What is a Safety-Critical System (SCS)?

LASSONDE

- A safety-critical system (SCS) is a system whose failure or malfunction has one (or more) of the following consequences:
 - death or serious injury to people
 - loss or severe damage to equipment/property
 - harm to the environment
- Based on the above definition, do you know of any systems that are *safety-critical*?

EECS3342 Z: System Specification and Refinement Winter 2023

Introduction MEB: Prologue, Chapter 1

Chen-Wei Wang

LASSONDE

Learning Outcomes

This module is designed to help you understand:

- What a *safety-critical* system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,
- 1. *fairness* and *loyalty* to the practitioner's associates, employers, clients, subordinates and employees;
- 2. *fidelity* (i.e., dedication, faithfulness) to public needs;
- 3. devotion to high ideals of personal honour and professional integrity;
- 4. *knowledge* of developments in the area of professional engineering relevant to any services that are undertaken; and
- 5. *competence* in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
 - suspension or termination of professional licenses
 - civil law suits

8 of 13

Source: PEO's Code of Ethics

Developing Safety-Critical Systems

LASSONDE

Industrial standards in various domains list *acceptance criteria* for **mission**- or **safety**-critical systems that practitioners need to comply with: e.g.,

Aviation Domain: **RTCA DO-178C** "Software Considerations in Airborne Systems and Equipment Certification"

Nuclear Domain: **IEEE 7-4.3.2** "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"

- Two important criteria are:
- 1. System *requirements* are precise and complete
- 2. System implementation conforms to the requirements

But how do we accomplish these criteria?

5 of 13

Using Formal Methods for Certification

- A formal method (FM) is a mathematically rigorous technique for the specification, development, and verification of software and hardware systems.
- **DO-333** "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods:

The use of **formal methods** is motivated by the expectation that, as in other engineering disciplines, performing appropriate **mathematical analyses** can contribute to establishing the **correctness** and **robustness** of a design.

- FMs, because of their mathematical basis, are capable of:
 - Unambiguously describing software system requirements.
 - Enabling *precise* communication between engineers.
 - Providing *verification (towards certification) evidence* of:
 - A *formal* representation of the system being *healthy*.
- A *formal* representation of the system *satisfying* safety properties.

Safety-Critical vs. Mission-Critical?

• Critical:

A task whose successful completion ensures the success of a larger, more complex operation.

e.g., Success of a pacemaker \Rightarrow Regulated heartbeats of a patient

• Safety:

Being free from danger/injury to or loss of human lives.

• Mission:

An operation or task assigned by a higher authority.

- Q. Formally relate being *safety*-critical and *mission*-critical.
- Α.
- ∘ *safety*-critical ⇒ *mission*-critical
- *mission*-critical *⇒* safety-critical
- Relevant industrial standard: *RTCA DO-178C* (replacing RTCA DO-178B in 2012) "Software Considerations in Airborne Systems and Equipment Certification"

Source: Article from OpenSystems

Verification: Building the Product Right?

- Implementation built via reusable programming components.
- Goal : Implementation Satisfies Intended Requirements
- To verify this, we *formalize* them as a *system model* and a set of (e.g., safety) *properties*, using the specification language of a <u>theorem prover</u> (EECS3342) or a <u>model checker</u> (EECS4315).
 Two Verification Issues:
- Library components may not behave as intended.
- 2. Successful checks/proofs ensure that we *built the product right*, with respect to the <u>informal</u> requirements. **But**...

Validation: Building the Right Product?

• Successful checks/proofs \Rightarrow We *built the right product*.

- The target of our checks/proofs may not be valid: The requirements may be *ambiguous*, *incomplete*, or *contradictory*.
- Solution: Precise Documentation

[EECS4312]

LASSONDE

Model-Based System Development

LASSONDE

- Modelling and formal reasoning should be performed before implementing/coding a system.
 - A system's *model* is its *abstraction*, filtering irrelevant details. A system *model* means as much to a software engineer as a blueprint means to an architect.
 - A system may have a list of *models*, "sorted" by accuracy: $\langle m_0, m_1, \ldots, \overline{m_i}, \overline{m_j}, \ldots, m_n \rangle$
 - The list starts by the most *abstract* model with least details.
 - A more *abstract* model *m_i* is said to be *refined by* its subsequent, more *concrete* model *m_i*
 - The list ends with the most *concrete/refined* model with most details.
 - It is far easier to reason about:
 - a system's *abstract* models (rather than its full *implementation*)
 - **refinement** steps between subsequent models
- The final product is **correct by construction**.

9 of 13

Catching Defects – When?

- To minimize *development costs*, minimize *software defects*.
- Software Development Cycle: Requirements \rightarrow *Design* \rightarrow *Implementation* \rightarrow Release Q. Design or Implementation Phase?

Catch defects *as early as possible*.

Design and architecture	Implementation	Integration testing	Customer beta test	Postproduct release
1X*	5X	10X	15X	30X

: The cost of fixing defects increases exponentially as software progresses through the development lifecycle.

- Discovering *defects* after **release** costs up to 30 times more than catching them in the **design** phase.
- Choice of a *design language*, amendable to *formal verification*, is therefore critical for your project.

Source: IBM Report

Learning through Case Studies

- We will study example models of programs/codes, as well as proofs on them, drawn from various application domains:
 - **REACTIVE Systems**
 - [sensors vs. actuators]
 - **DISTRIBUTED Systems** [(geographically) distributed parties]
- What you learn in this course will allow you to explore example in other application domains:
 - SEQUENTIAL Programs • CONCURRENT Programs

- [single thread of control]
- [interleaving processes]
- The Rodin Platform will be used to:
 - Construct system *models* using the Even-B notation.
 - Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.

11 of 13

10 of 13

LASSONDE

Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based System Development

Learning through Case Studies

13 of 13

LASSONDE

This module is designed to help you review:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

2 of 41

We use logical operators to construct compound statements.
 Unary logical operator: negation (¬)

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

р	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

EECS3342 Z: System Specification and Refinement Winter 2023

Chen-Wei Wang

Propositional Logic: Implication (1)

LASSONDE

• Written as $p \Rightarrow q$

- [pronounced as "p implies q"]
- We call p the antecedent, assumption, or premise.
- We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
 - consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - *honoured* if the obligations fulfilled. $[(true \Rightarrow true) \iff true]$
 - *breached* if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

LASSOND

Given an implication $p \Rightarrow q$, we may construct its:

- Inverse: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- Converse: $q \Rightarrow p$

• Contrapositive: $\neg q \Rightarrow \neg p$

[inverse of converse]

[swap antecedent and consequence]

6 of 41

- **Propositional Logic: Implication (2)**
 - There are alternative, equivalent ways to expressing $p \Rightarrow q$: \circ q if p
 - *q* is *true* if *p* is *true*
 - \circ p only if q

4 of 41

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

Note. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"):

- pif q $[a \Rightarrow p]$ $[p \Rightarrow q]$
- p only if q
- p is sufficient for q

For *q* to be *true*, it is sufficient to have *p* being *true*.

- q is **necessary** for p [similar to p only if q] If p is *true*, then it is necessarily the case that q is also *true*. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$. [When is $p \Rightarrow q$ true?]
- \circ q unless $\neg p$ If *q* is *true*, then $p \Rightarrow q$ *true* regardless of *p*.

If q is false, then $p \Rightarrow q$ cannot be true unless p is false.

Propositional Logic (2)

- Axiom: Definition of ⇒
- $p \Rightarrow q \equiv \neg p \lor q$ Theorem: Identity of ⇒
- **Theorem**: Zero of \Rightarrow
- $false \Rightarrow p \equiv true$

true \Rightarrow *p* \equiv *p*

• Axiom: De Morgan

$$(p \land q) \equiv \neg p \lor \neg q$$
$$(p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

 $a \equiv \neg (\neg p)$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

7 of 41

Predicate Logic (1)

LASSONDE

[false]

[true \Rightarrow false]

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - Z: the set of integers

N: the set of natural numbers

- $\begin{bmatrix} -\infty, \dots, -1, 0, 1, \dots, +\infty \end{bmatrix}$ $\begin{bmatrix} 0, 1, \dots, +\infty \end{bmatrix}$
- Variable(s) in a predicate may be *quantified*:
 - Universal quantification :

All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• *Existential quantification* :

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

8 of 41

Predicate Logic (2.2): Existential Q. (∃)

LASSONDE

- An *existential quantification* has the form $(\exists X \bullet R \land P)$
 - $\circ X$ is a comma-separated list of variable names
 - *R* is a *constraint on types/ranges* of the listed variables
 - P is a property to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.

0	∃i ∙	$i \in \mathbb{N} \land I$	i ≥ 0	[tru	ue]

- $\circ \exists i \bullet i \in \mathbb{Z} \land i \ge 0 \qquad [true]$
- $\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$ [true]
- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is $R \wedge P$ true? [true \wedge true]
 - Give a witness of $x \in X$ s.t. R(x), P(x) holds.
 - **2.** How to prove $(\exists X \bullet R \land P)$ false?
 - <u>Hint</u>. When is $R \wedge P$ false? [true \wedge false, false \wedge_{-}]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (2.1): Universal Q. (V)

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - *P* is a *property* to be satisfied
- For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied.
 ∀i i ∈ N ⇒ i ≥ 0 [true]

$$\circ \quad \forall i \quad \bullet \quad i \in \mathbb{N} \Rightarrow i \ge 0$$

$$\circ \quad \forall i \quad \bullet \quad i \in \mathbb{Z} \Rightarrow i \ge 0$$

$$\forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$$
 [false]

Proof Strategies

0

- **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*? • **Hint.** When is $R \Rightarrow P$ *true*?
 - $[true \Rightarrow true, false \Rightarrow _]$
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.
- **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ false?
 - <u>Hint</u>. When is $R \Rightarrow P$ false?
- Give a witness/counterexample of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is *not* greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are *not* greater than 10.

Predicate Logic (4): Switching Quantification

Conversions between \forall and \exists :

 $(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P)$ $(\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

 $S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$

LASSONDE

• S_1 and S_2 are *equal* iff they are the subset of each other.

 $S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

12 of 41

Sets: Definitions and Membership

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - Order in which elements are arranged does not matter.
 - An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.
 - e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
- An empty set (denoted as {} or Ø) has no members.
- We may check if an element is a *member* of a set:
 - e.g., $5 \in \{1, 3, 5, 7, 9\}$ e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$
- The number of elements in a set is called its *cardinality*. e.g., $|\emptyset| = 0$, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Set Relations: Exercises

 $? \subseteq S$ always holds $[\emptyset \text{ and } S]$ $? \subset S$ always fails[S] $? \subset S$ holds for some S and fails for some S $[\emptyset]$ $S_1 = S_2 \Rightarrow S_1 \subseteq S_2$?[Yes] $S_1 \subseteq S_2 \Rightarrow S_1 = S_2$?[No]

15 of 41

14 of 41

LASSONDE

[true]

[true]

Set Operations

Given two sets S_1 and S_2 :

• **Union** of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• **Difference** of S_1 and S_2 is a set whose members are in S_1 but not S_2 .

 $S_1 \smallsetminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$

16 of 41

17 of 41

Given *n* sets S_1, S_2, \ldots, S_n , a cross/Cartesian product of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

 $S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples: $\begin{cases} a, b\} \times \{2, 4\} \times \{\$, \&\} \\ = & \{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \} \\ = & \left\{ (a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), \\ (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&) \end{cases} \right\}$

Power Sets

LASSONDE

LASSONDE

The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

 $\mathbb{P}(S) = \{s \mid s \subseteq S\}$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

$$\left\{\begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array}\right\}$$

Exercise: What is $\mathbb{P}(\{1, 2, 3, 4, 5\}) \setminus \mathbb{P}(\{1, 2, 3\})$?

Relations (1): Constructing a Relation

A *relation* is a set of mappings, each being an *ordered pair* that maps a member of set *S* to a member of set *T*.

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$

- $S \times T$ is the *maximum* relation (say r_1) between *S* and *T*, mapping from each member of *S* to each member in *T*:

 $\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

{(x,y) | (x,y) ∈ S × T ∧ x ≠ 1} is a relation (say r₂) that maps only some members in S to every member in T:

 $\{(2, a), (2, b), (3, a), (3, b)\}$

18 of 41

LASSONDE

Relations (2.1): Set of Possible Relations

LASSONDE

• We use the power set operator to express the set of all possible *relations* on *S* and *T*:

 $\mathbb{P}(S \times T)$

Each member in $\mathbb{P}(S \times T)$ is a relation.

