0

ARI

c ≤ n
c > 0�
n > 0

ARI
n > 0�
n > 0

HYP

b ∈ N
a + b + c = n
c = 0
c > 0�
n > 0

EQ LR

b ∈ N
a + b + 0 = n
c = 0
0 > 0�
n > 0

MON
0 > 0�
n > 0

ARI
��
n > 0

FALSE L
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Refinement Rule: Invariant Preservation
● Based on the components, we are able to formally state the PO/VC Rule of

Invariant Preservation for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ # sequents to be proved? [ # concrete, old evts × # concrete invariants ]○ Here are two (of the ten) sequents generated:
d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�(a + 1) + b + c = (n + 1)

ML out/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

ML in/inv1 5/INV

● Exercises. Specify and prove other eight POs of Invariant Preservation.
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Visualizing Inv. Preservation in Refinement
Each concrete event (w to w ′) is simulated by an abstract event (v to v ′):● abstract & concrete pre-states related by concrete invariants J(c, v ,w)● abstract & concrete post-states related by concrete invariants J(c, v ′,w ′)

2.5 First refinement: introducing the one-way bridge 55

following for each concrete guard Gi(c, v):

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)

�
Gi(c, v)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards

�
Abstract guard

Notice again that the set of concrete invariants denoted by J(c, v, w) contains some
elementary invariants dealing with concrete variables w only, while others are deal-
ing with both abstract and concrete variables v and w. This is the reason why we
collectively denote this set of concrete invariants by J(c, v, w).

Also note that it is possible to introduce new constants in a refinement. But we
have not stated this in the concrete invariants J(c, v, w) in order to keep the formulae
small.

Correct refinement We have to prove that the concrete event transforms the con-
crete variables w into w�, in a way which does not contradict the abstract event. While
this transition happens, the abstract event changes the abstract variables v, which are
related to w by the concrete invariant J(c, v, w), into v�, which must be related to
w� by the modified concrete invariant J(c, v�, w�). This is illustrated in the following
diagram:

v

w

Abstract event

Concrete event

J(c,v,w)

I(v) I(v ′)

J(c,v′,w′ )

v ′= E(c,v)

w′= F(c,w)H(c,w)

G(c,v)

With our usual conventions, this leads to the following proof obligation rule named
INV, where Jj(c, v, w) denotes a single invariant of the set of concrete invariants
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INV PO of m1: ML out/inv1 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML out � a + b < d
c = 0�

Concrete invariant inv1 4
with ML out’s effect in the post-state � (a + 1) + b + c = (n + 1)

ML out/inv1 4/INV
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INV PO of m1: ML in/inv1 5/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML in � c > 0�
Concrete invariant inv1 5

with ML in’s effect in the post-state � a = 0 ∨ (c − 1) = 0

ML in/inv1 5/INV
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Proving Refinement: ML out/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�(a + 1) + b + c = (n + 1)

MON
a + b + c = n�
(a + 1) + b + c = (n + 1)

ARI
a + b + c = n�
a + b + c + 1 = n + 1

EQ LR,MON �
n + 1 = n + 1

EQ
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Proving Refinement: ML in/inv1 5/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

MON

a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

OR L

���������������������������������������

a = 0
c > 0�
a = 0 ∨ (c − 1) = 0

OR R1

a = 0
c > 0�
a = 0

HYP

c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

EQ LR,MON
0 > 0�
a = 0 ∨ (0 − 1) = 0

ARI
��
a = 0 ∨ −1 = 0

FALSE L
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Initializing the Refined System m1

● Discharging the twelve sequents proved that:○ concrete invariants preserved by ML out & ML in○ concrete guards of ML out & ML in entail their abstract counterparts

● What’s left is the specification of how the ASM ’s initial state looks like:

init
begin

a ∶= 0
b ∶= 0
c ∶= 0

end

✓ No cars on bridge (heading either way) and island

✓ Initialization always possible: guard is true.

✓ There is no pre-state for init .

∴ The RHS of ∶= must not involve variables.

∴ The RHS of ∶= may only involve constants.

✓ There is only the post-state for init .

∴ Before-After Predicate: a′ = 0 ∧ b′ = 0 ∧ c′ = 0
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PO of m1 Concrete Invariant Establishment

○ Some (new) formal components are needed:
● K (c): effect of abstract init ’s actions:

e.g., K (�d�) of init =̂ �0�● v ′ = K (c): before-after predicate formalizing abstract init ’s actions
e.g., BAP of init : �n’� = �0�● L(c): effect of concrete init ’s actions:

e.g., K (�d�) of init =̂ �0,0,0�● w ′ = L(c): before-after predicate formalizing concrete init ’s actions
e.g., BAP of init : �a’,b’,c’� = �0,0,0�○ Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms�
Concrete Invariants Satisfied at Post-State

INV
A(c)�
Ji(c,K(c),L(c)) INV
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Discharging PO of m1
Concrete Invariant Establishment
● How many sequents to be proved? [ # concrete invariants ]● Two (of the five) sequents generated for concrete init of m1:

d ∈ N
d > 0�
0 + 0 + 0 = 0

init/inv1 4/INV

d ∈ N
d > 0�
0 = 0 ∨ 0 = 0

init/inv1 5/INV

● Can we discharge the PO init/inv1 4/INV ?

d ∈ N
d > 0�
0 + 0 + 0 = 0

ARI, MON � � TRUE R ∴ init/inv1 4/INV

succeeds in being discharged.

● Can we discharge the PO init/inv1 5/INV ?

d ∈ N
d > 0�
0 = 0 ∨ 0 = 0

ARI, MON � � TRUE R ∴ init/inv1 5/INV

succeeds in being discharged.
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Model m1: New, Concrete Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Considered concrete/refined events already existing in m0: ML out & ML in● New event IL in:

IL in
when

??
then

??
end

○ IL in denotes a car entering the island (getting off the bridge).

○ IL in enabled only when:

● The bridge’s current traffic flows to the island.
Q. Limited number of cars on the bridge and the island?
A. Ensured when the earlier ML out (of same car) occurred● New event IL out :

IL out
when

??
then

??
end

○ IL out denotes a car exiting the island (getting on the bridge).

