Specifying & Refining a Bridge Controller MEB: Chapter 2

EECS3342 Z: System Specification and Refinement Winter 2023

CHEN-WEI WANG

This module is designed to help you understand:

- What a *Requirement Document (RD)* is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) <u>machines</u>: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying *inference rules* of the *sequent calculus*

Recall: Correct by Construction

- Directly reasoning about <u>source code</u> (written in a programming language) is <u>too</u> complicated to be feasible.
- Instead, given a *requirements document*, prior to <u>implementation</u>, we develop *models* through <u>a series of *refinement*</u> steps:
 - Each model formalizes an *external observer*'s perception of the system.
 - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
 - The *first model*, though the most *abstract*, can <u>already</u> be proved satisfying <u>some</u> *requirements*.
 - Starting from the *second model*, each model is analyzed and proved *correct* relative to two criteria:
 - 1. Some requirements (i.e., R-descriptions)
 - Proof Obligations (POs) related to the preceding model being refined by the <u>current model</u> (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

State Space of a Model

- A model's *state space* is the set of <u>all</u> configurations:
 - Each <u>configuration</u> assigns values to <u>constants</u> & <u>variables</u>, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - invariant properties/theorems
 - Say an initial model of a bank system with two <u>constants</u> and a <u>variable</u>:
 - $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \nrightarrow \mathbb{Z}$ /* typing constraint */
 - $\forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L$ /* desired property */
 - Q. What is the state space of this initial model?
 - **A**. All <u>valid</u> combinations of *c*, *L*, and *accounts*.
 - Configuration 1: (*c* = 1,000, *L* = 500,000, *b* = ∅)
 - Configuration 2: $(c = 2,375, L = 700,000, b = \{("id1",500), ("id2", 1,250)\})$

[Challenge: Combinatorial Explosion]

- Model Concreteness $\uparrow \Rightarrow$ (State Space $\uparrow \land$ Verification Difficulty \uparrow)
- A model's *complexity* should be guided by those properties intended to be <u>verified</u> against that model.

 \Rightarrow *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.

 \Rightarrow *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.

4 of 124

. . .

 We will walk through the *development process* of constructing *models* of a control system regulating cars on a bridge. Such controllers exemplify a *reactive system*.

(with <u>sensors</u> and <u>actuators</u>)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
 - 2. A brief overview of the refinement strategy
 - 3. An initial, the most abstract model
 - 4. A subsequent model representing the 1st refinement
 - 5. A subsequent model representing the 2nd refinement
 - 6. A subsequent model representing the 3rd refinement

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Page Source: https://soldbyshane.com/area/toronto-islands/

Requirements Document: E-Descriptions

Each *E-Description* is an <u>atomic</u> *specification* of a *constraint* or an *assumption* of the system's working environment.

ENV1	The system is equipped with two traffic lights with two colors: green and red.
------	--

ENV2	The traffic lights control the entrance to the bridge at both ends of it.
------	---

ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.
------	--

ENV4

ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.
------	--

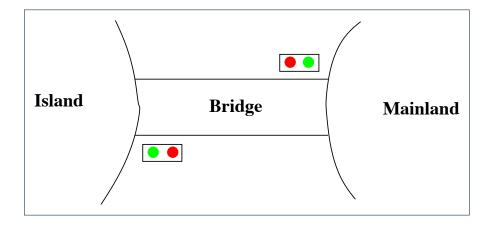
Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.

REQ2

REQ3	The bridge is one-way or the other, not both at the same time.
------	--

Requirements Document: Visual Summary of Equipment Pieces



Refinement Strategy

[REQ2]

- Before diving into details of the *models*, we first clarify the adopted <u>design</u> strategy of progressive <u>refinements</u>.
 - **0.** The *initial model* (*m*₀) will address the intended functionality of a *limited* number of cars on the island and bridge.
 - **1.** A *1st refinement* (*m*₁ which *refines m*₀) will address the intended functionality of the *bridge being one-way*.
 - **2.** A *2nd refinement* (*m*₂ which *refines m*₁) will address the environment constraints imposed by *traffic lights*.
 - [ENV1, ENV2, ENV3]

[REQ1. REQ3]

3. A *final, 3rd refinement* (*m*₃ which *refines m*₂) will address the environment constraints imposed by *sensors* and the *architecture*: controller, environment, communication channels.

[ENV4, ENV5]

Recall Correct by Construction :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it <u>feasible</u> to conduct **analysis** and **proofs**.