• To declare a relation variable r, we use the colon (:) symbol to mean *set membership*:

$$r:\mathbb{P}(S\times T)$$

• Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

20 of 41

Relations (3.1): Domain, Range, Inverse

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

r }

- domain of r : set of first-elements from r
- Definition: dom(r) = { $d \mid (d, r') \in r$ }
- e.g., $dom(r) = \{a, b, c, d, e, f\}$
- ASCII syntax: dom(r)
- **range** of r : set of second-elements from r

• Definition:
$$ran(r) = \{ r' \mid (d, r') \in$$

• e.g., ran(r) = {1, 2, 3, 4, 5, 6}

• ASCII syntax: ran(r)

- *inverse* of r : a relation like r with elements swapped
- Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$

$$\circ \ \, \textbf{e.g., } r^{-1} = \{(1,a),(2,b),(3,c),(4,a),(5,b),(6,c),(1,d),(2,e),(3,f)\}$$

Relations (2.2): Exercise

Enumerate $\{a, b\} \leftrightarrow \{1, 2, 3\}$.

• Hints:

. . .

21 of 41

- You may enumerate all relations in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$ via their *cardinalities*: 0, 1, ..., $|\{a, b\} \times \{1, 2, 3\}|$.
- What's the *maximum* relation in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$? $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- The answer is a set containing *all* of the following relations:
 - Relation with cardinality 0: Ø
 - How many relations with cardinality 1? $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{1} = 6\right]$
 - How many relations with cardinality 2? $\left[\left(\frac{|\{a,b\} \times \{1,2,3\}|}{2} \right) = \frac{6 \times 5}{2!} = 15 \right] \right]$
 - Relation with cardinality $|\{a, b\} \times \{1, 2, 3\}|$:

$$\{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}$$

Relations (3.2): Image

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

relational image of r over set s : sub-range of r mapped by s.

• Definition:
$$r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$$

• e.g.,
$$r[\{a, b\}] = \{1, 2, 4, 5\}$$

Relations (3.3): Restrictions

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- **domain restriction** of *r* over set *ds* : sub-relation of *r* with domain *ds*.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
 - e.g., $\{a, b\} \triangleleft r = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
 - ASCII syntax: ds <| r
- *range restriction* of *r* over set *rs* : sub-relation of *r* with range *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(a,1), (b,2), (d,1), (e,2)\}$
 - ASCII syntax: r |> rs

Relations (3.5): Overriding

LASSOND

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$ *overriding* of *r* with relation *t*: a relation which agrees with *t* within dom(*t*), and agrees with *r* outside dom(*t*)

- Definition: $r \Leftrightarrow t = \{ (d, r') \mid (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}$
- e.g.,

26 of 41

- $r \Leftrightarrow \{(a,3), (c,4)\}$
- $= \underbrace{\{(a,3), (c,4)\}}_{\{(d,r')|(d,r')\in t\}} \cup \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\{(d,r')|(d,r')\in r \land d \not = \text{dom}(t)\}}$
- $= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$

• ASCII syntax: r <+ t

24 of 41

LASSONDE

Relations (3.4): Subtractions

Given a relation

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- *domain subtraction* of *r* over set *ds* : sub-relation of *r* with domain <u>not</u> *ds*.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a,b\} \triangleleft r = \{(\mathbf{c},3), (\mathbf{c},6), (\mathbf{d},1), (\mathbf{e},2), (\mathbf{f},3)\}$

- *range subtraction* of *r* over set *rs*: sub-relation of *r* with range <u>not</u> *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - ° e.g., $r ▷ \{1,2\} = \{\{(c,3), (a,4), (b,5), (c,6), (f,3)\}\}$
 - ASCII syntax: r |>> rs

Relations (4): Exercises

- **1.** Define r[s] in terms of other relational operations. <u>Answer</u>: $r[s] = \operatorname{ran}(s \triangleleft r)$ e.g., $r[\{a,b\}] = \operatorname{ran}(\{(a,1), (b,2), (a,4), (b,5)\}) = \{1,2,4,5\}$
- **2.** Define $r \Leftrightarrow t$ in terms of other relational operators. **Answer**: $r \Leftrightarrow t = t \cup (\text{dom}(t) \preccurlyeq r)$

$$= \underbrace{\{(a,3), (c,4)\}}_{t} \cup \{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{dom(t) \triangleleft r}$$

 $= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$

Functions (1): Functional Property

Functions (2.2):

Relation Image vs. Function Application

- Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.
- Say we have a *partial function* f ∈ {1,2,3} → {a,b}:
 f = {(3,a), (1,b)}
 - With f wearing the *relation* hat, we can invoke relational images :

[{3}]	=	{ a }
[{1}]	=	{ b }
[{2}]	=	Ø

LASSONDE

LASSONDE

<u>Remark</u>. Given that the inputs are <u>singleton</u> sets (e.g., $\{3\}$), so are the output sets (e.g., $\{a\}$). \therefore Each member in the domain is mappe to <u>at most one</u> member in the range.

• With f wearing the *function* hat, we can invoke *functional applications* :

30 of 41

LASSONDE

LASSONDE

Given a **relation** $r \in S \leftrightarrow T$

- r is a *partial function* if it satisfies the *functional property*:
 - $|r \in S \nrightarrow T| \iff (\text{isFunctional}(r) \land \operatorname{dom}(r) \subseteq S)$

<u>Remark</u>. $r \in S \Rightarrow T$ means there <u>may (or may not) be</u> $s \in S$ s.t. r(s) is *undefined*.

- e.g., { {(2, a), (1, b)}, {(2, a), (3, a), (1, b)} } ⊆ {1,2,3} $ightarrow {a,b}$ ASCII syntax: r : +->
- *r* is a *total function* if there is a mapping for each $s \in S$:

 $\boxed{r \in S \rightarrow T} \iff (\text{isFunctional}(r) \land \text{dom}(r) = S)$ $\boxed{\text{Remark. } r \in S \rightarrow T \text{ implies } r \in S \Rightarrow T, \text{ but } \underline{\text{not}} \text{ vice versa. Why?}$ $\circ \text{ e.g., } \{(2, a), (3, a), (1, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\}$ $\circ \text{ e.g., } \{(2, a), (1, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$ $\circ \text{ ASCII syntax: } r : -->$

Functions (2.3): Modelling Decision

An organization has a system for keeping **track** of its employees as to where they are on the premises (e.g., ``Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- *Employee* denotes the **set** of all employees working for the organization.
- Location denotes the **set** of all valid locations in the organization.
- Is it appropriate to model/formalize such a track functionality as a relation (i.e., where_is ∈ Employee ↔ Location)?
 Answer. No an employee cannot be at distinct locations simultaneously.
 e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- How about a *total function* (i.e., *where_is ∈ Employee → Location*)?
 <u>Answer</u>. No in reality, <u>not</u> necessarily <u>all</u> employees show up.
 e.g., *where_is(Mark)* should be *undefined* if Mark happens to be on vacation.
- How about a *partial function* (i.e., *where_is* ∈ *Employee* → *Location*)? <u>Answer</u>. Yes – this addresses the inflexibility of the total function.

Functions (3.1): Injective Functions

Given a *function f* (either partial or total):

- f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T. isInjective(f) \iff $\forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)$ • If f is a *partial injection*, we write: $f \in S \Rightarrow T$ • e.g., $\{ \emptyset, \{(1, \mathbf{a})\}, \{(2, \mathbf{a}), (3, \mathbf{b})\} \} \subseteq \{1, 2, 3\} \Rightarrow \{a, b\}$ • e.g., $\{(1, \mathbf{b}), (2, a), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}$ [total, not inj.] • e.g., $\{(1, \mathbf{b}), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}$ [partial, not inj.] • ASCII syntax: f : >+> • If f is a **total injection**, we write: $f \in S \rightarrow T$ • e.g., {1,2,3} → {*a*,*b*} = ∅
 - e.g., {(2, d), (1, a), (3, c)} ∈ {1, 2, 3} \mapsto {a, b, c, d} • e.g., $\{(2, d), (1, c)\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$ • e.g., $\{(2, \mathbf{d}), (1, c), (3, \mathbf{d})\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$

LASSONDE

Given a function f:

f is **bijective**/a bijection/one-to-one correspondence if f is total, injective, and surjective.

• e.g., $\{1, 2, 3\} \rightarrow \{a, b\} = \emptyset$ • e.g., $\{ \{(1,a), (2,b), (3,c)\}, \{(2,a), (3,b), (1,c)\} \} \subseteq \{1,2,3\} \rightarrow \{a,b,c\}$ • e.g., $\{(\mathbf{2}, b), (\mathbf{3}, c), (\mathbf{4}, a)\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$ [not total, inj., sur.] • e.g., $\{(1, \mathbf{a}), (2, b), (3, c), (4, \mathbf{a})\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$ [total, not inj., sur.] • e.g., $\{(1, \mathbf{a}), (2, \mathbf{c})\} \notin \{1, 2\} \rightarrow \{a, b, c\}$ [total, inj., not sur.] • ASCII syntax: f : >->>

84 of 41

35 of 41

LASSONDE

[not total, inj.]

[total, not inj.]

LASSONDE

Functions (3.2): Surjective Functions

Given a *function f* (either partial or total):

• f is surjective/onto/a surjection if f maps to all members of T.

 $isSurjective(f) \iff ran(f) = T$

• If f is a **partial surjection**, we write: $f \in S \twoheadrightarrow T$

• e.g., { {(1, **b**), (2, **a**)}, {(1, **b**), (2, **a**), (3, **b**)} } ⊆ {1, 2, 3}
$$\xrightarrow{}$$
 {*a, b*}
• e.g., {(2, **a**), (1, **a**), (3, **a**)} \notin {1, 2, 3} $\xrightarrow{}$ {*a, b*} [total, not

• e.g.,
$$\{(2, \mathbf{a}), (1, \mathbf{a}), (3, \mathbf{a})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$$
 [total, not sur.]
• e.g., $\{(2, \mathbf{b}), (1, \mathbf{b})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [partial, not sur.]

• ASCII syntax: f : >->

32 of 41

• If f is a **total surjection**, we write: $f \in S \twoheadrightarrow T$ • e.g., $\{\{(2,a), (1,b), (3,a)\}, \{(2,b), (1,a), (3,b)\}\} \subseteq \{1,2,3\} \twoheadrightarrow \{a,b\}$ • e.g., $\{(\mathbf{2}, a), (\mathbf{3}, b)\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [not total, sur.] • e.g., $\{(2, \mathbf{a}), (3, \mathbf{a}), (1, \mathbf{a})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [total., not sur] • ASCII syntax: f : -->>

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., a ∈ Z → String) or a total function (i.e., a ∈ Z → String)?
 Answer. a ∈ Z → String is not appropriate as:

- Indices are <u>non-negative</u> (i.e., a(i), where i < 0, is **undefined**).
- Each array size is finite: not all positive integers are valid indices.
- What does it mean if an array is modelled/formalized as a partial injection (i.e., a ∈ Z → String)?
 Answer. It means that the array does not contain any duplicates.
- 3. Can an integer array "int[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → Z)?
 Answer. Yes, if a stores all 2³² integers (i.e., [-2³¹, 2³¹ 1]).
- 4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → String)?
 <u>Answer</u>. No ∵ # possible strings is ∞.
- 5. Can an integer array "int []" storing all 2³² values be *modelled/formalized* as a *bijection* (i.e., a ∈ Z → Z)?

Answer. No, because it <u>cannot</u> be **total** (as discussed earlier).

Index (1)

LASSOND

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

38 of 41

Beyond this lecture

////

- For the where_is ∈ Employee → Location model, what does it mean when it is:
 - Injective

[where_is ∈ Employee → Location]

• Surjective

[where_is ∈ Employee +>> Location]

Bijective

- [where_is ∈ Employee → Location]
- Review examples discussed in your earlier math courses on *logic* and *set theory*.
- Ask questions in the Q&A sessions to clarify the reviewed concepts.

Index (2)

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Index (3)

LASSONDE

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

40 of 41

Index (4)

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...

Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System Specification and Refinement Winter 2023

Chen-Wei Wang

LASSONDE

Learning Outcomes

This module is designed to help you understand:

- What a *Requirement Document (RD*) is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system *properties*
- Applying inference rules of the sequent calculus

Recall: Correct by Construction

- Directly reasoning about **source code** (written in a programming language) is too complicated to be feasible.
- Instead, given a *requirements document*, prior to <u>implementation</u>, we develop *models* through a series of *refinement* steps:
 - Each model formalizes an external observer's perception of the system.
 - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
 - The *first model*, though the most *abstract*, can <u>already</u> be proved satisfying some *requirements*.
 - Starting from the *second model*, each model is analyzed and proved *correct* relative to two criteria:
 - 1. <u>Some</u> *requirements* (i.e., R-descriptions)
 - Proof Obligations (POs) related to the <u>preceding model</u> being refined by the <u>current</u> model (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

8 of 124

Roadmap of this Module

• We will walk through the *development process* of constructing *models* of a control system regulating cars on a bridge. Such controllers exemplify a *reactive system*.

(with sensors and actuators)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
- 2. A brief overview of the *refinement strategy*
- 3. An initial, the most abstract model
- 4. A subsequent model representing the 1st refinement
- 5. A subsequent model representing the 2nd refinement
- 6. A subsequent model representing the 3rd refinement

5 of 124

State Space of a Model

LASSONDE

/* typing constraint */

- A model's state space is the set of <u>all</u> configurations:
 - Each <u>configuration</u> assigns values to <u>constants</u> & <u>variables</u>, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - *invariant* properties/theorems
 - Say an initial model of a bank system with two constants and a variable:

 $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \nrightarrow \mathbb{Z}$

 $\forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L$ /* desired property */

Q. What is the state space of this initial model?

- **A**. All <u>valid</u> combinations of *c*, *L*, and *accounts*.
- Configuration 1: (*c* = 1,000, *L* = 500,000, *b* = Ø)
- Configuration 2: (c = 2, 375, L = 700, 000, b = {("id1", 500), ("id2", 1, 250)})
 ... [Challenge: Combinatorial Explosion]
- Model Concreteness \uparrow ⇒ (State Space \uparrow ∧ Verification Difficulty \uparrow)
- A model's *complexity* should be guided by those properties intended to be verified against that model.
 - \Rightarrow *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.
 - \Rightarrow *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.

Requirements Document: Mainland, Island

Page Source: https://soldbyshane.com/area/toronto-islands/

Requirements Document: E-Descriptions

LASSONDE

Each *E-Description* is an <u>atomic specification</u> of a *constraint* or an *assumption* of the system's working environment.

	ENV1	The system is equipped with two traffic lights with two colors: green and red.
	ENV2	The traffic lights control the entrance to the bridge at both ends of it.
	ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.
	ENV4	The system is equipped with four sensors with two states: on or off.
	ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.
7 of 1	24	

Requirements Document: Visual Summary of Equipment Pieces

LASSONDE

9 of 124

10 of 124

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic specification</u> of an intended *functionality* or a desired *property* of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ2	The number of cars on bridge and island is limited.
REQ3	The bridge is one-way or the other, not both at the same time.

Refinement Strategy LASSONDE • Before diving into details of the *models*, we first clarify the adopted design strategy of progressive refinements. **0.** The *initial model* (m_0) will address the intended functionality of a limited number of cars on the island and bridge. [REQ2] **1.** A **1st refinement** $(m_1 \text{ which } refines m_0)$ will address the intended functionality of the bridge being one-way. [REQ1, REQ3] **2.** A *2nd refinement* $(m_2 \text{ which } refines m_1)$ will address the environment constraints imposed by traffic lights. [ENV1, ENV2, ENV3] **3.** A *final, 3rd refinement* (*m*₃ which *refines m*₂) will address the environment constraints imposed by sensors and the architecture: controller, environment, communication channels. [ENV4, ENV5] • Recall *Correct by Construction* : From each *model* to its *refinement*, only a manageable amount of details are added, making it *feasible* to conduct analysis and proofs.

Model *m*₀: Abstraction

LASSONDE

- In this most abstract perception of the bridge controller, we do <u>not</u> even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single *requirement*:

REQ2 The number of cars on bridge and island is limited.

- Analogies:
 - Observe the system from the sky: island and bridge appear only as a <u>compound</u>.

 [&]quot;Zoom in" on the system as refinements are introduced.

Model *m*₀: State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- At any given *state* (a <u>valid</u> *configuration* of constants/variables):
 - An event is said to be *enabled* if its guard evaluates to *true*.
 - An event is said to be *disabled* if its guard evaluates to *false*.
 - An <u>enabled</u> event makes a state transition if it occurs and its actions take effect.
- 1st event: A car exits mainland (and enters the island-bridge compound).

ML_out
begin
n := n + 1
endCorrect Specification? Say d = 2.
Witness: Event Trace (init, ML_out, ML_out, ML_out)

• <u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).

Model *m*₀: State Space

- The static part is fixed and may be seen/imported. A constant d denotes the maximum number of cars allowed to be on the island-bridge compound at any time.
 - (whereas cars on the mainland is unbounded)

axioms: axm0₋1 : d ∈ ℕ

Remark. Axioms are assumed true and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

12 of 124

- Model *m*₀: Actions vs. Before-After Predicates on December 2015
- When an <u>enabled</u> event *e* occurs there are two notions of *state*:
 Before-/Pre-State: Configuration just *before e*'s actions take effect
 - After-/Post-State: Configuration just <u>before</u> es actions take effect
 After-/Post-State: Configuration just after e's actions take effect

<u>Remark</u>. When an <u>enabled</u> event occurs, its *action(s)* cause a <u>transition</u> from the *pre-state* to the *post-state*.

• As examples, consider *actions* of m₀'s two events:

- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The *before-after predicate* (*BAP*) "*n*' = *n* + 1" expresses that
 - *n*' (the *post-state* value of *n*) is one more than *n* (the *pre-state* value of *n*).
- When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*.

Design of Events: Invariant Preservation

· Our design of the two events

ML_out	ML_in
begin	begin
n := n + 1	n := n - 1
end	end

only specifies how the *variable* n should be updated.

• Remember, *invariants* are conditions that should never be violated!

invariants:		
inv0_1 : <i>n</i> ∈ ℕ		
inv0_2 : <i>n</i> ≤ <i>d</i>		

• By simulating the system as an *ASM*, we discover *witnesses* (i.e., <u>event traces</u>) of the *invariants* <u>not</u> being preserved <u>all the time</u>.

 $\exists s \bullet s \in \mathsf{STATE SPACE} \Rightarrow \neg invariants(s)$

• We formulate such a commitment to preserving *invariants* as a *proof obligation* (*PO*) rule (a.k.a. a *verification condition* (*VC*) rule).

15 of 124

• Here is a sketch of the PO/VC rule for *invariant preservation*:

LASSONDE

 Informally, this is what the above PO/VC requires to prove : Assuming all axioms, invariants, and the event's guards hold at the pre-state, after the state transition is made by the event,

all invariants hold at the post-state.

Rule of Invariant Preservation: Sequents

LASSONDE

 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the *PO/VC Rule of Invariant Preservation*:

A(c)]
<i>I</i> (<i>c</i> , <i>v</i>)	
$G(c, \mathbf{v})$	INV
⊢	
<i>l</i> _i (<i>c</i> , <i>E(c</i> , <i>v</i>))	

where I_i denotes a single invariant condition

Accordingly, how many *sequents* to be proved? [# events × # invariants]
 We have two *sequents* generated for *event ML_out* of model m₀:

	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ \vdash	ML_out/inv0_1/INV	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$	ML_out/inv0_2/INV
$n+1 \in \mathbb{N}$ $n+1 < d$	$ \begin{array}{c} n \leq u \\ \vdash \\ n+1 \in \mathbb{N} \end{array} $		$ H \leq d$ $ H \leq d$ n+1 < d	<u>wil_out/mvo_2/mv</u>

Exercise. Write the **POs of invariant preservation** for event *ML_in*.

 Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all</u> *POs* must be <u>proved/discharged</u>.

Proof of Sequent: Steps and Structure

• To prove the following sequent (related to *invariant preservation*):

LASSONDE

- 1. Apply a *inference rule*, which *transforms* some "outstanding" sequent to <u>one</u> or <u>more</u> other sequents to be proved instead.
- Keep applying *inference rules* until <u>all</u> *transformed* sequents are axioms that do <u>not</u> require any further justifications.
- Here is a *formal proof* of ML_out/**inv0_1**/INV, by applying IRs **MON** and **P2**:

Inference Rules: Syntax and Semantics

• An *inference rule (IR)* has the following form:

A C **Formally**: $A \Rightarrow C$ is an <u>axiom</u>.

- **Informally**: To prove *C*, it is <u>sufficient</u> to prove *A* instead.
- Informally: C is the case, assuming that A is the case.
- L is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a set of sequents known as antecedents of rule L.
- C is a <u>single</u> sequent known as *consequent* of rule L.
- Let's consider *inference rules (IRs)* with two different flavours:

- IR **MON**: To prove $H1, H2 \vdash G$, it <u>suffices</u> to prove $H1 \vdash G$ instead.
- IR **P2**: $n \in \mathbb{N} \mapsto n+1 \in \mathbb{N}$ is an *axiom*.

```
[proved automatically without further justifications]
```


Example Inference Rules (2)

 $n < m \vdash n + 1 \leq m$

 $n \leq m \vdash n-1 < m$

INC

DEC

Revisiting Design of Events: *ML_out*

• Recall that we already proved **PO** ML_out/inv0_1/INV :

LASSONDE

LASSONDE

- .: *ML_out/inv0_1/INV* succeeds in being discharged.
- How about the other PO ML_out/inv0_2/INV for the same event?

.: *ML_out/inv0_2/INV* fails to be discharged.

25 of 124

26 of 124

23 of 124

n+1 is less than or equal to m_1 ,

n-1 is strictly less than m,

assuming that *n* is strictly less than *m*.

assuming that *n* is less than or equal to *m*.

Revisiting Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:

d ∈ ℕ *n* ∈ ℕ $n \in \mathbb{N}$ $n \leq d$ MON ? ⊢ ⊢ $n-1 \in \mathbb{N}$ *n* − 1 ∈ ℕ

- .: ML_in/inv0_1/INV fails to be discharged.
- How about the other **PO** ML_in/inv0_2/INV for the same event?

<i>d</i> ∈ ℕ					
$n \in \mathbb{N}$		n ≤ d		$n \le d$	
$n \le d$	MON	F	OR_1	⊢	DEC
⊢		$n-1 < d \lor n-1 = d$		<i>n</i> – 1 < <i>d</i>	
$n-1 \leq d$					

.: ML_in/inv0_2/INV succeeds in being discharged.

Fixing the Design of Events

LASSONDE

- Proofs of <u>ML_out/inv0_2/INV</u> and <u>ML_in/inv0_1/INV</u> fail due to the two events being <u>enabled</u> when they should <u>not</u>.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:

ML_out	ML₋in
when	when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

- Having changed both events, <u>updated</u> *sequents* will be generated for the PO/VC rule of *invariant preservation*.
- <u>All sequents</u> ({*ML_out*, *ML_in*} × {**inv0_1**, **inv0_2**}) now *provable*?

27 of 124

Revisiting Fixed Design of Events: *ML_in*

• How about the *PO* ML_in/inv0_1/INV for *ML_in*:

- .:. ML_in/inv0_1/INV now succeeds in being discharged!
- How about the other *PO* ML_in/inv0_2/INV for the same event?

.: ML_in/inv0_2/INV still succeeds in being discharged!

Revisiting Fixed Design of Events: *ML_out*

• How about the *PO* ML_out/inv0_1/INV for *ML_out*:

- .: *ML_out/inv0_1/INV* still succeeds in being discharged!
- How about the other *PO* ML_out/inv0_2/INV for the same event?

.: *ML_out/inv0_2/INV* now <u>succeeds</u> in being discharged!

Initializing the Abstract System m₀

- Discharging the <u>four</u> sequents proved that <u>both</u> invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the *invariants established* in the first place?

Analogy. Proving P via mathematical induction, two cases to prove:

 $P(1), P(2), \dots$ $P(n) \Rightarrow P(n+1)$

29 of 124

init

30 of 124

begin

end

n := 0

[base cases ≈ establishing inv.] [inductive cases ≈ preserving inv.]

LASSONDE

LASSONDE

- Therefore, we specify how the ASM 's initial state looks like:
 - ✓ The IB compound, once *initialized*, has <u>no</u> cars.

\checkmark	Initialization	always	possible:	guard i	s	true
--------------	----------------	--------	-----------	---------	---	------

✓ There is no *pre-state* for *init*.