○ IL out enabled only when:

● There is some car on the island.● The bridge’s current traffic flows to the mainland.
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Model m1: BA Predicates of Multiple Actions
Consider actions of m1’s two new events:

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

IL out
when

b > 0
a = 0

then
b ∶= b − 1
c ∶= c + 1

end

○ What is the BAP of ML in’s actions?

a′ = a − 1 ∧ b′ = b + 1 ∧ c′ = c

○ What is the BAP of ML in’s actions?

a′ = a ∧ b′ = b − 1 ∧ c′ = c + 1
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Visualizing Inv. Preservation in Refinement
● Recall how a concrete event is simulated by its abstract counterpart:

2.5 First refinement: introducing the one-way bridge 55

following for each concrete guard Gi(c, v):

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)

�
Gi(c, v)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards

�
Abstract guard

Notice again that the set of concrete invariants denoted by J(c, v, w) contains some
elementary invariants dealing with concrete variables w only, while others are deal-
ing with both abstract and concrete variables v and w. This is the reason why we
collectively denote this set of concrete invariants by J(c, v, w).

Also note that it is possible to introduce new constants in a refinement. But we
have not stated this in the concrete invariants J(c, v, w) in order to keep the formulae
small.

Correct refinement We have to prove that the concrete event transforms the con-
crete variables w into w�, in a way which does not contradict the abstract event. While
this transition happens, the abstract event changes the abstract variables v, which are
related to w by the concrete invariant J(c, v, w), into v�, which must be related to
w� by the modified concrete invariant J(c, v�, w�). This is illustrated in the following
diagram:

v

w

Abstract event

Concrete event

J(c,v,w)

I(v) I(v ′)

J(c,v′,w′ )

v ′= E(c,v)

w′= F(c,w)H(c,w)

G(c,v)

With our usual conventions, this leads to the following proof obligation rule named
INV, where Jj(c, v, w) denotes a single invariant of the set of concrete invariants

● For each new event:○ Strictly speaking, it does not have an abstract counterpart.○ It is simulated by a special abstract event (transforming v to v ′):

skip
begin

end

● skip is a “dummy” event: non-guarded and does nothing
● Q. BAP of the skip event?

A. n′ = n
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Refinement Rule: Invariant Preservation
● The new events IL in and IL out do not exist in m0, but:○ They exist in m1 and may impact upon the concrete state space.○ They preserve the concrete invariants, just as ML out & ML in do.● Recall the PO/VC Rule of Invariant Preservation for Refinement:

A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ How many sequents to be proved? [ # new evts × # concrete invariants ]○ Here are two (of the ten) sequents generated:
d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) + (b + 1) + c = n

IL in/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

IL in/inv1 5/INV

● Exercises. Specify and prove other eight POs of Invariant Preservation.
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INV PO of m1: IL in/inv1 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Guards of IL in � a > 0�
Concrete invariant inv1 4

with IL in’s effect in the post-state � (a − 1) + (b + 1) + c = n

IL in/inv1 4/INV
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INV PO of m1: IL in/inv1 5/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Guards of IL in � a > 0�
Concrete invariant inv1 5

with IL in’s effect in the post-state � (a − 1) = 0 ∨ c = 0

IL in/inv1 5/INV
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Proving Refinement: IL in/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) + (b + 1) + c = n

MON
a + b + c = n�(a − 1) + (b + 1) + c = n

ARI
a + b + c = n�
a + b + c = n

HYP
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Proving Refinement: IL in/inv1 5/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

MON

a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

OR L

���������������������������������������

a = 0
a > 0�(a − 1) = 0 ∨ c = 0

EQ LR,MON
0 > 0�(0 − 1) = 0 ∨ c = 0

ARI
��−1 = 0 ∨ c = 0

FALSE L

c = 0
a > 0�(a − 1) = 0 ∨ c = 0

OR R2

c = 0
a > 0�
c = 0

HYP
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Livelock Caused by New Events Diverging
● An alternative m1 (with inv1 4, inv1 5, and guards of new events removed):

constants: d
axioms:

axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c
invariants:

inv1 1 ∶ a ∈ Z
inv1 2 ∶ b ∈ Z
inv1 3 ∶ c ∈ Z

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
begin

a ∶= a − 1
b ∶= b + 1

end

IL out
begin

b ∶= b − 1
c ∶= c + 1

end

Concrete invariants are
under-specified: only
typing constraints.

Exercises : Show that
Invariant Preservation is
provable, but Guard
Strengthening is not.

● Say this alternative m1 is implemented as is:
IL in and IL out always enabled and may occur indefinitely , preventing other “old”
events (ML out and ML in) from ever happening:�init , IL in, IL out , IL in, IL out , . . . �
Q: What are the corresponding abstract transitions?
A: �init , skip, skip, skip, skip, . . . � [ ≈ executing while(true); ]● We say that these two new events diverge , creating a livelock :○ Different from a deadlock ∵ always an event occurring (IL in or IL out).○ But their indefinite occurrences contribute nothing useful.
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PO of Convergence of New Events
The PO/VC rule for non-divergence/livelock freedom consists of two parts:○ Interleaving of new events characterized as an integer expr.: variant .○ A variant V(c,w) may refer to constants and/or concrete variables.○ In the original m1, let’s try variants ∶ 2 ⋅ a + b
1. Variant Stays Non-Negative

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,w) ∈ N

NAT

○ Variant V(c, w) measures
how many more times the new events can occur.

○ If a new event is enabled , then V(c,w) > 0.

○ When V(c,w) reaches 0, some “old” events
must happen s.t. V(c,w) goes back above 0.

2. A New Event Occurrence Decreases Variant

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,F(c,w)) < V(c,w)

VAR
○ If a new event is enabled and

occurs, the value of V(c,w) ↓.
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PO of Convergence of New Events: NAT
● Recall: PO related to Variant Stays Non-Negative:

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,w) ∈ N

NAT
How many sequents to be proved?

[ # new events ]

● For the new event IL in:

d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
a > 0�
2 ⋅ a + b ∈ N

IL in/NAT

Exercises: Prove IL in/NAT and Formulate/Prove IL out/NAT.
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PO of Convergence of New Events: VAR
● Recall: PO related to A New Event Occurrence Decreases Variant

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,F(c,w)) < V(c,w)

VAR
How many sequents to be proved?

[ # new events ]

● For the new event IL in:

d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
a > 0�

2 ⋅ (a − 1) + (b + 1) < 2 ⋅ a + b

IL in/VAR

Exercises: Prove IL in/VAR and Formulate/Prove IL out/VAR.
79 of 124

Convergence of New Events: Exercise

Given the original m1, what if the following variant expression
is used:

variants ∶ a + b

Are the formulated sequents still provable?
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PO of Refinement: Deadlock Freedom

● Recall:○ We proved that the initial model m0 is deadlock free (see DLF).○ We proved, according to guard strengthening, that if a concrete

event is enabled, then its abstract counterpart is enabled.
● PO of relative deadlock freedom for a refinement model:

A(c)
I(c,v)
J(c,v ,w)
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)�
H1(c,w) ∨ ⋅ ⋅ ⋅ ∨Hn(c,w)

DLF

If an abstract state does not deadlock
(i.e., G1(c, v) ∨ ⋅ ⋅ ⋅ ∨Gm(c, v)), then
its concrete counterpart does not deadlock
(i.e., H1(c,w) ∨ ⋅ ⋅ ⋅ ∨Hn(c,w)).