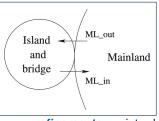
Model *m*₀: Abstraction

- In this <u>most</u> *abstract* perception of the bridge controller, we do <u>not</u> even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

REQ2 The number of cars on bridge and island is limited.

Analogies:

• Observe the system from the sky: island and bridge appear only as a <u>compound</u>.



"Zoom in" on the system as refinements are introduced.

Model *m*₀: State Space

1. The *static* part is fixed and may be seen/imported.

A constant d denotes the <u>maximum</u> number of cars allowed to be on the *island-bridge compound* at any time.

(whereas cars on the mainland is unbounded)

constants: d

Remark. Axioms are assumed true and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

Model *m*₀: State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as actions of <u>enabled</u> events change values of variables, subject to invariants.
- At any given *state* (a <u>valid</u> *configuration* of constants/variables):
 - An event is said to be <u>enabled</u> if its guard evaluates to true.
 - An event is said to be <u>disabled</u> if its guard evaluates to false.
 - An <u>enabled</u> event makes a state transition if it occurs and its actions take effect.
- <u>1st</u> event: A car exits mainland (and enters the island-bridge compound).

• <u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).

Correct Specification? Say d = 2. <u>Witness</u>: Event Trace (init, ML_in)

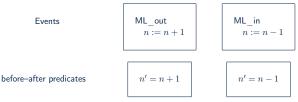
Model *m*₀: Actions vs. Before-After Predicates

- When an <u>enabled</u> event e occurs there are two notions of state:
 - Before-/Pre-State: Configuration just <u>before</u> e's actions take effect
 - After-/Post-State: Configuration just after e's actions take effect

<u>Remark</u>. When an <u>enabled</u> event occurs, its *action(s)* cause a <u>transition</u> from the

pre-state to the post-state.

• As examples, consider *actions* of *m*₀'s two events:



- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The *before-after predicate* (*BAP*) "n' = n + 1" expresses that
 n' (the *post-state* value of n) is one more than n (the *pre-state* value of n).
- When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*. 14 of 124

Design of Events: Invariant Preservation

• Our design of the two events

only specifies how the *variable* n should be updated.

Remember, *invariants* are conditions that should <u>never</u> be *violated*!

```
invariants:
inv0_1 : n ∈ ℕ
inv0_2 : n ≤ d
```

 By simulating the system as an *ASM*, we discover *witnesses* (i.e., <u>event traces</u>) of the *invariants* <u>not</u> being preserved <u>all the time</u>.
 ∃s • s ∈ STATE SPACE ⇒ ¬*invariants*(s)

We formulate such a commitment to preserving *invariants* as a *proof* obligation (PO) rule (a.k.a. a verification condition (VC) rule).

Sequents: Syntax and Semantics

?1

• We formulate each *PO/VC* rule as a (horizontal or vertical) *sequent*:

 $H \vdash G$

Н

⊢ G

 $\vdash G \mid \equiv \mid true \vdash G \mid$

• *H* is a <u>set</u> of predicates forming the *hypotheses/assumptions*.

[assumed as true]

• *G* is a <u>set</u> of predicates forming the *goal/conclusion*.

[claimed to be *provable* from H]

 $\vdash G \mid \equiv \mid false \vdash G$

Informally:

H⊢G is true if G can be proved by assuming H.
[i.e., We say "H entails G" or "H yields G"]
H⊢G is false if G cannot be proved by assuming H.

Formally: H⊢G ⇔ (H⇒G)
O What does it mean when H is empty (i.e., no hypetheses)?

Q. What does it mean when *H* is empty (i.e., no hypotheses)?

[Why not

Α.

PO of Invariant Preservation: Sketch

INV

• Here is a sketch of the PO/VC rule for *invariant preservation*:

Axioms *Invariants* Satisfied at *Pre-State* Guards of the Event ⊢ *Invariants* Satisfied at *Post-State*

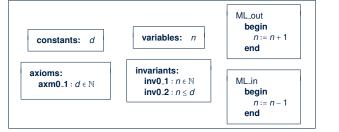
 Informally, this is what the above PO/VC requires to prove : Assuming all axioms, invariants, and the event's guards hold at the pre-state, after the state transition is made by the event,

all invariants hold at the post-state.