- \therefore The <u>RHS</u> of := must <u>not</u> involve variables.
- \therefore The <u>RHS</u> of := may <u>only</u> involve constants.
- \checkmark There is only the **post-state** for *init*.
 - \therefore Before-*After Predicate*: n' = 0

PO of Invariant Establishment

INV \vdash INV ⊢ *Invariants* Satisfied at *Post-State* $I_i(c, \mathbf{K(c)})$

System Property: Deadlock Freedom

- So far we have proved that our initial model m₀ is s.t. all invariant conditions are:
 - Established when system is first initialized via init
 - Preserved whenevner there is a state transition

(via an enabled event: *ML_out* or *ML_in*)

- However, whenever event occurrences are conditional (i.e., guards stronger than *true*), there is a possibility of *deadlock*:
 - A state where guards of all events evaluate to false
 - When a *deadlock* happens, none of the *events* is *enabled*. ⇒ The system is blocked and not reactive anymore!
- We express this *non-blocking* property as a new requirement:

Discharging PO of Invariant Establishment

• How many *sequents* to be proved?

R1 of 124

[# invariants]

LASSONDE

We have two sequents generated for event init of model m₀:

• Can we discharge the **PO** init/inv0_1/INV ?

$$\begin{array}{c} d \in \mathbb{N} \\ \vdash \\ 0 \in \mathbb{N} \end{array} \quad \text{MON} \quad \begin{array}{c} \vdash \\ 0 \in \mathbb{N} \end{array} \quad \text{P1} \quad \begin{array}{c} \therefore \text{ init/inv0_1/INV} \\ \underline{\text{succeeds}} \text{ in being discharged.} \end{array}$$

• Can we discharge the **PO** init/inv0_2/INV ?

 $d \in \mathbb{N}$

 $0 \leq d$

32 of 124

PO of Deadlock Freedom (1)

LASSONDE

 $\langle d \rangle$

 $(inv0_1, inv0_2)$

- Recall some of the formal components we discussed:
 - c: list of constants
 - A(c): list of axioms $\langle axm0_1 \rangle$ $\mathbf{v} \cong \langle n \rangle, \mathbf{v}' \cong \langle n' \rangle$
 - v and v': list of variables in pre- and post-states
 - I(c, v): list of invariants • G(c, v): the event's list of *guards*

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n < d \rangle$, $G(\langle d \rangle, \langle n \rangle)$ of $ML_in \cong \langle n > 0 \rangle$

• A system is **deadlock-free** if at least one of its **events** is **enabled**:

To prove about deadlock freedom

- An event's effect of state transition is not relevant.
- Instead, the evaluation of all events' guards at the pre-state is relevant.

PO of Deadlock Freedom (2)

LASSONDE

- Deadlock freedom is not necessarily a desired property.
 ⇒ When it is (like m₀), then the generated sequents must be discharged.
- Applying the PO of *deadlock freedom* to the initial model *m*₀:

- Our bridge controller being *deadlock-free* means that cars can *always* <u>enter</u> (via *ML_out*) or <u>*leave*</u> (via *ML_in*) the island-bridge compound.
- Can we formally discharge this **PO** for our *initial model* m₀?

Example Inference Rules (5)

$\frac{H(F), E = F \vdash P(F)}{H(E), E = F \vdash P(E)}$ EQ_LR To prove a goal P(E) assuming H(E), where both P and H depend on expression E, it <u>suffices</u> to prove P(F) assuming H(F), where both P and H depend on expression F, given that E is equal to F.

To prove a goal P(F) assuming H(F), where both *P* and *H* depend on expression *F*, it <u>suffices</u> to prove P(E) assuming H(E), where both *P* and *H* depend on expression *E*, given that *E* is equal to *F*.

85 of 124

87 of 124

Example Inference Rules (4)

A goal is proved if it can be assumed.

Assuming *false* (⊥), anything can be proved.

true (\top) is proved, regardless of the assumption.

An expression being equal to itself is proved, regardless of the assumption.

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

n < d

n = d

 $n < d \lor n > 0$

 $n < d \lor n > 0$

⊢

OR_L

n < d

n < d

_

EQ LR. MON

HYP

 $d < d \lor d > 0$

OR_R2 ⊢

12

LASSONDE

d > 0

OR_R1

Fixing the Context of Initial Model

• Having understood the <u>failed</u> proof, we add a proper **axiom** to m₀:

• We have effectively elaborated on REQ2:

- Having changed the context, an <u>updated</u> sequent will be generated for the PO/VC rule of deadlock freedom.
- Is this new sequent now *provable*?

41 of 124

Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This unprovable sequent gave us a good hint:

 $n < d \lor n = d$

 $n < d \lor n > 0$

- For the model under consideration (*m*₀) to be *deadlock-free*, it is required that *d* > 0. [≥ 1 car allowed in the IB compound]
- But current *specification* of *m*₀ *not* strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given **axm0**_**1** : *d* ∈ ℕ
 - \Rightarrow d = 0 is allowed by m_0 which causes a *deadlock*.
- Recall the *init* event and the two *guarded* events:

WIICII	when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end
	when

- When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$ \Rightarrow As soon as the system is initialized, it *deadlocks immediately*
- as no car can either enter or leave the IR compound!!

Discharging PO of DLF: Second Attempt

42 of 124

 $d \in \mathbb{N}$ $n \in \mathbb{N}$

 $n \le d$ \vdash $n < d \lor n > 0$

Ξ

d ∈ ℕ

 $n \in \mathbb{N}$

89 of 124

 $n < d \lor n = d$ MON

 $n < d \lor n > 0$

Initial Model: Summary

LASSONDE

- The final version of our *initial model* m₀ is **provably correct** w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the final **specification** of m_0 :

Model *m*₁: Refined State Space

axioms: **1.** The **static** part is the same as m_0 's: constants: d $axm0_1 : d \in \mathbb{N}$ axm0 2: d > 0

LASSONDE

LASSONDE

2. The dynamic part of the *concrete state* consists of three *variables*:

Model *m*₁: "More Concrete" Abstraction

• First *refinement* has a more *concrete* perception of the bridge controller: • We "zoom in" by observing the system from closer to the ground. so that the island-bridge compound is split into:

• the (one-way) bridge

Nonetheless, traffic lights and sensors remain *abstracted* away!

That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.	REQ1
REQ3	The bridge is one-way or the other, not both at the same time.	REQ3

• We are **obliged to prove** this **added concreteness** is **consistent** with m₀. 44 of 124

Model *m*₁: State Transitions via Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" events already existing in m₀.
- Concrete/Refined version of event ML_out:

ML₋out when			
	??		
th	en		
	a := a + 1		
er	nd		

- Meaning of *ML_out* is *refined*: a car exits mainland (getting on the bridge).
- ML_out enabled only when:
 - · the bridge's current traffic flows to the island
 - number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

- Meaning of *ML_in* is *refined*: a car enters mainland (getting off the bridge).
- ML_in enabled only when:
 - there is some car on the bridge heading to the mainland.

Model *m*₁: Actions vs. Before-After Predicates

• Consider the *concrete*/*refined* version of *actions* of *m*₀'s two events:

- An event's actions are a specification: "c becomes c 1 after the transition".
- The *before-after predicate* (*BAP*) "c' = c 1" expresses that
 - c' (the **post-state** value of c) is one less than c (the **pre-state** value of c).
- Given that the *concrete state* consists of three variables:
 - An event's actions only specify those changing from pre-state to post-state. [e.q., c' = c - 1]
 - Other unmentioned variables have their *post*-state values remain unchanged. [e.q., **a**' = **a** \land **b**' = **b**]

 When we express proof obligations (POs) associated with events, we use BAP. 47 of 124

Events: Abstract vs. Concrete

• When an *event* exists in both models m_0 and m_1 , there are two versions of it: The *abstract* version modifies the *abstract* state.

abstract_)ML_out when	(abstract_)ML_in when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

LASSONDE

LASSONDE

 $\langle d \rangle$

(axm0_1)

 $v \cong \langle n \rangle, v' \cong \langle n \rangle$

 $(inv0_1, inv0_2)$

 $w \cong \langle a, b, c \rangle, w' \cong \langle a', b', c' \rangle$

 $(inv1_1, inv1_2, inv1_3, inv1_4, inv1_5)$

ML_out

when

then

end

MI in

when

then

end

c > 0

c:= c - 1

a + b < d

a:= a + 1

c = 0

• The *concrete* version modifies the *concrete* state.

49 of 124

• c: list of constants

A(c): list of axioms

50 of 124

• *I*(*c*, *v*): list of *abstract invariants*

J(c, v, w): list of concrete invariants

• v and v': **abstract variables** in pre- & post-states

• w and w': concrete variables in pre- & post-states

(concrete_)ML_out when a + b < d c = 0 then a := a + 1 end	(concrete_)ML_in when c > 0 then c := c - 1 end
--	--

• A *new event* may **only** exist in m₁ (the *concrete* model): we will deal with this kind of events later, separately from "redefined/overridden" events.

States & Invariants: Abstract vs. Concrete PO of Refinement: Components (1) LASSONDE • *m*₀ refines *m*₁ by introducing more *variables*: Abstract State 0 variables: n (of *m*⁰ being refined): variables: a.b.c constants: d *Concrete* State 0 variables: a, b, c (of the refinement model m_1): invariants: **inv1_1** : *a* ∈ ℕ axioms: $inv1_2: b \in \mathbb{N}$ $axm0_1 : d \in \mathbb{N}$ Accordingly, *invariants* may involve different states: inv1_3 : c ∈ N **axm0_2** : *d* > 0 $inv1_4: a+b+c=n$ invariants: $inv1_5: a = 0 \lor c = 0$ Abstract Invariants **inv0_1** : *n* ∈ ℕ (involving the *abstract* state only): **inv0_2** : *n* ≤ *d*

invariants: **inv1**_1 : **a** ∈ ℕ **Concrete** Invariants inv1_2 : **b** ∈ ℕ (involving at least the *concrete* state): **inv1_3** : **c** ∈ ℕ **inv1_4**: a + b + c = n**inv1_5**: $a = 0 \lor c = 0$

48 of 124

0

PO of Refinement: Components (2)

• *G*(*c*, *v*): list of guards of the *abstract event*

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n < d \rangle$, G(c, v) of $ML_in \cong \langle n > 0 \rangle$

• H(c, w): list of guards of the concrete event

```
H(\langle d \rangle, \langle a, b, c \rangle) \text{ of } ML\_out \cong \langle a + b < d, c = 0 \rangle, H(c, w) \text{ of } ML\_in \cong \langle c > 0 \rangle
```

51 of 124

The PO/VC rule for a *proper refinement* consists of two parts:

1. Guard Strengthening

LASSONDE

Guards of the Abstract Event	
F	
Guards of the Concrete Event	<u> </u>
Concrete Invariants Satisfied at Pre-State	CI
Abstract Invariants Satisfied at Pre-State	
Axioms	

2. Invariant Preservation

54 of 124

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event

Concrete Invariants Satisfied at Post-State

- A concrete transition <u>always</u> has an abstract counterpart.
- A concrete event is <u>enabled</u> only if abstract counterpart is <u>enabled</u>.
- A *concrete* event performs a *transition* on *concrete* states.
- This concrete state transition must be <u>consistent</u> with how its abstract counterpart performs a corresponding abstract transition.

Note. *Guard strengthening* and *invariant preservation* are only <u>applicable</u> to events that might be *enabled* after the system is <u>launched</u>.

The special, <u>non-guarded</u> init event will be discussed separately later.