● Another way to think of the above PO:
The refinement does not introduce, in the concrete, any “new”
deadlock scenarios not existing in the abstract state.
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PO Rule: Relative Deadlock Freedom m1

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Disjunction of abstract guards � n < d � guards of ML out in m0∨ n > 0 � guards of ML in in m0�
Disjunction of concrete guards

���������������

a + b < d ∧ c = 0 � guards of ML out in m1∨ c > 0 � guards of ML in in m1∨ a > 0 � guards of IL in in m1∨ b > 0 ∧ a = 0 � guards of IL out in m1

DLF
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Example Inference Rules (6)

H,¬P � Q

H � P ∨Q
OR R

To prove a disjunctive goal,
it suffices to prove one of the disjuncts,

with the the negation of the the other disjunct
serving as an additional hypothesis.

H,P,Q � R

H,P ∧Q � R
AND L

To prove a goal with a conjunctive hypothesis,
it suffices to prove the same goal,

with the the two conjuncts
serving as two separate hypotheses.

H � P H � Q

H � P ∧Q
AND R

To prove a goal with a conjunctive goal,
it suffices to prove each conjunct
as a separate goal.
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Proving Refinement: DLF of m1

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
n < d ∨ n > 0�

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

MON

d > 0
a ∈ N
b ∈ N
c ∈ N�

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

OR R,
ARI

d > 0
a ∈ N
b ∈ N
c = 0

�
a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

EQ LR,
MON

d > 0
a ∈ N
b ∈ N�

a + b < d ∧ 0 = 0∨ 0 > 0∨ a > 0∨ b > 0 ∧ a = 0

OR R,
ARI

d > 0
a = 0
b ∈ N�

a + b < d ∧ 0 = 0∨ b > 0 ∧ a = 0

EQ LR,
MON

d > 0
b ∈ N�

0 + b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

ARI

d > 0
b = 0 ∨ b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

. . .
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Proving Refinement: DLF of m1 (continued)

d > 0
b = 0 ∨ b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR L

�����������������������������������������������������������������������������������������

d > 0
b = 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR R1

d > 0
b = 0�
b < d ∧ 0 = 0

OR R1,
MON

d > 0

�
0 < d ∧ 0 = 0

AND R

���������������������������������������

d > 0

�
0 < d

ARI,
HYP

d > 0

�
0 = 0

EQ

d > 0
b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR R2

d > 0
b > 0�
b > 0 ∧ 0 = 0

AND R

���������������������������������������

d > 0
b > 0�
b > 0

HYP

d > 0
b > 0�
0 = 0

EQ
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First Refinement: Summary
● The final version of our first refinement m1 is provably correct w.r.t.:○ Establishment of Concrete Invariants [ init ]○ Preservation of Concrete Invariants [ old & new events ]○ Strengthening of guards [ old events ]○ Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]○ Relative Deadlock Freedom● Here is the final specification of m1:

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

variants:
2 ⋅ a + b

init
begin

a ∶= 0
b ∶= 0
c ∶= 0

end

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

IL out
when

b > 0
a = 0

then
b ∶= b − 1
c ∶= c + 1

end
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Model m2: “More Concrete” Abstraction● 2nd refinement has even more concrete perception of the bridge controller:○ We “zoom in” by observing the system from even closer to the ground,
so that the one-way traffic of the bridge is controlled via:

ml tl : a traffic light for exiting the ML

il tl : a traffic light for exiting the IL

abstract variables a, b, c from m1

still used (instead of being replaced)

70 Controlling cars on a bridge

init
a := 0
b := 0
c := 0

2.6 Second refinement: introducing the traffic lights
In its present form, the model of the bridge appears to be a bit magical. It seems, from
our observation, that car drivers can count cars and thus decide to enter into the bridge
from the mainland (event ML_out) or from the island (event IL_out). This means they
can observe the state of the system. Clearly, this is not realistic. In reality, as we know,
drivers follow the indication of some traffic lights; they clearly do not count cars!

This refinement then consists in introducing first the two traffic lights, named ml_tl
and il_tl, then the corresponding invariants, and, finally, some new events that can
change the colors of the traffic lights. Fig. 2.7 illustrates the new physical situation,
which can be observed in this refinement.

il_tl

ml_tl

MAINLANDISLAND

Fig. 2.7. The traffic lights

2.6.1 Refining the state
At this stage, we must extend our set of constants by first introducing the set COLOR
and its two distinct values red and green. It is done as follows:

set: COLOR

constants: red, green

axm2_1: COLOR = {green, red}

axm2_2: green �= red

a

c

b

○ Nonetheless, sensors remain abstracted away!● That is, we focus on these three environment constraints:

● We are obliged to prove this added concreteness is consistent with m1.
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Model m2: Refined, Concrete State Space
1. The static part introduces the notion of traffic light colours:

sets: COLOR constants: red ,green
axioms:

axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

2. The dynamic part shows the superposition refinement scheme:

70 Controlling cars on a bridge

init
a := 0
b := 0
c := 0

2.6 Second refinement: introducing the traffic lights
In its present form, the model of the bridge appears to be a bit magical. It seems, from
our observation, that car drivers can count cars and thus decide to enter into the bridge
from the mainland (event ML_out) or from the island (event IL_out). This means they
can observe the state of the system. Clearly, this is not realistic. In reality, as we know,
drivers follow the indication of some traffic lights; they clearly do not count cars!

This refinement then consists in introducing first the two traffic lights, named ml_tl
and il_tl, then the corresponding invariants, and, finally, some new events that can
change the colors of the traffic lights. Fig. 2.7 illustrates the new physical situation,
which can be observed in this refinement.

il_tl

ml_tl

MAINLANDISLAND

Fig. 2.7. The traffic lights

2.6.1 Refining the state
At this stage, we must extend our set of constants by first introducing the set COLOR
and its two distinct values red and green. It is done as follows:

set: COLOR

constants: red, green

axm2_1: COLOR = {green, red}

axm2_2: green �= red

a

c

b

● Abstract variables a, b, c from m1 are
still in use in m 2.

● Two new, concrete variables are
introduced: ml tl and il tl

● Constrast: In m1, abstract variable n is
replaced by concrete variables a, b, c.

variables:
a,b, c
ml tl
il tl

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ??
inv2 4 ∶ ??