(d)

(axm0_1)

PO of Invariant Preservation: Components



- c: list of constants
- A(c): list of axioms
- v and v': list of variables in pre- and post-states
- *l*(*c*, *v*): list of *invariants*

v ≘ ⟨n⟩, v' ≘ ⟨n'⟩ ⟨inv0_1, inv0_2⟩

• G(c, v): the event's list of guards

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle true \rangle, G(\langle d \rangle, \langle n \rangle)$ of $ML_in \cong \langle true \rangle$

• *E*(*c*, *v*): effect of the *event*'s actions i.t.o. what variable values *become*

 $E(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \cong \langle n+1 \rangle, E(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \cong \langle n-1 \rangle$

• v' = E(c, v): *before-after predicate* formalizing *E*'s actions

BAP of *ML_out*: $\langle n' \rangle = \langle n + 1 \rangle$, BAP of *ML_in*: $\langle n' \rangle = \langle n - 1 \rangle$

Rule of Invariant Preservation: Sequents

 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the *PO/VC Rule of Invariant Preservation*:

- Accordingly, how many *sequents* to be proved? [# events × # invariants]
- We have <u>two</u> sequents generated for event ML_out of model m₀:

Exercise. Write the POs of invariant preservation for event ML_in.

Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all</u> *POs* must be <u>proved/discharged</u>.
 19 of 124

Inference Rules: Syntax and Semantics

• An *inference rule (IR)* has the following form:

Formally: $A \Rightarrow C$ is an <u>axiom</u>.

<u>Informally</u>: To prove *C*, it is <u>sufficient</u> to prove *A* instead.

Informally: *C* is the case, assuming that *A* is the case.

- L is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a <u>set</u> of sequents known as *antecedents* of rule L.
- **C** is a **<u>single</u>** sequent known as *consequent* of rule *L*.
- Let's consider inference rules (IRs) with two different flavours:

$$\begin{array}{c|c} H1 \vdash G \\ \hline H1, H2 \vdash G \end{array} \quad MON \\ \hline n \in \mathbb{N} \vdash n+1 \in \mathbb{N} \end{array} \quad P2$$

• IR **MON**: To prove $H1, H2 \vdash G$, it <u>suffices</u> to prove $H1 \vdash G$ instead. • IR **P2**: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an **axiom**.

[proved automatically without further justifications]

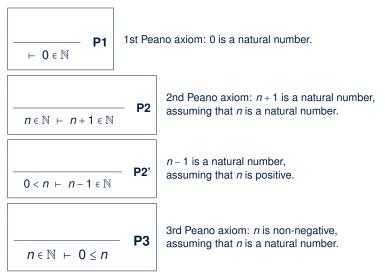
C

Proof of Sequent: Steps and Structure

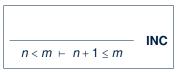
• To prove the following sequent (related to *invariant preservation*):

- 1. Apply a *inference rule*, which *transforms* some "outstanding" sequent to <u>one</u> or <u>more</u> other sequents to be proved instead.
- Keep applying *inference rules* until <u>all</u> *transformed* sequents are axioms that do <u>not</u> require any further justifications.
- Here is a *formal proof* of ML_out/**inv0_1**/INV, by applying IRs **MON** and **P2**:

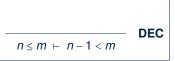
Example Inference Rules (1)



Example Inference Rules (2)

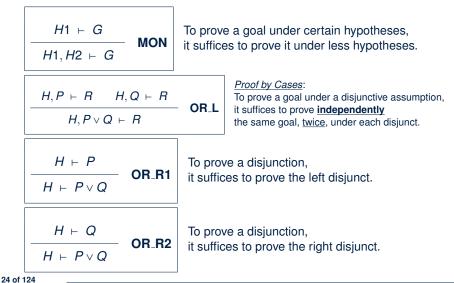


n + 1 is less than or equal to m, assuming that n is strictly less than m.



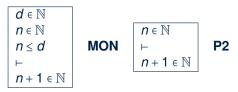
n-1 is strictly less than m, assuming that n is less than or equal to m.

Example Inference Rules (3)

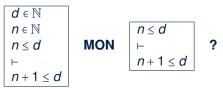


Revisiting Design of Events: *ML_out*

Recall that we already proved PO ML_out/inv0_1/INV :



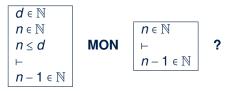
- .:. ML_out/inv0_1/INV succeeds in being discharged.
- How about the other *PO* ML_out/inv0_2/INV for the same event?



.: *ML_out/inv0_2/INV* fails to be discharged.