PO of Refinement: Components (3) LASSONDE ML_out when a+b < dc = 0variables: a, b, c then constants: d a:= a + 1 end invariants: inv1_1 : a ∈ N axioms: inv1 2 : b ∈ N **axm0_1** : *d* ∈ ℕ ML_in $inv1_3 : c \in \mathbb{N}$ **axm0_2** : *d* > 0 when $inv1_4: a+b+c=n$ c > 0**inv1_5**: *a* = 0 ∨ *c* = 0 then c := c - 1end • E(c, v): effect of the **abstract event**'s actions i.t.o. what variable values **become**

- $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n-1 \rangle$
- F(c, w): effect of the *concrete event*'s actions i.t.o. what variable values <u>become</u>

F(c, v) of $ML_out \cong (a+1, b, c), F(c, w)$ of $ML_out \cong (a, b, c-1)$

Refinement Rule: Guard Strengthening

LASSONDE

 Based on the components, we are able to formally state the *PO/VC Rule of Guard Strengthening for Refinement*:

 $\begin{array}{c|c} A(c) & \\ I(c, v) & \\ J(c, v, w) & \\ H(c, w) & \\ \vdash & \\ G_i(c, v) & \end{array} \quad \text{where } G_i \text{ denotes a single guard condition} \\ \end{array}$

- How many *sequents* to be proved? [# *abstract* guards]
- For *ML_out*, only <u>one</u> *abstract* guard, so <u>one</u> *sequent* is generated :

<i>d</i> ∈ ℕ <i>n</i> ∈ ℕ <i>a</i> ∈ ℕ <i>a</i> + <i>b</i> < <i>d</i>	d > 0 $n \le d$ $b \in \mathbb{N}$ c = 0	<i>C</i> ∈ ℕ	a + b + c = n	<i>a</i> = 0 ∨ <i>c</i> = 0	_ML_out/GRD
⊢ n < d					

• Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of *ML_out*

aym0 1	$\int d \in \mathbb{N}$	
	{ <i>u</i> > 0	
inv0₋1	$\{ n \in \mathbb{N} \}$	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	{ <i>a</i> ∈ ℕ	
inv1_2	$\{ b \in \mathbb{N} \}$	
inv1_3	{ <i>C</i> ∈ ℕ	ML_out/GRD
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	
inv1_5	$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
Concrete guards of ML out	∫ a+b <d< th=""><th></th></d<>	
	C = 0	
	F	
Abstract guards of ML_out	{ <i>n</i> < <i>d</i>	

Proving Refinement: ML_out/GRD

LASSONDE

57 of 124

55 of 124

PO Rule: Guard Strengthening of *ML_in*

		_
axm0_1	$\{ d \in \mathbb{N} \}$	
axm0_2	{ <i>d</i> > 0	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1₋1	{ <i>a</i> ∈ ℕ	
inv1_2	{ <i>b</i> ∈ ℕ	КЛІ
inv1_3	$\left\{ \boldsymbol{c} \in \mathbb{N} \right\}$	
inv1_4	$\{a+b+c=n$	
inv1_5	$\{a=0\lor c=0$	
Concrete guards of ML_in	{ <i>c</i> > 0	
	⊢	
Abstract guards of ML_in	{ <i>n</i> > 0	

LASSONDE

LASSONDE

ML_in/GRD

Proving Refinement: ML_in/GRD

Refinement Rule: Invariant Preservation

 Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

A(c)
<i>l</i> (<i>c</i> , <i>v</i>)
$J(c, \mathbf{v}, \mathbf{w})$
H(c, w)
H
$J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$

<u>INV</u> where J_i denotes a single concrete invariant

LASSONDE

- # sequents to be proved? [# concrete, old evts × # concrete invariants]
- Here are two (of the ten) sequents generated:

• Exercises. Specify and prove other eight POs of Invariant Preservation.

INV PO of *m*₁: ML_out/inv1_4/INV

ML_out/inv1_4/INV

61 of 124

Visualizing Inv. Preservation in Refinement

Each *concrete* event (w to w') is *simulated by* an *abstract* event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')

Proving Refinement: ML_out/inv1_4/INV

a+b+c=n

(a + 1) + b + c = (n + 1)

MON

EQ

LASSONDE

n + 1 = n + 1

Initializing the Refined System m₁

- Discharging the <u>twelve</u> sequents proved that:
 - concrete invariants preserved by ML_out & ML_in
 - concrete guards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM**'s *initial state* looks like:

	$_{\rm I}$ \checkmark <u>No</u> cars on bridge (heading either way) and island
init	\checkmark Initialization always possible: guard is <i>true</i> .
begin	✓ There is no <i>pre-state</i> for <i>init</i> .
a := 0 b := 0	\therefore The <u>RHS</u> of := must <u>not</u> involve variables.
c := 0	\therefore The <u>RHS</u> of := may <u>only</u> involve constants.
end	✓ There is only the <i>post-state</i> for <i>init</i> .
	$\therefore \text{ Before-After Predicate: } a' = 0 \land b' = 0 \land c' = 0$

65 of 124

Proving Refinement: ML_in/inv1_5/INV

a + b + c = n

a + b + c + 1 = n + 1

EQ_LR, MON +

ARI +

- **PO of** *m*₁ **Concrete Invariant Establishment**
 - Some (new) formal components are needed:
 - *K*(*c*): effect of *abstract init*'s actions:
- e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0 \rangle$
- v' = K(c): before-after predicate formalizing abstract init's actions
 e.g., BAP of init: (n') = (0)
- *L*(*c*): effect of *concrete init*'s actions:
- e.g., K(⟨d⟩) of init ≈ ⟨0,0,0⟩
 w' = L(c): before-after predicate formalizing concrete init's actions
 e.g., BAP of init: ⟨a', b', c'⟩ = ⟨0,0,0⟩
- Accordingly, PO of *invariant establisment* is formulated as a <u>sequent</u>:

Axioms		A(c)]
⊢	INV	+	INV
Concrete Invariants Satisfied at Post-State		$J_i(c, K(c), L(c))$	

64 of 124

 $d \in \mathbb{N}$ d > 0

 $n \in \mathbb{N}$ $n \leq d$ $a \in \mathbb{N}$

b∈ℕ

 $c \in \mathbb{N}$

63 of 124

a+b+c=n

 $a = 0 \lor c = 0$ a + b < dc = 0

(a+1) + b + c = (n+1)

LASSONDE

Discharging PO of m_1 **Concrete Invariant Establishment**

• How many *sequents* to be proved? [# concrete invariants]

• Can we discharge the **PO** init/inv1_4/INV ?

• Can we discharge the **PO** init/inv1_5/INV ?

Model m₁: BA Predicates of Multiple Actions

IL_in when a > 0 then a := a - 1 b := b + 1 end	IL_out when b > 0 a = 0 then b := b - 1 c := c + 1 end
---	---

• What is the **BAP** of *ML_in*'s *actions*?

Consider *actions* of *m*₁'s two *new* events:

$$a' = a - 1 \land b' = b + 1 \land c' = c$$

• What is the **BAP** of *ML in*'s actions?

$$a' = a \land b' = b - 1 \land c' = c + 1$$

69 of 124

Model *m*₁: New, Concrete Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)** : it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in m₀: ML_out & ML_in
- New event IL_in:

- IL_in denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
 - · The bridge's current traffic flows to the island. Q. Limited number of cars on the bridge and the island?
- New event IL_out:

- A. Ensured when the earlier *ML_out* (of same car) occurred

- There is some car on the island.
- · The bridge's current traffic flows to the mainland.

Visualizing Inv. Preservation in Refinement

Recall how a concrete event is simulated by its abstract counterpart:

- For each new event:
 - Strictly speaking, it does not have an abstract counterpart.
 - It is **simulated by** a special **abstract** event (transforming v to v'):

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do not exist in **m**₀, but:
 - They **exist** in **m**₁ and may impact upon the *concrete* state space.
 - They preserve the concrete invariants, just as ML_out & ML_in do.
- Recall the PO/VC Rule of Invariant Preservation for Refinement: A(c) I(c, **v**)

INV where J_i denotes a single *concrete invariant*

 $J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$

d

d

 $J(c, \mathbf{v}, \mathbf{w})$

H(c, w)

72 of 124

- How many *sequents* to be proved? [# new evts × # concrete invariants]
- Here are two (of the ten) sequents generated:

$\begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ d = b + c = n \\ a = 0 \lor c = 0 \\ a > 0 \\ \vdash \end{array}$	IL_in/inv1_4/INV	$d \in \mathbb{N}$ $d > 0$ $n \in \mathbb{N}$ $n \le d$ $a \in \mathbb{N}$ $b \in \mathbb{N}$ $c \in \mathbb{N}$ $a + b + c = n$ $a = 0 \lor c = 0$ $a > 0$ \vdash	IL_in/inv1_5/INV
(a-1) + (b+1) + c = n		⊢ (a−1)=0∨c=0	

• Exercises. Specify and prove other eight POs of Invariant Preservation. 71 of 124

INV PO of m_1 : IL_in/inv1_5/INV

73 of 124

74 of 124

INV PO of *m*₁: IL_in/inv1_4/INV

Proving Refinement:	IL_in/inv1	_4/INV
---------------------	------------	--------

IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

LASSONDE

PO of Convergence of New Events

The PO/VC rule for *non-divergence/livelock freedom* consists of two parts:

- Interleaving of *new* events characterized as an integer expr.: *variant*.
- A variant V(c, w) may refer to constants and/or concrete variables.
- In the original m_1 , let's try **variants** : $2 \cdot a + b$
- 1. Variant Stays Non-Negative

75 of 124

Livelock Caused by New Events Diverging

• An alternative *m*₁ (with **inv1_4**, **inv1_5**, and **guards** of <u>new</u> events removed):

Concrete invariants are under-specified: only typing constraints.

Exercises: Show that **Invariant Preservation** is provable, but **Guard Strengthening** is <u>not</u>.

[≈ executing while (true);]

 Say this alternative m₁ is implemented as is: *IL_in* and *IL_out* <u>always</u> <u>enabled</u> and may occur <u>indefinitely</u>, preventing other "old" events (*ML_out* and *ML_in*) from ever happening:

 $(init, IL_in, IL_out, IL_in, IL_out, ...)$

- Q: What are the corresponding *abstract* transitions?
- $\underline{\mathbf{A}}$: (*init*, *skip*, *skip*, *skip*, *skip*, ...)
- We say that these two *new* events *diverge*, creating a *livelock* :
 - Different from a *deadlock* :: <u>always</u> an event occurring (*IL_in* or *IL_out*).
 - But their *indefinite* occurrences contribute **nothing** useful.

PO of Convergence of New Events: NAT

• <u>Recall</u>: PO related to *Variant Stays Non-Negative*:

$ \begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \end{array} $	NAT	How many <i>sequents</i> to be proved?	[# <i>new</i> events]
$V(c, w) \in \mathbb{N}$			

• For the *new* event *IL_in*:

d ∈ ℕ n ∈ ℕ a ∈ ℕ	d > 0 $n \le d$ $b \in \mathbb{N}$	<i>c</i> ∈ ℕ	
<i>a</i> + <i>b</i> + <i>c</i> = <i>n</i> <i>a</i> > 0	<i>a</i> = 0 ∨ <i>c</i> = 0		IL_in/NAT
⊢ 2 · <i>a</i> + <i>b</i> ∈ ℕ			

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

78 of 124

PO of Convergence of New Events: VAR

VAR

• Recall: PO related to A New Event Occurrence Decreases Variant

 $\begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ V(c,F(c,w)) < V(c,w) \end{array}$

How many *sequents* to be proved?

[#new events]

• For the *new* event *IL_in*:

<i>d</i> ∈ ℕ	<i>d</i> > 0		
<i>n</i> ∈ ℕ	n≤d		
<i>a</i> ∈ ℕ	b ∈ ℕ	$\boldsymbol{c} \in \mathbb{N}$	
a+b+c=n	$a = 0 \lor c = 0$		IL_in/VAR
<i>a</i> > 0			
F			
$2 \cdot (a - 1) + (b)$	$(+1) < 2 \cdot a + b$		
			1

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

79 of 124

Convergence of New Events: Exercise

Given the original \mathbf{m}_1 , what if the following *variant* expression is used:

variants : a + b

Are the formulated sequents still *provable*?

PO of Refinement: Deadlock Freedom

Recall:

- We proved that the initial model m_0 is deadlock free (see **DLF**).
- We proved, according to *guard strengthening*, that if a *concrete* event is <u>enabled</u>, then its *abstract* counterpart is <u>enabled</u>.
- PO of *relative deadlock freedom* for a *refinement* model:

If an **abstract** state does <u>not</u> **deadlock** (i.e., $G_1(c, v) \lor \cdots \lor G_m(c, v)$), then its **concrete** counterpart does <u>not</u> **deadlock** (i.e., $H_1(c, w) \lor \cdots \lor H_n(c, w)$).

• Another way to think of the above PO:

The *refinement* does <u>not</u> introduce, in the *concrete*, any "new" *deadlock* scenarios <u>not</u> existing in the *abstract* state.

81 of 124

PO Rule: Relative Deadlock Freedom *m*₁

axm0.1 axm0.2 inv0.1 inv1.2 inv1.2 inv1.3 inv1.4 inv1.5 Disjunction of <i>abstract</i> guards	$\begin{cases} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \le d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ n < d \end{cases}$ guards of <i>ML_out</i> in <i>m</i> ₀ \vee v = 0 guards of <i>ML_out</i> in <i>m</i> ₀	DLF
Disjunction of <i>concrete</i> guards	$ \begin{cases} a+b < d \land c = 0 \\ \lor & c > 0 \\ \lor & c > 0 \\ \lor & a > 0 \\ \lor & b > 0 \land a = 0 \\ \lor & b > 0 \land a = 0 \\ \end{cases} $ guards of <i>ML_out</i> in <i>m</i> ₁ guards of <i>IL_in</i> in <i>m</i> ₁ guards of <i>IL_out</i> in <i>m</i> ₁	

Example Inference Rules (6)

Proving Refinement: DLF of *m*₁ (continued)

$H, \neg P \vdash Q$	
$H \vdash P \lor Q$	Un₋n

To prove a *disjunctive goal*, it suffices to prove one of the disjuncts, with the the <u>negation</u> of the the other disjunct serving as an additional hypothesis.