◇ inv2 1 & inv2 2: typing constraints
◇ inv2 3: being allowed to exit ML means

cars within limit and no opposite traffic

◇ inv2 4: being allowed to exit IL means
some car in IL and no opposite traffic
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Model m2: Refining Old, Abstract Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Concrete/Refined version of event ML out :
ML out

when
??

then
a ∶= a + 1

end

○ Recall the abstract guard of ML out in m1: (c = 0)∧ (a + b < d)
⇒ Unrealistic as drivers should not know about a, b, c!

○ ML out is refined : a car exits the ML (to the bridge) only when:

● the traffic light ml tl allows● Concrete/Refined version of event IL out :
IL out

when
??

then
b ∶= b − 1
c ∶= c + 1

end

○ Recall the abstract guard of IL out in m1: (a = 0) ∧ (b > 0)
⇒ Unrealistic as drivers should not know about a, b, c!

○ IL out is refined : a car exits the IL (to the bridge) only when:

● the traffic light il tl allows
Q1. How about the other two “old” events IL in and ML in?
A1. No need to refine as already guarded by ML out and IL out .
Q2. What if the driver disobeys ml tl or il tl? [ A2. ENV3 ]
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Model m2: New, Concrete Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Considered events already existing in m1:○ ML out & IL out [ REFINED ]○ IL in & ML in [ UNCHANGED ]● New event ML tl green:

ML tl green
when

??
then

ml tl ∶= green
end

○ ML tl green denotes the traffic light ml tl turning green.○ ML tl green enabled only when:● the traffic light not already green● limited number of cars on the bridge and the island● No opposite traffic
[⇒ ML out ’s abstract guard in m1 ]● New event IL tl green:

IL tl green
when

??
then

il tl ∶= green
end

○ IL tl green denotes the traffic light il tl turning green.○ IL tl green enabled only when:● the traffic light not already green● some cars on the island (i.e., island not empty)● No opposite traffic
[⇒ IL out ’s abstract guard in m1 ]
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Invariant Preservation in Refinement m2

constants: d

sets: COLOR

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0
axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

variables:
a,b,c
ml tl
il tl

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 ∶ il tl = green⇒ b > 0 ∧ a = 0

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green

end

ML out
when

ml tl = green
then

a ∶= a + 1
end

IL out
when

il tl = green
then

b ∶= b − 1
c ∶= c + 1

end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

Recall the PO/VC Rule of Invariant Preservation for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ How many sequents to be proved? [ # concrete evts × # concrete invariants = 6 × 4 ]○ We discuss two sequents: ML out�inv2 4�INV and IL out�inv2 3�INV
Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.
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INV PO of m2: ML out/inv2 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 4

with ML out’s effect in the post-state � il tl = green⇒ b > 0 ∧ (a + 1) = 0

ML out/inv2 4/INV
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INV PO of m2: IL out/inv2 3/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0

Concrete guards of IL out � il tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IL out/inv2 3/INV
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Example Inference Rules (7)

H,P,Q � R

H,P,P⇒Q � R
IMP L

If a hypothesis P matches the assumption of
another implicative hypothesis P ⇒ Q,

then the conclusion Q of the implicative hypothesis

can be used as a new hypothesis for the sequent.

H,P � Q

H � P⇒Q
IMP R

To prove an implicative goal P ⇒ Q,
it suffices to prove its conclusion Q,
with its assumption P serving as a new hypotheses.

H,¬Q � P

H,¬P � Q
NOT L

To prove a goal Q with a negative hypothesis ¬ P,
it suffices to prove the negated hypothesis ¬(¬P) ≡ P

with the negated original goal ¬ Q

serving as a new hypothesis.
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Proving ML out/inv2 4/INV: First Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

MON

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

IMP R

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

IMP L

green ≠ red
b > 0 ∧ a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

AND L

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

AND R

���������������������������������������������������������������������

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�
b > 0

HYP

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�(a + 1) = 0

EQ LR,
MON

green ≠ red
ml tl = green
il tl = green�
(0 + 1) = 0

ARI

green ≠ red
ml tl = green
il tl = green�
1 = 0

??
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Proving IL out/inv2 3/INV: First Attempt
d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

MON

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IMP R

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

IMP L

green ≠ red
a + b < d ∧ c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND L

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND R

���������������������������������������������������������������������

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�
a + (b − 1) < d

MON
a + b < d�
a + (b − 1) < d

ARI

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�(c + 1) = 0

EQ LR,
MON

green ≠ red
il tl = green
ml tl = green�
(0 + 1) = 0

ARI

green ≠ red
il tl = green
ml tl = green�
1 = 0

??
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Failed: ML out/inv2 4/INV, IL out/inv2 3/INV

● Our first attempts of proving ML out/inv2 4/INV and IL out/inv2 3/INV both
failed the 2nd case (resulted from applying IR AND R):

green ≠ red ∧ il tl = green ∧ml tl = green � 1 = 0

● This unprovable sequent gave us a good hint:
○ Goal 1 = 0 ≡ false suggests that the safety requirements

a = 0 (for inv2 4) and c = 0 (for inv2 3) contradict with the current m2.

○ Hyp. il tl = green = ml tl suggests a possible, dangerous state of m2,
where two cars heading different directions are on the one-way bridge:

� init���
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl ′ = red
il tl ′ = red

, ML tl green�����������������������������������������������������������
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl’ = green
il tl ′ = red

, ML out����������������������
d = 2
a’ = 1
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL in���
d = 2
a’ = 0
b’ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�������������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl’ = green

, IL out�������������
d = 2
a′ = 0
b’ = 0
c’ = 1

ml tl ′ = green
il tl ′ = green

, ML out����������������������
d = 2
a’ = 1
b′ = 0
c′ = 1

ml tl ′ = green
il tl ′ = green

�
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Fixing m2: Adding an Invariant
● Having understood the failed proofs, we add a proper invariant to m2:

invariants:
. . .
inv2 5 ∶ ml tl = red ∨ il tl = red

● We have effectively resulted in an improved m2 more faithful w.r.t. REQ3:

REQ3 The bridge is one-way or the other, not both at the same time.