Revisiting Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:



- .: ML_in/inv0_1/INV fails to be discharged.
- How about the other *PO* | ML_in/inv0_2/INV | for the same event?

$$\begin{array}{c} d \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ \vdash \\ n-1 \leq d \end{array} \quad \text{MON} \begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \lor n-1 = d \end{array} \quad \text{OR}_{-1} \begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \end{array} \quad \text{DEC} \\ n-1 < d \end{array}$$

.: ML_in/inv0_2/INV succeeds in being discharged.

Fixing the Design of Events

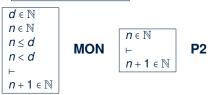
- Proofs of <u>ML_out/inv0_2/INV</u> and <u>ML_in/inv0_1/INV</u> fail due to the two events being <u>enabled</u> when they should <u>not</u>.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:

ML_out	ML₋in
when	when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

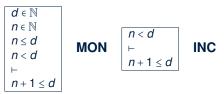
- Having changed both events, <u>updated</u> sequents will be generated for the PO/VC rule of *invariant preservation*.
- <u>All</u> sequents ({*ML_out*, *ML_in*} × {inv0_1, inv0_2}) now provable?

Revisiting Fixed Design of Events: *ML_out*

• How about the **PO** ML_out/inv0_1/INV for ML_out:



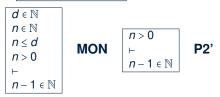
- .: ML_out/inv0_1/INV still succeeds in being discharged!
- How about the other *PO* ML_out/inv0_2/INV for the same event?



.: ML_out/inv0_2/INV now succeeds in being discharged!

Revisiting Fixed Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:



- .: ML_in/inv0_1/INV now succeeds in being discharged!
- How about the other PO ML_in/inv0_2/INV for the same event?

 $\begin{array}{c} d \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ n > 0 \\ \vdash \\ n-1 \leq d \end{array}$ MON $\begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \lor n-1 = d \end{array}$ OR_1 $\begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \end{array}$ DEC

.: ML_in/inv0_2/INV still succeeds in being discharged!

Initializing the Abstract System m₀

- Discharging the <u>four</u> sequents proved that <u>both</u> invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the *invariants established* in the first place?
 <u>Analogy</u>. Proving *P* via *mathematical induction*, two cases to prove:

 P(1), P(2), ...
 [base cases ≈ establishing inv.]
 P(n) ⇒ P(n+1)
 [inductive cases ≈ preserving inv.]
- Therefore, we specify how the **ASM**'s *initial state* looks like:

 \checkmark The IB compound, once *initialized*, has <u>no</u> cars.



- \checkmark Initialization always possible: guard is *true*.
- ✓ There is no *pre-state* for *init*.
 - \therefore The <u>RHS</u> of := must <u>not</u> involve variables.
 - \therefore The <u>RHS</u> of := may <u>only</u> involve constants.

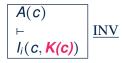
✓ There is only the *post-state* for *init*.

 \therefore Before-*After Predicate*: n' = 0

PO of Invariant Establishment

- / An *reactive system*, once *initialized*, should <u>never</u> terminate.
- ✓ Event *init* can<u>not</u> "preserve" the *invariants*.
 - ... State before its occurrence (*pre-state*) does not exist.
 - Event init only required to establish invariants for the first time
- A new formal component is needed:
 - *K*(*c*): effect of *init*'s actions i.t.o. what variable values *become*
 - e.g., K(⟨d⟩) of init = ⟨0⟩
 v' = K(c): before-after predicate formalizing init's actions
 - e.g., BAP of *init*: $\langle n' \rangle = \langle 0 \rangle$
- Accordingly, PO of *invariant establisment* is formulated as a *sequent*:

Axioms ⊢ Invariants Satisfied at Post-State



Discharging PO of Invariant Establishment

- How many sequents to be proved?
- We have two sequents generated for event init of model m₀:

Can we discharge the PO init/inv0_1/INV ?

• Can we discharge the **PO** init/inv0_2/INV ?

P3

d ∈ ℕ ⊢ 0 ≤ *d*

∴ *init/inv0_2/INV* <u>succeeds</u> in being discharged.

32 of 124

[# invariants]

System Property: Deadlock Freedom

- So far we have proved that our initial model *m*₀ is s.t. <u>all</u> *invariant conditions* are:
 - · Established when system is first initialized via init
 - Preserved whenevner there is a state transition

(via an enabled event: *ML_out* or *ML_in*)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
 - A state where *guards* of <u>all</u> events evaluate to *false*
 - When a *deadlock* happens, <u>none</u> of the *events* is *enabled*.

 \Rightarrow The system is blocked and <u>not</u> reactive anymore!