$H, P, Q \vdash R$	
$H, P \land Q \vdash R$	

To prove a goal with a <u>conjunctive hypothesis</u>, it suffices to prove the same goal, with the the two <u>conjuncts</u> serving as two separate <u>hypotheses</u>.

 $\frac{H \vdash P \quad H \vdash Q}{H \vdash P \land Q} \quad \text{AND}_{-}\mathbf{R}$

To prove a goal with a <u>conjunctive goal</u>, it suffices to prove each <u>conjunct</u> as a separate <u>goal</u>.

85 of 124

83 of 124

Proving Refinement: DLF of *m*₁

First Refinement: Summary
The final version of our first refinement m₁ is provably correct w.r.t.:

Establishment of Concrete Invariants
Preservation of Concrete Invariants
Strengthening of guards
Convergence (a.k.a. livelock freedom, non-divergence)
Relative Deadlock Freedom

Here is the final specification of m₁:

Model *m*₂: "More Concrete" Abstraction

• 2nd refinement has even more concrete perception of the bridge controller: • We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML

il_tl: a traffic light for exiting the IL

abstract variables a, b, c from m₁ still used (instead of being replaced)

• Nonetheless, sensors remain *abstracted* away!

That is, we focus on these three environment constraints:

ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2	The traffic lights control the entrance to the bridge at both ends of it.
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.

 We are obliged to prove this added concreteness is consistent with m₁. 87 of 124

Model *m*₂: Refining Old, Abstract Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out: • Recall the *abstract* guard of *ML*_out in m_1 : $(c = 0) \land (a + b < d)$

- \Rightarrow Unrealistic as drivers should **not** know about *a*, *b*, *c*!
- *ML_out* is *refined*: a car exits the ML (to the bridge) only when:
- the traffic light *ml_tl* allows
- Concrete/Refined version of event IL_out:

- Recall the *abstract* guard of *IL_out* in m_1 : $(a = 0) \land (b > 0)$ \Rightarrow Unrealistic as drivers should **not** know about *a*, *b*, *c*!
- *IL_out* is *refined*: a car exits the IL (to the bridge) only when:
 - the traffic light *il_tl* allows

Q1. How about the other two "old" events IL_in and ML_in?

- A1. No need to *refine* as already *quarded* by *ML_out* and *IL_out*.
- **Q2**. What if the driver disobeys *ml_tl* or *il_tl*?

89 of 124

Model *m*₂: Refined, Concrete State Space

LASSONDE

1. The **static** part introduces the notion of traffic light colours:

				aviom
				axiom
sets:	COLOR	constants:	red.areen	axm
			, g	0.70
				axii

 $n2_1: COLOR = \{green, red\}$ **n2_2** : green ≠ red

2. The dynamic part shows the *superposition refinement* scheme:

• Abstract variables a, b, c from m₁ are still in use in m_2.

 Two new. concrete variables are introduced: *ml_tl* and *il_tl*

• Constrast: In m₁, abstract variable n is replaced by *concrete* variables a, b, c.

- inv2_1 & inv2_2: typing constraints
- inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
- inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

Model m₂: New, Concrete Events

LASSONDE • The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.

[A2. ENV3]

LASSONDE

- Considered *events* already existing in *m*₁:
- ML_out & IL_out
- [REFINED] [UNCHANGED]

• New event ML_tl_green:

• IL_in & ML_in

90 of 124

Invariant Preservation in Refinement m₂

Recall the PO/VC Rule of Invariant Preservation for Refinement:

<u>INV</u> where J_i denotes a single *concrete invariant*

- How many *sequents* to be proved? [# concrete evts × # concrete invariants = 6 × 4]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV

Exercises.	Specify an	d prove ((some of) other <u>twenty-</u> 1	two POs of	Invariant P	Preservation.
91 of 124		-					

INV PO of *m*₂: IL_out/inv2_3/INV

LASSONDE

2	
$\begin{cases} d \in \mathbb{N} \\ d > 0 \end{cases}$	
{ COLOUR = {green, red}	
{ green ≠ red	
$\{ n \in \mathbb{N} \}$	
{ n ≤ d	
{ a ∈ N	
$b \in \mathbb{N}$	
$c \in \mathbb{N}$	
a+b+c=n	IL_OUT/INV2_3/INV
$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
{ ml_tl ∈ COLOUR	
{ il₋tl ∈ COLOUR	
$\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$	
$il_t = green \Rightarrow b > 0 \land a = 0$	
{ il_tl = green	
È	
$\left\{ ml_t = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0 \right.$	
	$\left\{\begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \\ n \in \mathbb{N} \\ l a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml.tl \in COLOUR \\ il.tl \in COLOUR \\ il.tl \in COLOUR \\ ml.tl = green \Rightarrow a + b < d \land c = 0 \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ il.tl = green \Rightarrow b \land b$

93 of 124

INV PO of m₂: ML_out/inv2_4/INV

LASSONDE

Example Inference Rules (7)

		lf a
$H, P, Q \vdash R$		a
$HPP \Rightarrow O \vdash B$	IIVIP_L	the
$n, n, n, n \rightarrow \mathbf{G} + n$		С

a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis* $P \Rightarrow Q$, en the <u>conclusion</u> Q of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

$H, P \vdash Q$	
$H \vdash P \Rightarrow Q$	

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

$H, \neg Q \vdash P$
$H, \neg P \vdash Q$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the <u>negated</u> hypothesis $\neg(\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new <u>hypothesis</u>.

Proving ML_out/inv2_4/INV: First Attempt

LASSONDE

(a+1)=0

a+b < dc=0

il_tl = areen

ml_tl = greer

a+(b-1)<d

a+b<d

il_tl = green ml_tl = greer

(c+1) = 0

a + b < d

a + (b - 1) < d

areen ± rea

il_tl = green ml_tl = gree

(0 + 1) = 0

FOIR

MON

green ≠ red

ARI ml_tl = gree

1 = 0

il_tl = areen

95 of 124

d > 0 COLOUR = {green, red}

 $ml_tl = green \Rightarrow a + b < d \land c = 0$ $il_tl = green \Rightarrow b > 0 \land a = 0$ $il_tl = green$

 $green \neq red$ $ml_tl = green \Rightarrow a + b < d \land c = 0$ $il_tl = green$

 $ml_t = green \Rightarrow a + b < d \land c = 0$ $il_t = green$

 $a + (b - 1) < d \land (c + 1) = 0$

96 of 124

 $ml_{a}tl = qreen \Rightarrow a + (b - 1) < d \land (c + 1) = 0$

 $ml_l = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$

 $a+b < d \land c = 0$

 $a + (b - 1) < d \land (c + 1) = 0$

MP | il_tl = green

ml_tl = green

 $green \neq red$ $n \in \mathbb{N}$ $n \leq d$ $a \in \mathbb{N}$

 $b \in \mathbb{N}$ $c \in \mathbb{N}$ a + b + c = n $a = 0 \lor c = 0$ $ml_{*}tl \in COLOUR$ $il_{*}tl \in COLOUR$

MON

IMP.R

Proving IL_out/inv2_3/INV: First Attempt

a+b<d

ml_tl = green

 $a + (b - 1) < d \land (c + 1) = 0$

= 0

AND_L il_tl = areen

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

• Our first attempts of proving *ML_out/inv2_4/INV* and *IL_out/inv2_3/INV* both failed the 2nd case (resulted from applying IR AND_R):

green \neq red \wedge il_tl = green \wedge ml_tl = green \vdash 1 = 0

- This *unprovable* sequent gave us a good hint:
 - Goal 1 = 0 = **false** suggests that the *safety requirements* a = 0 (for **inv2_4**) and c = 0 (for **inv2_3**) *contradict* with the current m_2 .
 - Hyp. <u>il_tl = green = ml_tl</u> suggests a <u>possible</u>, <u>dangerous</u> state of m₂, where two cars heading <u>different</u> directions are on the <u>one-way</u> bridge:

(init	,	ML_tl_green	,	ML_out	,	<u>IL_in</u>	,	IL_tl_green	,	<u>IL_out</u>	,	<u>ML_out</u>)
	<i>d</i> = 2		<i>d</i> = 2		d = 2		d = 2		<i>d</i> = 2		<i>d</i> = 2		<i>d</i> = 2	
	<i>a</i> ′ = 0		<i>a</i> ′ = 0		a' = 1		a' = 0		<i>a</i> ′ = 0		<i>a</i> ′ = 0		a' = 1	
	b' = 0		<i>b</i> ′ = 0		<i>b</i> ′ = 0		b' = 1		<i>b</i> ′ = 1		b' = 0		<i>b</i> ′ = 0	
	<i>c</i> ′ = 0		<i>c</i> ′ = 0		<i>c</i> ′ = 0		<i>c</i> ′ = 0		<i>c</i> ′ = 0		c' = 1		<i>c</i> ′ = 1	
1	nl_tl' = rea	1	ml_tl' = green	ml	_tl' = gree	n	ml_tl' = green		ml_tl' = green	n	nl_tl' = gree	n i	ml_tl' = greer	1
	il_tl' = red		il tl' = red	i	$l_tl' = red$		il_tl' = red		il tl' = green	i	l_tl' = greer	1	$iI_tI' = green$	

17 of 124

Having understood the <u>failed</u> proofs, we add a proper *invariant* to m₂:

• We have effectively resulted in an improved *m*₂ more faithful w.r.t. **REQ3**:

REQ3 The bridge is one-way or the other, not both at the same time.

- Having added this new invariant *inv2_5*:
 - Original 6 × 4 generated sequents to be <u>updated</u>: inv2.5 a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now provable?
 - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are *ML_tl_green/inv2_5/INV* and *IL_tl_green/inv2_5/INV provable*?

INV PO of m₂: ML_out/inv2_4/INV – Updated

Proving ML_out/inv2_4/INV: Second Attempt

INV PO of *m*₂: IL_out/inv2_3/INV – Updated

		1
axm0_1	$d \in \mathbb{N}$	
axm0_2	{ d > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	$\{n \in \mathbb{N}\}$	
inv0_2	{ n ≤ d	
inv1_1	{ <i>a</i> ∈ N	
inv1_2	{ <i>b</i> ∈ ℕ	
inv1_3	C ∈ N	
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	
inv1_5	$a = 0 \lor c = 0$	
inv2_1	{ ml_tl ∈ COLOUR	
inv2_2	} il_tI ∈ COLOUR	
inv2_3	$\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$il_t = green \Rightarrow b > 0 \land a = 0$	
inv2_5	$\{ ml_t = red \lor il_t = red \}$	
Concrete guards of IL_OUt	{ il_tl = green	
Ũ	÷ ·	
Concrete invariant inv2_3 with ML_out's effect in the post-state	$\left\{ ml_{-}tl = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0 \right.$	

LASSONDE

IL_out/inv2_3/INV

Fixing *m*₂: Adding Actions

LASSONDE

• Recall that an *invariant* was added to *m*₂:

invariants: inv2_5 : $ml_tl = red \lor il_tl = red$

- Additional 6 × 1 sequents to be generated due to this new invariant:
 - e.g., *ML_tl_green*/inv2_5/INV [for *ML_tl_green* to preserve inv2_5]
 - e.g., *IL_tI_green*/inv2_5/INV
- [for *IL_tI_green* to preserve inv2_5]
- For the above sequents to be provable, we need to revise the two events:

ML_tl_green	IL_tl_green
when	when
ml_tl = red	il_tl = red
a + b < d	<i>b</i> > 0
<i>c</i> = 0	<i>a</i> = 0
then	then
ml_tl := green	il_tl := green
il_tl := red	ml_tl := red
end	end

Exercise: Specify and prove *ML_tl_green*/inv2_5/INV & *IL_tl_green*/inv2_5/INV.