● Having added this new invariant inv2 5:○ Original 6× 4 generated sequents to be updated: inv2 5 a new hypothesis
e.g., Are ML out/inv2 4/INV and IL out/inv2 3/INV now provable?○ Additional 6 × 1 sequents to be generated due to this new invariant
e.g., Are ML tl green/inv2 5/INV and IL tl green/inv2 5/INV provable?
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INV PO of m2: ML out/inv2 4/INV – Updated

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 4

with ML out’s effect in the post-state � il tl = green⇒ b > 0 ∧ (a + 1) = 0

ML out/inv2 4/INV
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INV PO of m2: IL out/inv2 3/INV – Updated

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of IL out � il tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IL out/inv2 3/INV
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Proving ML out/inv2 4/INV: Second Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

MON

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

IMP R

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

IMP L

green ≠ red
b > 0 ∧ a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

AND L

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

AND R

���������������������������������������������������������������������������������������������������������

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0

HYP

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�(a + 1) = 0

EQ LR,
MON

green ≠ red
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
(0 + 1) = 0

ARI

green ≠ red
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
1 = 0

OR L

�����������������������������������������������������������

green ≠ red
ml tl = green
ml tl = red
il tl = green�
1 = 0

EQ LR,
MON

green ≠ red
green = red
il tl = green�
1 = 0

NOT L

green = red
il tl = green
1 ≠ 0�
green = red

HYP

green ≠ red
ml tl = green
il tl = red
il tl = green�
1 = 0

EQ LR,
MON

green ≠ red
ml tl = green
red = green�
1 = 0

NOT L

ml tl = green
red = green
1 ≠ 0�
green = red

HYP
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Proving IL out/inv2 3/INV: Second Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

MON

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
ml tl = red ∨ il tl = red
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IMP R

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

IMP L

green ≠ red
a + b < d ∧ c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND L

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND R

���������������������������������������������������������������������������������������������������������

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d

MON
a + b < d�
a + (b − 1) < d

ARI

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�(c + 1) = 0

EQ LR,
MON

green ≠ red
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
(0 + 1) = 0

ARI

green ≠ red
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
1 = 0

OR L

�����������������������������������������������������������

green ≠ red
il tl = green
ml tl = red
ml tl = green�
1 = 0

EQ LR,
MON

green ≠ red
il tl = green
red = green�
1 = 0

NOT L

il tl = green
red = green
1 ≠ 0

�
green = red

HYP

green ≠ red
il tl = green
il tl = red
ml tl = green�
1 = 0

EQ LR,
MON

green ≠ red
green = red
ml tl = green�
1 = 0

NOT L

green = red
ml tl = green
1 ≠ 0�
green = red

HYP
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Fixing m2: Adding Actions
● Recall that an invariant was added to m2:

invariants:
inv2 5 ∶ ml tl = red ∨ il tl = red

● Additional 6 × 1 sequents to be generated due to this new invariant:○ e.g., ML tl green/inv2 5/INV [ for ML tl green to preserve inv2 5 ]○ e.g., IL tl green/inv2 5/INV [ for IL tl green to preserve inv2 5 ]● For the above sequents to be provable, we need to revise the two events:

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green
il tl ∶= red

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green
ml tl ∶= red

end

Exercise: Specify and prove ML tl green/inv2 5/INV & IL tl green/inv2 5/INV.
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INV PO of m2: ML out/inv2 3/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ (a + 1) + b < d ∧ c = 0

ML out/inv2 3/INV

104 of 124

Proving ML out/inv2 3/INV: First Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
ml tl = green⇒ (a + 1) + b < d ∧ c = 0

MON

ml tl = green⇒ a + b < d ∧ c = 0�
ml tl = green⇒ (a + 1) + b < d ∧ c = 0

IMP R

ml tl = green⇒ a + b < d ∧ c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

IMP R

a + b < d ∧ c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

AND L

a + b < d
c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

AND R

�������������������������������������������������

a + b < d
c = 0
ml tl = green�(a + 1) + b < d

??

a + b < d
c = 0
ml tl = green�
c = 0

HYP
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Failed: ML out/inv2 3/INV
● Our first attempt of proving ML out/inv2 3/INV failed the 1st case (resulted

from applying IR AND R):

a + b < d ∧ c = 0 ∧ml tl = green � (a + 1) + b < d
● This unprovable sequent gave us a good hint:○ Goal (a + 1���

a′
) + b���

b′
< d specifies the capacity requirement .

○ Hypothesis c = 0 ∧ml tl = green assumes that it’s safe to exit the ML.

○ Hypothesis a + b < d is not strong enough to entail (a + 1) + b < d .
e.g., d = 3, b = 0, a = 0 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 1, a = 0 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 0, a = 1 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 0, a = 2 [ (a + 1) + b < d evaluates to false ]
e.g., d = 3, b = 1, a = 1 [ (a + 1) + b < d evaluates to false ]
e.g., d = 3, b = 2, a = 0 [ (a + 1) + b < d evaluates to false ]○ Therefore, a + b < d (allowing one more car to exit ML) should be split:
a + b + 1 ≠ d [ more later cars may exit ML, ml tl remains green ]
a + b + 1 = d [ no more later cars may exit ML, ml tl turns red ]
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Fixing m2: Splitting ML out and IL out
● Recall that ML out/inv2 3/INV failed ∵ two cases not handled separately:

a + b + 1 ≠ d [ more later cars may exit ML, ml tl remains green ]
a + b + 1 = d [ no more later cars may exit ML, ml tl turns red ]

● Similarly, IL out/inv2 4/INV would fail ∵ two cases not handled separately:
b − 1 ≠ 0 [ more later cars may exit IL, il tl remains green ]
b − 1 = 0 [ no more later cars may exit IL, il tl turns red ]● Accordingly, we split ML out and IL out into two with corresponding guards.

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red

end

Exercise: Given the latest m2, how many sequents to prove for invariant preservation?
Exercise: Specify and prove ML out i /inv2 3/INV & IL out i /inv2 4/INV (where i ∈ 1 .. 2).
Exercise: Each split event (e.g., ML out 1) refines its abstract counterpart (e.g., ML out)?
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m2 Livelocks: New Events Diverging● Recall that a system may livelock if the new events diverge.● Current m2’s two new events ML tl green and IL tl green may diverge :

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green
il tl ∶= red

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green
ml tl ∶= red

end

● ML tl green and IL tl green both enabled and may occur indefinitely , preventing
other “old” events (e.g., ML out) from ever happening:

� init���
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl = red
il tl = red

, ML tl green��������������������������������������������������������
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, ML out 1�������������������������������������
d = 2
a′ = 1
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL in���
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�����������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = red
il tl ′ = green

, ML tl green��������������������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�����������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = red
il tl ′ = green

, . . . �

⇒ Two traffic lights keep changing colors so rapidly that no drivers can ever pass!● Solution: Allow color changes between traffic lights in a disciplined way.
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Fixing m2: Regulating Traffic Light Changes
We introduce two variables/flags for regulating traffic light changes:○ ml pass is 1 if, since ml tl was last turned green, at least one car exited the ML

onto the bridge. Otherwise, ml pass is 0.○ il pass is 1 if, since il tl was last turned green, at least one car exited the IL
onto the bridge. Otherwise, il pass is 0.

variables: ml pass, il pass

invariants:
inv2 6 ∶ml pass ∈ {0,1}
inv2 7 ∶ il pass ∈ {0,1}
inv2 8 ∶ml tl = red ⇒ml pass = 1
inv2 9 ∶ il tl = red ⇒ il pass = 1