• We express this *non-blocking* property as a new requirement:

REQ4	Once started, the system should work for ever.	
------	--	--

PO of Deadlock Freedom (1)

 $\langle d \rangle$

(axm0_1)

 $\mathbf{v} \cong \langle n \rangle, \mathbf{v}' \cong \langle n' \rangle$

 $(inv0_1, inv0_2)$

- Recall some of the formal components we discussed:
 - c: list of constants
 - A(c): list of axioms
 - *v* and *v*': list of *variables* in *pre* and *post*-states
 - *I*(*c*, *v*): list of *invariants*
 - G(c, v): the event's list of *guards*

 $G(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \cong \langle n < d \rangle, \ G(\langle d \rangle, \langle n \rangle) \text{ of } ML_in \cong \langle n > 0 \rangle$

A system is *deadlock-free* if <u>at least one</u> of its *events* is *enabled*:

Axioms Invariants Satisfied at Pre-State \vdash Disjunction of the guards satisfied at Pre-State $\square LF$ $\square LF$ $\square LF$ $\square LF$ $\square C, V)$ \vdash $G_1(C, V)$

$$\begin{vmatrix} A(c) \\ I(c, \mathbf{v}) \\ \vdash \\ G_1(c, \mathbf{v}) \lor \cdots \lor G_m(c, \mathbf{v}) \end{vmatrix} \underbrace{\text{DLF}}$$

To prove about deadlock freedom

- An event's effect of state transition is <u>not</u> relevant.
- Instead, the evaluation of <u>all</u> events' guards at the pre-state is relevant.

PO of Deadlock Freedom (2)

• **Deadlock freedom** is <u>not</u> necessarily a desired property.

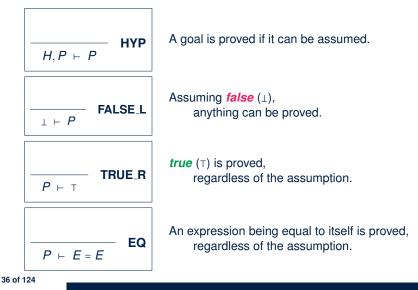
 \Rightarrow When it is (like m_0), then the generated *sequents* must be discharged.

• Applying the PO of *deadlock freedom* to the initial model *m*₀:

Our bridge controller being **deadlock-free** means that cars can **always** <u>enter</u> (via *ML_out*) or <u>leave</u> (via *ML_in*) the island-bridge compound.

• Can we formally discharge this **PO** for our *initial model* m₀?

Example Inference Rules (4)



Example Inference Rules (5)

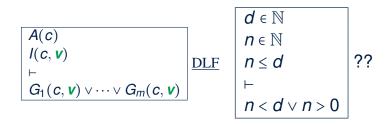
$$\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$$

To prove a goal P(E) assuming H(E), where both P and H depend on expression E, it <u>suffices</u> to prove P(F) assuming H(F), where both P and H depend on expression F, given that E is equal to F.

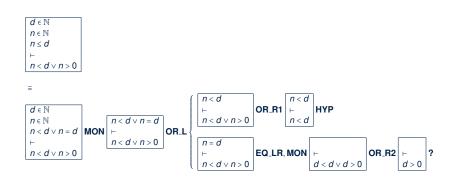
$$\frac{H(\boldsymbol{E}), \boldsymbol{E} = \boldsymbol{F} \vdash P(\boldsymbol{E})}{H(\boldsymbol{F}), \boldsymbol{E} = \boldsymbol{F} \vdash P(\boldsymbol{F})} \quad \textbf{EQ}_{-}\textbf{RL}$$

To prove a goal P(F) assuming H(F), where both P and H depend on expression F, it <u>suffices</u> to prove P(E) assuming H(E), where both P and H depend on expression E, given that E is equal to F.

Discharging PO of DLF: Exercise



Discharging PO of DLF: First Attempt



Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This unprovable sequent gave us a good hint:
 - For the model under consideration (m₀) to be *deadlock-free*, it is required that d > 0.
 [≥ 1 car allowed in the IB compound]
 - But current specification of m₀ not strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given axm0_1 : d ∈ N
 - \Rightarrow *d* = 0 is allowed by *m*₀ which causes a *deadlock*.
- Recall the *init* event and the two guarded events:

init	ML_out when	ML_in when
begin	n < d	<i>n</i> > 0
<i>n</i> := 0	then	then
end	<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
L	end	end

When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$ \Rightarrow As soon as the system is initialized, it *deadlocks immediately*

as no car can either enter or leave the IR compound!!