INV PO of *m*₂: ML_out/inv2_3/INV

		1
axm0_1	$\{ d \in \mathbb{N} \}$	
axm0_2	{ <i>d</i> > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	$n \in \mathbb{N}$	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	} a∈N	
inv1_2	{ b∈ ℕ	
inv1_3	$c \in \mathbb{N}$	
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	ML out/inv2 2/INV
inv1_5	$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
inv2_1	} ml_tl ∈ COLOUR	
inv2_2	} il_tl ∈ COLOUR	
inv2_3	$\begin{cases} m_{t} = areen \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$\begin{cases} il_t = areen \Rightarrow b > 0 \land a = 0 \end{cases}$	
inv2_5	$\begin{cases} m_{t} = red \lor i_{t} = red \end{cases}$	
Concrete guards of ML out	ml tl = areen	
	E	
Concrete invariant inv2_3		
with ML_out's effect in the post-state	$\{ mI_I = green \Rightarrow (a+1) + b < d \land c = 0 \}$	
]

Our first attempt of proving *ML_out/inv2_3/INV* failed the <u>1st case</u> (resulted from applying IR AND_R):

$$a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$$

LASSONDE

This *unprovable* sequent gave us a good hint:
 Goal (a+1) + b < d specifies the *capacity requirement*.

h

• Hypothesis $c = 0 \land ml_t = green$ assumes that it's safe to exit the ML.

• Hypothesis $ a + b < d $ is	s not strong enough to entail $(a + 1) + b < d$.
e.g., <i>d</i> = 3, <i>b</i> = 0, <i>a</i> = 0	[(a+1)+b < d evaluates to true]
e.g., <i>d</i> = 3, <i>b</i> = 1, <i>a</i> = 0	[(a+1)+b < d evaluates to true]
e.g., <i>d</i> = 3, <i>b</i> = 0, <i>a</i> = 1	[(a+1)+b < d evaluates to true]
e.g., <i>d</i> = 3, <i>b</i> = 0, <i>a</i> = 2	[(<i>a</i> + 1) + <i>b</i> < <i>d</i> evaluates to <i>false</i>]
e.g., <i>d</i> = 3, <i>b</i> = 1, <i>a</i> = 1	[(<i>a</i> + 1) + <i>b</i> < <i>d</i> evaluates to <i>false</i>]
e.g., <i>d</i> = 3, <i>b</i> = 2, <i>a</i> = 0	[(a+1)+b < d evaluates to false]
 Therefore, a + b < d (allocation) 	owing one more car to exit ML) should be split:
$a + b + 1 \neq d$	[more later cars may exit ML, <i>ml_tl</i> remains green]
$a + b + 1 = d$	[no more later cars may exit ML, <i>ml_tl</i> turns red]
106 of 124	

Fixing *m*₂**: Splitting** *ML_out* **and** *IL_out*

LASSONDE

- Recall that *ML_out/inv2_3/INV* failed :: two cases not handled separately:
 - $a+b+1 \neq d$ [more later cars may exit ML, *ml_tl* remains *green*]
 - a + b + 1 = d[no more later cars may exit ML, *ml_tl* turns *red*]
- Similarly, IL_out/inv2_4/INV would fail .: two cases not handled separately:
 - $b 1 \neq 0$ [more later cars may exit IL, *il_tl* remains green] b - 1 = 0
 - [no more later cars may exit IL, *il_tl* turns red]
- Accordingly, we split *ML_out* and *IL_out* into two with corresponding guards.

Exercise: Given the latest m₂, how many sequents to prove for *invariant preservation*? **Exercise:** Specify and prove *ML_out_i*/inv2_3/INV & *IL_out_i*/inv2_4/INV (where $i \in 1..2$). **Exercise**: Each split event (e.g., *ML_out_1*) refines its *abstract* counterpart (e.g., *ML_out)*? 107 of 124

Fixing m₂: Regulating Traffic Light Changes

We introduce two variables/flags for regulating traffic light changes:

- *ml_pass* is 1 if, since *ml_tl* was last turned *green*, at least one car exited the ML onto the bridge. Otherwise, *ml_pass* is 0.
- *il_pass* is 1 if, since *il_tl* was last turned green, at least one car exited the IL onto the bridge. Otherwise, *il_pass* is 0.

m₂ Livelocks: New Events Diverging

- Recall that a system may *livelock* if the new events diverge.
- Current m₂'s two new events ML_tl_green and IL_tl_green may diverge :

II ti green
when
il_tl = red
<i>b</i> > 0
<i>a</i> = 0
then
il_tl := green
$ml_tl := red$
end

• *ML_tl_green* and *IL_tl_green* both *enabled* and may occur *indefinitely*, preventing other "old" events (e.g., ML_out) from ever happening:

(<i>init</i> ,	ML_tl_green	, <u>ML_out_1</u> ,	IL_in	, IL_tl_green	, <u>ML_tl_green</u> ,	, <u>IL_tl_green</u> ,)
C	1 = 2	d = 2	d = 2	d = 2	d = 2	d = 2	d = 2
а	ť = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 1	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0
b	v' = 0	b' = 0	b' = 0	b' = 1	<i>b</i> ′ = 1	<i>b</i> ′ = 1	b' = 1
С	ť = 0	c' = 0	c' = 0	c' = 0	<i>c</i> ′ = 0	<i>c</i> ′ = 0	<i>c</i> ′ = 0
ml_	tl = red	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = red	ml_tl' = green	ml_tl' = red
il_t	l = <i>red</i>	il_tl' = red	$iI_tI' = red$	$iI_tI' = red$	il_tl' = green	$il_tl' = red$	il_tl' = green

- \Rightarrow Two traffic lights keep changing colors so rapidly that **no** drivers can ever pass!
- Solution: Allow color changes between traffic lights in a disciplined way.

108 of 124

Fixing m₂: Measuring Traffic Light Changes

- Recall:
 - Interleaving of *new* events charactered as an integer expression: *variant*.
 - A variant V(c, w) may refer to constants and/or concrete variables.
 - In the latest m_2 , let's try **variants** : m_2 , m_2
- Accordingly, for the new event ML_tl_green:

$d \in \mathbb{N}$	<i>d</i> > 0		
COLOUR = {green, red}	green ≠ red		
$n \in \mathbb{N}$	n ≤ d		
<i>a</i> ∈ ℕ	b∈ℕ	$c \in \mathbb{N}$	
a+b+c=n	$a = 0 \lor c = 0$		
ml_tl ∈ COLOUR	il_tl ∈ COLOUR		
$ml_t = green \Rightarrow a + b < d \land c = 0$	$iI_tI = green \Rightarrow b > 0 \land a = 0$		
$ml_t = red \lor il_t = red$			ML_tl_green/vAl
<i>ml_pass</i> ∈ {0, 1}	<i>il_pass</i> ∈ {0, 1}		
$ml_t = red \Rightarrow ml_pass = 1$	$iI_tI = red \Rightarrow iI_pass = 1$		
$ml_t = red$	a + b < d	<i>c</i> = 0	
<i>il_pass</i> = 1			
0 + il_pass < ml_pass + il_pass			
			-

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/NAT. 110 of 124

Second Refinement: Summary

- The final version of our **second refinement** m₂ is **provably correct** w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - Convergence (a.k.a. livelock freedom, non-divergence)
 - <u>Relative</u> *Deadlock* Freedom
- Here is the final specification of *m*₂:

- Index (1)

LASSONDE

LASSONDE

[init]

[old & new events]

[old events]

[new events]

- Learning Outcomes
- Recall: Correct by Construction
- State Space of a Model
- Roadmap of this Module
- Requirements Document: Mainland, Island
- Requirements Document: E-Descriptions
- Requirements Document: R-Descriptions
- **Requirements Document:**
- Visual Summary of Equipment Pieces
- **Refinement Strategy**

Model m₀: Abstraction

Index (2)

LASSONDE

Model *m*₀: State Space

Model *m*₀: State Transitions via Events Model *m*₀: Actions vs. Before-After Predicates Design of Events: Invariant Preservation Sequents: Syntax and Semantics

PO of Invariant Preservation: Sketch

PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

115 of 124

116 of 124

Index (4)

PO of Deadlock Freedom (1)

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

117 of 124

Example Inference Rules (2)

Example Inference Rules (3)

Revisiting Design of Events: ML_out

Revisiting Design of Events: ML_in

Fixing the Design of Events

Revisiting Fixed Design of Events: ML_out

Revisiting Fixed Design of Events: ML_in

Initializing the Abstract System m_0

PO of Invariant Establishment

Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

Index (5)

Model m₁: Refined State Space

Model m₁: State Transitions via Events

Model m₁: Actions vs. Before-After Predicates

States & Invariants: Abstract vs. Concrete

Events: Abstract vs. Concrete

PO of Refinement: Components (1)

PO of Refinement: Components (2)

PO of Refinement: Components (3)

Sketching PO of Refinement

Refinement Rule: Guard Strengthening

PO Rule: Guard Strengthening of ML_out

ASSOND

LASSONDE

Index (6)

LASSONDE

PO Rule: Guard Strengthening of ML_in

Proving Refinement: ML_out/GRD

Proving Refinement: ML_in/GRD

Refinement Rule: Invariant Preservation

Visualizing Inv. Preservation in Refinement

INV PO of m₁: ML_out/inv1_4/INV

INV PO of *m*₁: ML_in/inv1_5/INV

Proving Refinement: ML_out/inv1_4/INV

Proving Refinement: ML_in/inv1_5/INV

Initializing the Refined System m₁

PO of m₁ Concrete Invariant Establishment

119 of 124

Index (8)

PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m₁

Example Inference Rules (6)

Proving Refinement: DLF of m₁

Proving Refinement: DLF of m₁ (continued)

First Refinement: Summary

Model m₂: "More Concrete" Abstraction

121 of 124

Index (7)

Discharging PO of m₁ Concrete Invariant Establishment

Model m1: New, Concrete Events

Model m₁: BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

Refinement Rule: Invariant Preservation

INV PO of m₁: IL_in/inv1_4/INV

INV PO of m1: IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

Livelock Caused by New Events Diverging

Index (9)

Model m₂: Refined, Concrete State Space

Model m₂: Refining Old, Abstract Events

Model m₂: New, Concrete Events

Invariant Preservation in Refinement m₂

INV PO of mp: ML_out/inv2_4/INV

INV PO of m₂: IL_out/inv2_3/INV

Example Inference Rules (7)

Proving ML_out/inv2_4/INV: First Attempt

Proving IL_out/inv2_3/INV: First Attempt

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

Fixing m₂: Adding an Invariant

122 of 124

Index (10)

LASSONDE

INV PO of m₂: ML_out/inv2_4/INV – Updated

INV PO of m₂: IL_out/inv2_3/INV – Updated

Proving ML_out/inv2_4/INV: Second Attempt

Proving IL_out/inv2_3/INV: Second Attempt

Fixing m₂: Adding Actions

INV PO of m₂: ML_out/inv2_3/INV

Proving ML_out/inv2_3/INV: First Attempt

Failed: ML out/inv2 3/INV

Fixing m₂: Splitting ML_out and IL_out

m₂ Livelocks: New Events Diverging

Fixing m₂: Regulating Traffic Light Changes

123 of 124

Specifying & Refining a File Transfer Protocol

MEB: Chapter 4

EECS3342 Z: System Specification and Refinement Winter 2023

Chen-Wei Wang

LASSOND

Index (11)

Fixing m₂: Measuring Traffic Light Changes

PO Rule: Relative Deadlock Freedom of m₂

Proving Refinement: DLF of m₂

Second Refinement: Summary

Learning Outcomes

- What a *Requirement Document (RD*) is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements

- system *properties*
- Applying *inference rules* of the *sequent calculus*

A Different Application Domain

- The bridge controller we *specified*, *refined*, and *proved* exemplifies a *reactive system*, working with the physical world via:
 - sensors
 actuators

```
[a,b,c,ml_pass,il_pass]
[ml_tl,il_tl]
```

- We now study an example exemplifying a *distributed program* :
 - A *protocol* followed by two *agents*, residing on <u>distinct</u> geographical locations, on a computer <u>network</u>
 - Each file is transmitted *asynchronously*: bytes of the file do <u>not</u> arrive at the *receiver* all at one go.
 - Language of *predicates*, *sets*, and *relations* required
 - The same principles of generating proof obligations apply.

8 of 28

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic specification</u> of an intended *functionality* or a desired *property* of the working system.

5 of 28

6 of 28

Requirements Document: File Transfer Protocol (FTP)

LASSONDE

File Transfer Protocol (FTP)

You are required to implement a system for transmitting files between *agents* over a computer network.