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1
ml pass ∶= 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red
ml pass ∶= 1

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1
il pass ∶= 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red
il pass ∶= 1

end

ML tl green
when

ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl ∶= green
il tl ∶= red
ml pass ∶= 0

end

IL tl green
when

il tl = red
b > 0
a = 0
ml pass = 1

then
il tl ∶= green
ml tl ∶= red
il pass ∶= 0

end
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Fixing m2: Measuring Traffic Light Changes
● Recall:○ Interleaving of new events charactered as an integer expression: variant .○ A variant V(c,w) may refer to constants and/or concrete variables.○ In the latest m2, let’s try variants ∶ ml pass + il pass
● Accordingly, for the new event ML tl green:

d ∈ N d > 0
COLOUR = {green, red} green ≠ red
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
ml tl ∈ COLOUR il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0 il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml pass ∈ {0,1} il pass ∈ {0,1}
ml tl = red⇒ml pass = 1 il tl = red⇒ il pass = 1
ml tl = red a + b < d c = 0
il pass = 1�
0 + il pass < ml pass + il pass

ML tl green/VAR

Exercises: Prove ML tl green/VAR and Formulate/Prove IL tl green/NAT.
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PO Rule: Relative Deadlock Freedom of m2
axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red
inv2 6 � ml pass ∈ {0,1}
inv2 7 � il pass ∈ {0,1}
inv2 8 � ml tl = red ⇒ml pass = 1
inv2 9 � il tl = red ⇒ il pass = 1

Disjunction of abstract guards

���������������

a + b < d ∧ c = 0 � guards of ML out in m1∨ c > 0 � guards of ML in in m1∨ a > 0 � guards of IL in in m1∨ b > 0 ∧ a = 0 � guards of IL out in m1�

Disjunction of concrete guards

�����������������������������������

ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1 � guards of ML tl green in m2∨ il tl = red ∧ b > 0 ∧ a = 0 ∧ml pass = 1 � guards of IL tl green in m2∨ ml tl = green ∧ a + b + 1 ≠ d � guards of ML out 1 in m2∨ ml tl = green ∧ a + b + 1 = d � guards of ML out 2 in m2∨ il tl = green ∧ b ≠ 1 � guards of IL out 1 in m2∨ il tl = green ∧ b = 1 � guards of IL out 2 in m2∨ a > 0 � guards of ML in in m2∨ c > 0 � guards of IL in in m2

DLF
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Proving Refinement: DLF of m2
d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml pass ∈ {0,1}
il pass ∈ {0,1}
ml tl = red ⇒ml pass = 1
il tl = red ⇒ il pass = 1

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0�
ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1∨ il tl = red ∧ b > 0 ∧ a = 0 ∧ml pass = 1∨ ml tl = green∨ il tl = green∨ a > 0∨ c > 0

⋮
d ∈ N
d > 0
b ∈ N
ml tl = red
il tl = red
ml tl = red ⇒ml pass = 1
il tl = red ⇒ il pass = 1�

b < d ∧ml pass = 1 ∧ il pass = 1∨ b > 0 ∧ml pass = 1 ∧ il pass = 1

...

d ∈ N
d > 0
b ∈ N
ml tl = red
il tl = red
ml pass = 1
il pass = 1�

b < d ∧ml pass = 1 ∧ il pass = 1∨ b > 0 ∧ml pass = 1 ∧ il pass = 1

...

d > 0
b ∈ N�
b < d ∨ b > 0

ARI

d > 0
b > 0 ∨ b = 0�
b < d ∨ b > 0

OR L

���������������������������������������

d > 0
b > 0�
b < d ∨ b > 0

OR R2

d > 0
b > 0�
b > 0

HYP

d > 0
b = 0�
b < d ∨ b > 0

EQ LR,MON

d > 0

�
0 < d ∨ 0 > 0

OR R1

d > 0

�
0 < d

HYP
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Second Refinement: Summary
● The final version of our second refinement m2 is provably correct w.r.t.:○ Establishment of Concrete Invariants [ init ]○ Preservation of Concrete Invariants [ old & new events ]○ Strengthening of guards [ old events ]○ Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]○ Relative Deadlock Freedom● Here is the final specification of m2:

constants: d

sets: COLOR

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0
axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

variables:
a
b
c
ml tl
il tl
ml pass
il pass

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 ∶ il tl = green⇒ b > 0 ∧ a = 0
inv2 5 ∶ ml tl = red ∨ il tl = red
inv2 6 ∶ ml pass ∈ {0,1}
inv2 7 ∶ il pass ∈ {0,1}
inv2 8 ∶ ml tl = red⇒ml pass = 1
inv2 9 ∶ il tl = red⇒ il pass = 1

variants:
ml pass + il pass

ML tl green
when

ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl ∶= green
il tl ∶= red
ml pass ∶= 0

end

IL tl green
when

il tl = red
b > 0
a = 0
ml pass = 1

then
il tl ∶= green
ml tl ∶= red
il pass ∶= 0

end

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1
ml pass ∶= 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red
ml pass ∶= 1

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1
il pass ∶= 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red
il pass ∶= 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end
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Specifying & Refining a File Transfer Protocol
MEB: Chapter 4

EECS3342 Z: System
Specification and Refinement

Winter 2023

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you review:
● What a Requirement Document (RD) is
● What a refinement is
● Writing formal specifications○ (Static) contexts: constants, axioms, theorems○ (Dynamic) machines: variables, invariants, events, guards, actions
● Proof Obligations (POs) associated with proving:○ refinements○ system properties

● Applying inference rules of the sequent calculus
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A Different Application Domain

● The bridge controller we specified , refined , and proved exemplifies
a reactive system, working with the physical world via:○ sensors [ a, b, c, ml pass, il pass ]○ actuators [ ml tl, il tl ]

● We now study an example exemplifying a distributed program :
○ A protocol followed by two agents, residing on distinct

geographical locations, on a computer network○ Each file is transmitted asynchronously :
bytes of the file do not arrive at the receiver all at one go.○ Language of predicates, sets, and relations required○ The same principles of generating proof obligations apply.
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Requirements Document:
File Transfer Protocol (FTP)
You are required to implement a system for transmitting files between agents

over a computer network.

Page Source: https://www.venafi.com
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Requirements Document: R-Descriptions

Each R-Description is an atomic specification of an intended
functionality or a desired property of the working system.

REQ1 The protocol ensures the copy of a file from the sender to the receiver.

REQ2 The file is supposed to be made of a sequence of items.

REQ3 The file is sent piece by piece between the two sites.
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Refinement Strategy
● Recall the design strategy of progressive refinements.