Fixing the Context of Initial Model

• Having understood the <u>failed</u> proof, we add a proper **axiom** to m₀:

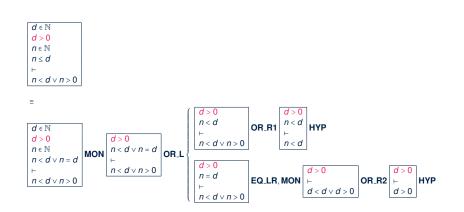
axioms: axm0_2 : *d* > 0

• We have effectively elaborated on REQ2:

REQ2	The number of cars on bridge and island is limited but positive.
------	--

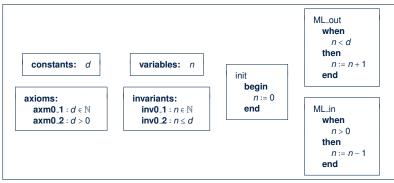
- Having changed the context, an <u>updated</u> *sequent* will be generated for the PO/VC rule of *deadlock freedom*.
- Is this new sequent now provable?

Discharging PO of DLF: Second Attempt



Initial Model: Summary

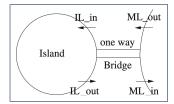
- The final version of our *initial model* m₀ is *provably correct* w.r.t.:
 - Establishment of *Invariants*
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the <u>final</u> **specification** of m_0 :



Model *m*₁: "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from <u>closer to the ground</u>, so that the island-bridge <u>compound</u> is split into:

- the island
- the (one-way) bridge



- Nonetheless, traffic lights and sensors remain *abstracted* away!
- That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

• We are *obliged to prove* this *added concreteness* is *consistent* with *m*₀.

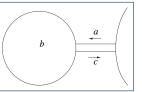
Model *m*₁: Refined State Space

1. The static part is the same as m_0 's: constants: d

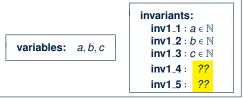
axioms: axm0_1 : *d* ∈ ℕ axm0_2 : *d* > 0

LASSONDE

2. The <u>dynamic</u> part of the *concrete state* consists of three *variables*:



- *a*: number of cars on the bridge, heading to the <u>island</u>
- b: number of cars on the island
- *c*: number of cars on the bridge, heading to the <u>mainland</u>



- / inv1_1, inv1_2, inv1_3 are
 typing constraints.
- ✓ inv1_4 links/glues the abstract and concrete states.
- inv1_5 specifies that the bridge is one-way.

Model *m*₁: State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" *events* already existing in *m*₀.
- Concrete/Refined version of event ML_out:

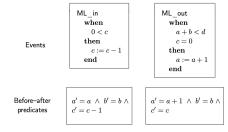
- Meaning of *ML_out* is *refined*: a car <u>exits</u> mainland (getting on the bridge).
- ML_out enabled only when:
 - the bridge's current traffic flows to the island
 - number of cars on both the <u>bridge</u> and the <u>island</u> is <u>limited</u>
- Concrete/Refined version of event ML_in:

- Meaning of *ML_in* is *refined*: a car <u>enters</u> mainland (getting off the bridge).
- ML_in enabled only when:

there is some car on the bridge heading to the mainland.

Model *m*₁: Actions vs. Before-After Predicates

Consider the concrete/refined version of actions of m₀'s two events:



- An event's *actions* are a **specification**: "c becomes c 1 after the transition".
- The *before-after predicate* (*BAP*) "c' = c 1" expresses that
 - c' (the **post-state** value of c) is one less than c (the **pre-state** value of c).
- Given that the concrete state consists of three variables:
 - An event's actions only specify those changing from pre-state to post-state.

Other <u>unmentioned</u> variables have their *post*-state values remain <u>unchanged</u>.

[e.g., **a**' = **a** \land **b**' = **b**]

• When we express *proof obligations (POs)* associated with *events*, we use *BAP*. 47 of 124

States & Invariants: Abstract vs. Concrete

- *m*₀ refines *m*₁ by introducing more *variables*:

 Abstract State
 (of *m*₀ being refined):
 Concrete State
 - (of the <u>refinement</u> model m_1):

variables:	n	
variables:	a, b	, C

- Accordingly, *invariants* may involve different states:
 - Abstract Invariants
 (involving the abstract state only):

 Concrete Invariants (involving <u>at least</u> the concrete state): invariants: inv0_1 : *n* ∈ ℕ inv0_2 : *n* ≤ *d*

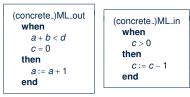
invariants: inv1_1 : $a \in \mathbb{N}$ inv1_2 : $b \in \mathbb{N}$ inv1_3 : $c \in \mathbb{N}$ inv1_4 : a + b + c = ninv1_5 : $a = 0 \lor c = 0$

Events: Abstract vs. Concrete

- When an event exists in both models m₀ and m₁, there are two versions of it:
 - The *abstract* version modifies the *abstract* state.