Page Source: https://www.venafi.com

Refinement Strategy

- Recall the design strategy of progressive refinements.
 - **0.** <u>*initial model*</u> (*m*₀): a file is transmitted from the <u>sender</u> to the <u>receiver</u>. [**REQ1**] However, at this *most abstract* model:
 - file transmitted from *sender* to *receiver* <u>synchronously</u> & <u>instantaneously</u>
 - transmission process *abstracted* away
 - 1. 1st refinement (m1 refining m0): transmission is done asynchronously
 [REQ2, REQ3]

 However, at this more concrete model:
 - <u>no</u> communication between *sender* and *receiver*
 - exchanges of *messages* and *acknowledgements abstracted* away
- 2. 2nd refinement (m₂ refining m₁): communication mechanism <u>elaborated</u> [REQ2, REQ3]
 3. <u>final</u>, 3rd refinement (m₃ refining m₂): communication mechanism optimized [REQ2, REQ3]
- Recall *Correct by Construction* :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it <u>feasible</u> to conduct **analysis** and **proofs**.

Model *m*₀: Abstraction

- LASSONDE
- In this most *abstract* perception of the protocol, we do **not** consider the *sender* and *receiver*:
 - residing in geographically distinct locations
 - · communicating via message exchanges
- Instead, we focus on this single requirement:

Model *m*₀: Abstract State Space

- 1. The static part formulates the *file* (from the *sender*'s end)
 - as a sequence of data items:

2. The dynamic part of the state consists of two variables:

√ g: file from the receiver's end

LASSONDE

LASSONDE

- ✓ **b**: whether or not the transmission is completed
- \checkmark inv0_1a and inv0_1b are typing constraints.
- ✓ **inv0_2** specifies what happens before the transmission
- √ inv0_3 specifies what happens after the transmission

٠

Math Background Review

Refer to LECTURE 1 for reviewing:

Relations and Operations

Predicates

Functions

• Sets

[e.g., ∀]

Model *m*₀: State Transitions via Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it evolves as actions of enabled events change values of variables, subject to invariants.
- Initially, before the transmission:

- Nothing has been transmitted to the receiver.
- The transmission process has not been completed.
- Finally, after the transmission:
- final when ?? then ?? end
- The entire file *f* has been transmitted to the *receiver*.
- The transmission process has been completed.
- In this abstract model:
 - Think of the transmission being instantaneous.
 - A later **refinement** specifies how f is transmitted **asynchronously**.

PO of Invariant Establishment

• How many *sequents* to be proved?

- [# invariants]
- We have <u>four</u> sequents generated for event init of model m_0 :

<u>Exercises</u>: Prove the above sequents related to *invariant establishment*.

11 of 28

Initial Model: Summary

- Our *initial model* m₀ is *provably correct* w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the **specification** of m_0 :

PO of Invariant Preservation

- How many *sequents* to be proved?
- [# non-init events × # invariants]

LASSONDE

• We have four sequents generated for event final of model m₀:

$ \begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{ TRUE, FALSE \} \\ g \in 1 \dots n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \rightarrow g = \emptyset \\ b = FALSE \\ \rightarrow f = FALSE \\ \vdash \\ f \in 1 \dots n \rightarrow D \end{array} $	final/inv0_1a/INV	$\begin{array}{l} n > 0 \\ f \in 1 \ . \ n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \ . \ n \to D \\ b \in BOOLEAN \\ b = FALSE \to g = \emptyset \\ b = TRUE \to g = f \\ b = FALSE \\ \vdash \\ TRUE \in BOOLEAN \end{array}$	final/inv0_1b/INV
$\begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \dots n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ b = FALSE \\ \vdash \\ TRUE = FALSE \Rightarrow f = \emptyset \end{array}$	final/inv0_2/INV	$\begin{array}{l} n > 0 \\ f \in 1 n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ b = FALSE \\ \vdash \\ TRUE = TRUE \Rightarrow f = f \end{array}$	final/inv0_3/INV

<u>Exercises</u>: Prove the above sequents related to *invariant preservation*.

- In m_0 , the transmission (evt. final) is *synchronous* and *instantaneous*.
- The <u>1st</u> refinement has a more concrete perception of the file transmission:
 The sender's file is coped <u>gradually</u>, element by element, to the receiver.
 → Such progress is denoted by occurrences of a new event receive.

h: elements transmitted so far
 r: index of element to be sent
 abstract variable g is replaced
 by concrete variables h and r.

		f				f				f				f	
	r	а	1			а	1			а	1			а	1
ır 🛛		b			r	b				b]			b	
t I		с	n	receive		с	n	receive	r	с	n	receive		с	n
۰.				-									r		
be		h				h				h				h	
			-			а				а				а	
r .										b				b	
														с	

- Nonetheless, communication between two agents remain abstracted away!
- That is, we focus on these two intended functionalities:

REQ2	The file is supposed to be made of a sequence of items.
REQ3	The file is sent piece by piece between the two sites.

• We are *obliged to prove* this *added concreteness* is *consistent* with *m*₀.

LASSONDE

[EXERCISE]

Model *m*₁: Refined, Concrete State Space

1. The **<u>static</u>** part remains the same as **m**₀:

invariants:

inv1 2 : ??

inv1_3 : ??

thm1_1 : ??

variables:

b, h, r

15 of 28

16 of 28

inv1_1 : *r* ∈ 1 . . *n* + 1

		axioms:
sets: D, BOOLEAN	constants: n, f	$axm0_1 : n > 0$ $axm0_2 : f \in 1 n \rightarrow D$
		axm0_3 : BOOLEAN = {TRUE, FALSE}

- 2. The dynamic part formulates the gradual transmission process:
 - ◊ inv1_1: typing constraint
 - inv2_2: elements up to index r 1 have been transmitted
 - inv2_3: transmission completed means no more elements to be transmitted
 - ◊ thm1_1: transmission completed <u>means</u> receiver has a complete copy of sender's file
 - A *theorem*, once proved as *derivable from invariants*, needs <u>not</u> be proved for *preservation* by events.

Model *m*₁: Old and New Concrete Events

• Initially, <u>before</u> the transmission:

init begin

> ?? end

receive

when

then

end

when

then

??

?? end

final

17 of 28

??

- The *transmission* process has not been completed.
 Nothing has been transmitted to the *receiver*.
- $\diamond~$ First file element is available for transmission.
- While the transmission is <u>ongoing</u>:
 - ♦ While sender has more file elements available for transmission:
 - Next file element is received and *accumulated* to the receiver's copy.
 - Sender's next available file element is updated.
 - ◊ In this *concrete* model:
 - Receiver having access to sender's private variable r is <u>unrealistic</u>.
 - A later *refinement* specifies how two agents communicate.
- Finally, <u>after</u> the transmission:
 - When sender has no more file element available for transmission:

```
• The transmission process is marked as completed.
```

Model *m*₁: Property Provable from Invariants

• To prove that a *theorem* can be derived from the *invariants*:

variables:
b, h, rinvariants:
 $inv1_1: r \in 1 ... n+1$
 $inv1_2: h = (1 ... r-1) \lhd f$
 $inv1_3: b = TRUE \Rightarrow r = n+1$
 $thm1_1: b = TRUE \Rightarrow h = f$

• We need to prove the following *sequent*:

 $\begin{array}{c} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ r \in 1 \dots n + 1 \\ h = (1 \dots r - 1) \lhd f \\ b = TRUE \Rightarrow r = n + 1 \\ \vdash \\ b = TRUE \Rightarrow h = f \end{array}$

• Exercise: Prove the above sequent.

PO of Invariant Establishment

• How many *sequents* to be proved?

[# invariants]

LASSONDE

• We have three sequents generated for event init of model m_1 :

1.	n > 0 $f \in 1 n \rightarrow D$ $BOOLEAN = \{TRUE, FALSE\}$ \vdash $1 \in 1 n + 1$	init/inv1_1/INV
2.	n > 0 $f \in 1 n \rightarrow D$ $BOOLEAN = \{TRUE, FALSE\}$ \vdash $\emptyset \in (1 1 - 1) \lhd f$	init/inv1_2/INV
3.	n > 0 $f \in 1 n \rightarrow D$ $BOOLEAN = \{TRUE, FALSE\}$ \vdash $FALSE = TRUE \Rightarrow 1 = n + 1$	init/inv1_3/INV

• Exercises: Prove the above sequents related to *invariant establishment*.

PO of Invariant Preservation - final

LASSONDE

22 of 28

- We have three sequents generated for old event final of model m₁.
- Here is one of the sequents:

final/inv1_1/INV

• Exercises: Formulate & prove other sequents of invariant preservation.

PO of Invariant Preservation - receive

We have <u>three</u> sequents generated for new event receive of model m₁:

receive/inv1_1/INV	receive/inv1_2/INV	receive/inv1_3/INV
<i>n</i> > 0	<i>n</i> > 0	n > 0
$f \in 1 n \rightarrow D$	$f \in 1 \dots n \rightarrow D$	$f \in 1 n \rightarrow D$
BOOLEAN = {TRUE, FALSE}	BOOLEAN = { TRUE, FALSE }	BOOLEAN = { TRUE, FALSE }
g ∈ 1 n → D	$q \in 1 n \Rightarrow D$	$g \in 1n \Rightarrow D$
b ∈ BOOLEAN	b ∈ BOOLEAN	b ∈ BOOLEAN
$b = FALSE \Rightarrow g = \emptyset$	$b = FALSE \Rightarrow g = \emptyset$	$b = FALSE \Rightarrow g = \emptyset$
$b = TRUE \Rightarrow g = f$	$b = TRUE \Rightarrow g = f$	$b = TRUE \Rightarrow g = f$
<i>r</i> ∈ 1 <i>n</i> + 1	<i>r</i> ∈ 1 <i>n</i> + 1	<i>r</i> ∈ 1 <i>n</i> + 1
$h = (1 \dots r - 1) \triangleleft f$	$h = (1 \dots r - 1) \triangleleft f$	$h = (1 \dots r - 1) \triangleleft f$
$b = TRUE \Rightarrow r = n + 1$	$b = TRUE \Rightarrow r = n + 1$	$b = TRUE \Rightarrow r = n + 1$
$r \le n$	$r \le n$	$r \le n$
+	⊢	⊢ (
(<i>r</i> + 1) ∈ 1 <i>n</i> + 1	$h \cup \{(r, f(r))\} = (1 (r+1) - 1) \triangleleft f$	$b = TRUE \Rightarrow (r+1) = n+1$

• Exercises: Prove the above sequents of *invariant preservation*.

Proving Refinement: receive/inv1_3/INV

First Refinement: Summary

- Establishment of Concrete Invariants
- Preservation of Concrete Invariants [old & new events]
- Strengthening of guards [old events, EXERCISE]
- *Convergence* (a.k.a. livelock freedom, non-divergence) [new events, EXERCISE] [EXERCISE]

LASSONDE

LASSONDE

[init]

- Relative *Deadlock* Freedom
- Here is the specification of m₁:

*m*₁: **PO of Convergence of New Events**

Recall:

23 of 28

- Interleaving of *new* events charactered as an integer expression: *variant*.
- A variant V(c, w) may refer to constants and/or **concrete** variables.
- For m_1 , let's try **variants** : n + 1 r
- Accordingly, for the new event receive:

$$n > 0$$

$$f \in 1 ... n \rightarrow D$$

$$BOOLEAN = \{TRUE, FALSE\}$$

$$g \in 1 ... n \rightarrow D$$

$$b \in BOOLEAN$$

$$b = FALSE \rightarrow g = \emptyset$$

$$b = TRUE \rightarrow g = f$$

$$r \in 1 ... n + 1$$

$$h = (1 ... r - 1) \triangleleft f$$

$$b = TRUE \Rightarrow r = n + 1$$

$$r \le n$$

$$\vdash$$

$$n + 1 - (r + 1) \le n + 1 - r$$

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.

Index (1)

LASSONDE

LASSONDE

Learning Outcomes

- A Different Application Domain
- Requirements Document:
- File Transfer Protocol (FTP)
- Requirements Document: R-Descriptions
- Refinement Strategy
- Model m₀: Abstraction
- Math Background Review
- Model m₀: Abstract State Space
- Model *m*₀: State Transitions via Events
- PO of Invariant Establishment

Index (2)

LASSONDE

PO of Invariant Preservation

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

Model m₁: Refined, Concrete State Space

Model *m*₁: Property Provable from Invariants

Model m₁: Old and New Concrete Events

PO of Invariant Establishment

PO of Invariant Preservation – final

PO of Invariant Preservation – receive

Proving Refinement: receive/inv1_1/INV

Proving Refinement: receive/inv1_2/INV

27 of 28

Index (3)

Proving Refinement: receive/inv1_3/INV

m₁: PO of Convergence of New Events

First Refinement: Summary