0. initial model (m0): a file is transmitted from the sender to the receiver . [ REQ1 ]
However, at this most abstract model:● file transmitted from sender to receiver synchronously & instantaneously● transmission process abstracted away

1. 1st refinement (m1 refining m0):
transmission is done asynchronously [ REQ2, REQ3 ]
However, at this more concrete model:● no communication between sender and receiver● exchanges of messages and acknowledgements abstracted away

2. 2nd refinement (m2 refining m1):
communication mechanism elaborated [ REQ2, REQ3 ]

3. final, 3rd refinement (m3 refining m2):
communication mechanism optimized [ REQ2, REQ3 ]

● Recall Correct by Construction :

From each model to its refinement , only a manageable amount of details
are added, making it feasible to conduct analysis and proofs.
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Model m0: Abstraction
● In this most abstract perception of the protocol, we do not consider

the sender and receiver :○ residing in geographically distinct locations○ communicating via message exchanges● Instead, we focus on this single requirement :

● Abstraction Strategy :

○ Observe the system with the
process of transmission abstracted away

○ only meant to inform
what the protocol is supposed to achieve

○ not meant to detail
how the transmission is achieved
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Math Background Review

Refer to LECTURE 1 for reviewing:○ Predicates [ e.g., ∀ ]○ Sets○ Relations and Operations○ Functions
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Model m0: Abstract State Space
1. The static part formulates the file (from the sender ’s end)

as a sequence of data items:

sets: D,BOOLEAN constants: n, f

axioms:
axm0 1 ∶ n > 0
axm0 2 ∶ f ∈ 1 .. n→D

axm0 3 ∶ BOOLEAN = {TRUE ,FALSE}
2. The dynamic part of the state consists of two variables:

variables: g, b

invariants:
inv0 1a ∶ g ∈ 1 .. n � D

inv0 1b ∶ b ∈ BOOLEAN

inv0 2 ∶ ??

inv0 3 ∶ ??

✓ g: file from the receiver ’s end

✓ b: whether or not the
transmission is completed

✓ inv0 1a and inv0 1b are
typing constraints.

✓ inv0 2 specifies what happens
before the transmission

✓ inv0 3 specifies what happens
after the transmission
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Model m0: State Transitions via Events

● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.● Initially, before the transmission:

init
begin

??

end

○ Nothing has been transmitted to the receiver .

○ The transmission process has not been completed.

● Finally, after the transmission:

final
when

??

then
??

end

○ The entire file f has been transmitted to the receiver .

○ The transmission process has been completed.

○ In this abstract model:

● Think of the transmission being instantaneous.● A later refinement specifies how f is transmitted asynchronously.
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PO of Invariant Establishment
● How many sequents to be proved? [ # invariants ]
● We have four sequents generated for event init of model m0:

1.

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}�� ∈ 1 .. n � D

init/inv0 1a/INV

2.

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}�
FALSE ∈ BOOLEAN

init/inv0 1b/INV

3.

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}�
FALSE = FALSE ⇒� = �

init/inv0 2/INV

4.

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}�
FALSE = TRUE ⇒� = f

init/inv0 3/INV

● Exercises: Prove the above sequents related to invariant establishment .
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PO of Invariant Preservation
● How many sequents to be proved? [ # non-init events × # invariants ]● We have four sequents generated for event final of model m0:

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

b = FALSE�
f ∈ 1 .. n � D

final/inv0 1a/INV

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

b = FALSE�
TRUE ∈ BOOLEAN

final/inv0 1b/INV

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

b = FALSE�
TRUE = FALSE ⇒ f = �

final/inv0 2/INV

n > 0
f ∈ 1 .. n→ D

BOOLEAN = {TRUE,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

b = FALSE�
TRUE = TRUE ⇒ f = f

final/inv0 3/INV

● Exercises: Prove the above sequents related to invariant preservation.
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Initial Model: Summary
● Our initial model m0 is provably correct w.r.t.:
○ Establishment of Invariants○ Preservation of Invariants○ Deadlock Freedom [ EXERCISE ]● Here is the specification of m0:

sets: D,BOOLEAN constants: n, f

axioms:
axm0 1 ∶ n > 0
axm0 2 ∶ f ∈ 1 .. n→D

axm0 3 ∶ BOOLEAN = {TRUE ,FALSE}

variables: g,b

invariants:
inv0 1a ∶ g ∈ 1 .. n � D

inv0 1b ∶ b ∈ BOOLEAN

inv0 2 ∶ b = FALSE ⇒ g = �
inv0 3 ∶ b = TRUE ⇒ g = f

init
begin

g ∶= �
b ∶= FALSE

end

final
when

b = FALSE

then
g ∶= f

b ∶= TRUE

end
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Model m1: “More Concrete” Abstraction● In m0, the transmission (evt. final) is synchronous and instantaneous.● The 1st refinement has a more concrete perception of the file transmission:○ The sender’s file is coped gradually, element by element , to the receiver.→ Such progress is denoted by occurrences of a new event receive.

h: elements transmitted so far

r : index of element to be sent

abstract variable g is replaced
by concrete variables h and r .

○ Nonetheless, communication between two agents remain abstracted away!● That is, we focus on these two intended functionalities:

● We are obliged to prove this added concreteness is consistent with m0.
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Model m1: Refined, Concrete State Space
1. The static part remains the same as m0:

sets: D,BOOLEAN constants: n, f

axioms:
axm0 1 ∶ n > 0
axm0 2 ∶ f ∈ 1 .. n→D

axm0 3 ∶ BOOLEAN = {TRUE ,FALSE}
2. The dynamic part formulates the gradual transmission process:

variables:
b,h, r

invariants:
inv1 1 ∶ r ∈ 1 .. n + 1
inv1 2 ∶ ??

inv1 3 ∶ ??

thm1 1 ∶ ??

◇ inv1 1: typing constraint

◇ inv2 2: elements up to index r - 1

have been transmitted

◇ inv2 3: transmission completed means
no more elements to be transmitted

◇ thm1 1: transmission completed means
receiver has a complete copy of sender’s file

◇ A theorem, once proved as
derivable from invariants, needs not be
proved for preservation by events.
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Model m1: Property Provable from Invariants
● To prove that a theorem can be derived from the invariants:

variables:
b,h, r

invariants:
inv1 1 ∶ r ∈ 1 .. n + 1
inv1 2 ∶ h = (1 .. r − 1)� f

inv1 3 ∶ b = TRUE ⇒ r = n + 1
thm1 1 ∶ b = TRUE ⇒ h = f

● We need to prove the following sequent :
n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE ⇒ r = n + 1�
b = TRUE ⇒ h = f

● Exercise: Prove the above sequent.
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Model m1: Old and New Concrete Events● Initially, before the transmission:

init
begin

??

end

◇ The transmission process has not been completed.