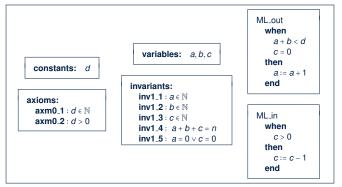
(abstract_)ML_out when	(abstract_)ML_in when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

• The *concrete* version modifies the *concrete* state.



A <u>new event</u> may <u>only</u> exist in m₁ (the *concrete* model): we will deal with this kind of events later, separately from "redefined/overridden" events.
 49 of 124

PO of Refinement: Components (1)



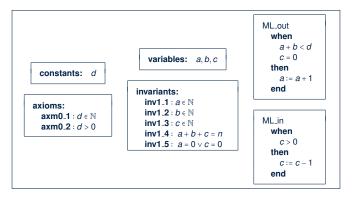
- c: list of constants
- A(c): list of axioms
- *v* and *v*': *abstract variables* in pre- & post-states
- w and w': <u>concrete</u> variables in pre- & post-states $w \cong \langle a, b, c \rangle, w' \cong \langle a', b', c' \rangle$
- *I*(*c*, *v*): list of *abstract invariants*
- J(c, v, w): list of <u>concrete</u> invariants 50 of 124

⟨*d*⟩ ⟨axm0₋1⟩

- $v \cong \langle n \rangle, v' \cong \langle n \rangle$ $v \cong \langle a, b, c \rangle, w' \cong \langle a', b', c' \rangle$
 - $(inv0_1, inv0_2)$

 $(inv1_1, inv1_2, inv1_3, inv1_4, inv1_5)$

PO of Refinement: Components (2)



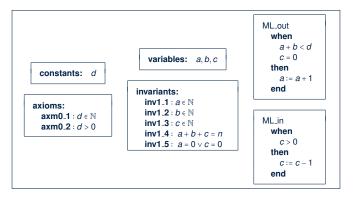
• G(c, v): list of guards of the *abstract event*

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n < d \rangle$, G(c, v) of $ML_in \cong \langle n > 0 \rangle$

• H(c, w): list of guards of the concrete event

 $H(\langle d \rangle, \langle a, b, c \rangle) \text{ of } ML_out \cong \langle a + b < d, c = 0 \rangle, H(c, w) \text{ of } ML_in \cong \langle c > 0 \rangle$

PO of Refinement: Components (3)



• E(c, v): effect of the *abstract event*'s actions i.t.o. what variable values <u>become</u>

 $E(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \cong \langle n+1 \rangle, E(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \cong \langle n-1 \rangle$

F(c, w): effect of the concrete event's actions i.t.o. what variable values become

F(c, v) of $ML_out \cong (a+1, b, c), F(c, w)$ of $ML_out \cong (a, b, c-1)$

Sketching PO of Refinement

The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms

Abstract Invariants Satisfied at Pre-State Concrete Invariants Satisfied at Pre-State Guards of the Concrete Event

⊢

Guards of the Abstract Event

2. Invariant Preservation

- A *concrete* transition <u>always</u> has an *abstract* counterpart.
- A concrete event is <u>enabled</u> only if abstract counterpart is <u>enabled</u>.
- A concrete event performs a transition on concrete states.
- This concrete state transition must be <u>consistent</u> with how its abstract counterpart performs a corresponding abstract transition.

<u>Note</u>. *Guard strengthening* and *invariant preservation* are only <u>applicable</u> to events that might be *enabled* after the system is <u>launched</u>.

GRD

The special, <u>non-guarded</u> init event will be discussed separately later.

Refinement Rule: Guard Strengthening

[# *abstract* guards]

 Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

- How many sequents to be proved?
- For ML_out, only <u>one</u> abstract guard, so <u>one</u> sequent is generated :

 $\begin{array}{cccc} d \in \mathbb{N} & d > 0 \\ n \in \mathbb{N} & n \le d \\ a \in \mathbb{N} & b \in \mathbb{N} & c \in \mathbb{N} & a + b + c = n & a = 0 \lor c = 0 \\ a + b < d & c = 0 \\ \vdash \\ n < d \end{array}$

<u>Exercise</u>. Write ML_in's PO of Guard Strengthening for Refinement.