◇ Nothing has been transmitted to the receiver .

◇ First file element is available for transmission.● While the transmission is ongoing:

receive
when

??

then
??

end

◇ While sender has more file elements available for transmission:
● Next file element is received and accumulated to the receiver’s copy.● Sender’s next available file element is updated.◇ In this concrete model:
● Receiver having access to sender’s private variable r is unrealistic.● A later refinement specifies how two agents communicate.● Finally, after the transmission:

final
when

??

then
??

end

◇ When sender has no more file element available for transmission:

● The transmission process is marked as completed.
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PO of Invariant Establishment
● How many sequents to be proved? [ # invariants ]
● We have three sequents generated for event init of model m1:

1.

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}�
1 ∈ 1 .. n + 1

init/inv1 1/INV

2.

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}�� ∈ (1 .. 1 − 1)� f

init/inv1 2/INV

3.

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}�
FALSE = TRUE⇒ 1 = n + 1

init/inv1 3/INV

● Exercises: Prove the above sequents related to invariant establishment .
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PO of Invariant Preservation – final

● We have three sequents generated for old event final of model m1.● Here is one of the sequents:
n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE⇒ g = �
b = TRUE⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE⇒ r = n + 1
b = FALSE

r = n + 1�
r ∈ 1 .. n + 1

final/inv1 1/INV

● Exercises: Formulate & prove other sequents of invariant preservation.
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PO of Invariant Preservation – receive

● We have three sequents generated for new event receive of model m1:
receive/inv1 1/INV receive/inv1 2/INV receive/inv1 3/INV
n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE⇒ g = �
b = TRUE⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE⇒ r = n + 1
r ≤ n�(r + 1) ∈ 1 .. n + 1

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE⇒ g = �
b = TRUE⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE⇒ r = n + 1
r ≤ n�
h ∪ {(r , f (r))} = (1 .. (r + 1) − 1)� f

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE⇒ g = �
b = TRUE⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE⇒ r = n + 1
r ≤ n�
b = TRUE⇒ (r + 1) = n + 1

● Exercises: Prove the above sequents of invariant preservation.
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Proving Refinement: receive/inv1 1/INV

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE ⇒ r = n + 1
r ≤ n�(r + 1) ∈ 1 .. n + 1

MON

r ∈ 1 .. n + 1
r ≤ n�(r + 1) ∈ 1 .. n + 1

ARI

1 ≤ r ∧ r ≤ n + 1
r ≤ n�

1 ≤ (r + 1)∧ (r + 1) ≤ n + 1

AND L

1 ≤ r

r ≤ n + 1
r ≤ n�

1 ≤ (r + 1)∧ (r + 1) ≤ n + 1

AND R

�������������������������������������������������

1 ≤ r

r ≤ n + 1
r ≤ n�
1 ≤ (r + 1)

MON
1 ≤ r�
1 ≤ (r + 1) ARI

1 ≤ r

r ≤ n + 1
r ≤ n�(r + 1) ≤ n + 1

MON
r ≤ n�(r + 1) ≤ n + 1

ARI
r ≤ n�
r ≤ n

HYP
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Proving Refinement: receive/inv1 2/INV

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE ⇒ r = n + 1
r ≤ n�
h ∪ {(r , f (r))} = (1 .. (r + 1) − 1)� f

MON

f ∈ 1 .. n→D

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

r ≤ n�
h ∪ {(r , f (r))} = (1 .. (r + 1) − 1)� f

ARI

f ∈ 1 .. n→D

1 ≤ r

h = (1 .. r − 1)� f

r ≤ n�
h ∪ {(r , f (r))} = (1 .. (r + 1) − 1)� f

EQ LR,
MON,
ARI

f ∈ 1 .. n→D

1 ≤ r

r ≤ n�(1 .. r − 1)� f ∪ {(r , f (r))} = (1 .. r)� f

ARI
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Proving Refinement: receive/inv1 3/INV

n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE ⇒ g = �
b = TRUE ⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE ⇒ r = n + 1
r ≤ n�
b = TRUE ⇒ (r + 1) = n + 1

MON

b = TRUE ⇒ r = n + 1
r ≤ n�
b = TRUE ⇒ (r + 1) = n + 1

IMP R

b = TRUE ⇒ r = n + 1
r ≤ n

b = TRUE�(r + 1) = n + 1

IMP L

r = n + 1

r ≤ n

b = TRUE�(r + 1) = n + 1

EQ LR,
MON

n + 1 ≤ n

b = TRUE�((n + 1) + 1) = n + 1

ARI,
MON

��((n + 1) + 1) = n + 1
FALSE L
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m1: PO of Convergence of New Events
● Recall:○ Interleaving of new events charactered as an integer expression: variant .○ A variant V(c,w) may refer to constants and/or concrete variables.○ For m1, let’s try variants ∶ n + 1 − r

● Accordingly, for the new event receive:
n > 0
f ∈ 1 .. n→D

BOOLEAN = {TRUE ,FALSE}
g ∈ 1 .. n � D

b ∈ BOOLEAN

b = FALSE⇒ g = �
b = TRUE⇒ g = f

r ∈ 1 .. n + 1
h = (1 .. r − 1)� f

b = TRUE⇒ r = n + 1
r ≤ n�
n + 1 − (r + 1) < n + 1 − r

receive/VAR

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.
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First Refinement: Summary
● The first refinement m1 is provably correct w.r.t.:○ Establishment of Concrete Invariants [ init ]○ Preservation of Concrete Invariants [ old & new events ]○ Strengthening of guards [ old events, EXERCISE ]○ Convergence (a.k.a. livelock freedom, non-divergence) [ new events, EXERCISE ]○ Relative Deadlock Freedom [ EXERCISE ]● Here is the specification of m1:

sets: D,BOOLEAN constants: n, f

axioms:
axm0 1 ∶ n > 0
axm0 2 ∶ f ∈ 1 .. n→D

axm0 3 ∶ BOOLEAN = {TRUE ,FALSE}

variables:
b,h, r

invariants:
inv1 1 ∶ r ∈ 1 .. n + 1
inv1 2 ∶ h = (1 .. r − 1)� f

inv1 3 ∶ b = TRUE ⇒ r = n + 1
thm1 1 ∶ b = TRUE ⇒ h = f

init
begin

b ∶= FALSE

h ∶= �
r ∶= 1

end

final
when

r = n + 1
b = FALSE

then
b ∶= TRUE

end

receive
when

r ≤ n

then
h ∶= h ∪ {(r , f (r))}
r ∶= r + 1

end

variants:
n + 1 − r
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