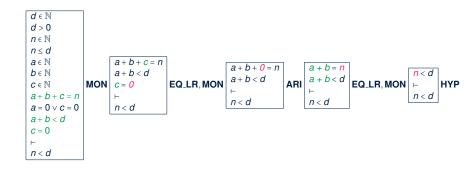
PO Rule: Guard Strengthening of *ML_out*

axm0_1	{ <i>d</i> ∈ ℕ	
axm0_2	{ <i>d</i> > 0	
inv0₋1	{ <i>n</i> ∈ ℕ	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	{ a ∈ℕ	
inv1_2	{ <i>b</i> ∈ ℕ	
inv1_3	$\left\{ c \in \mathbb{N} \right\}$	ML_out/GRD
inv1_4	$\{a+b+c=n$	
inv1_5	$\{a=0\lor c=0$	
<i>Concrete</i> guards of <i>ML_out</i>	∫ a+b <d< th=""><th></th></d<>	
	C = 0	
	F	
Abstract guards of ML_out	{ <i>n</i> < <i>d</i>	

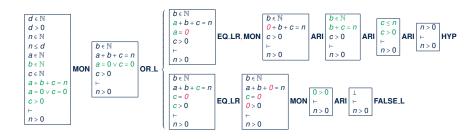
PO Rule: Guard Strengthening of *ML_in*

axm0₋1	$\left\{ d \in \mathbb{N} \right\}$	
axm0_2	{ <i>d</i> > 0	
inv0_1	$\{ n \in \mathbb{N} \}$	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	{ <i>a</i> ∈ ℕ	
inv1_2	$\{ b \in \mathbb{N} \}$	ML_in/GRD
inv1_3	$\{ c \in \mathbb{N} \}$	
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	
inv1_5	$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
Concrete guards of ML_in	{ <i>c</i> > 0	
	F	
Abstract guards of ML_in	{ <i>n</i> > 0	
·		1

Proving Refinement: ML_out/GRD

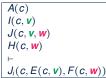


Proving Refinement: ML_in/GRD



Refinement Rule: Invariant Preservation

۲ Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:



INV where J_i denotes a single *concrete invariant*

• # sequents to be proved? [# concrete, old evts × # concrete invariants]

Here are two (of the ten) *sequents* generated:

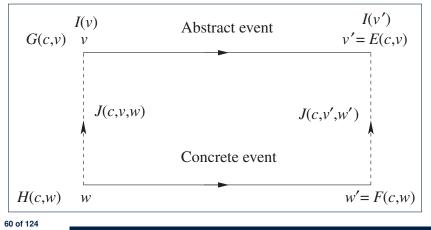
 $d \in \mathbb{N}$ $d \in \mathbb{N}$ d > 0d > 0 $n \in \mathbb{N}$ $n \in \mathbb{N}$ n < dn < d $a \in \mathbb{N}$ a e N b∈ℕ h ∈ N C E N ML out/inv1 4/INV ML_in/inv1_5/INV $C \in \mathbb{N}$ a+b+c=na+b+c=n $a = 0 \vee c = 0$ $a = 0 \lor c = 0$ a+b < dc > 0c = 0 $a = 0 \lor (c - 1) = 0$ (a+1) + b + c = (n+1)

Exercises. Specify and prove other eight POs of Invariant Preservation. 59 of 124

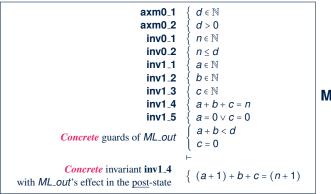
Visualizing Inv. Preservation in Refinement

Each *concrete* event (w to w') is *simulated by* an *abstract* event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')

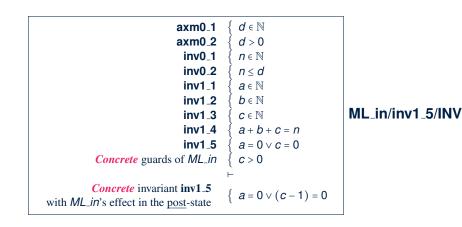


INV PO of *m*₁: ML_out/inv1_4/INV

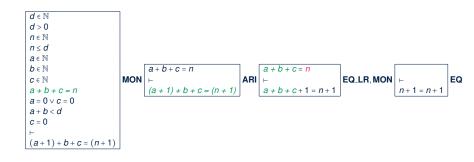


ML_out/inv1_4/INV

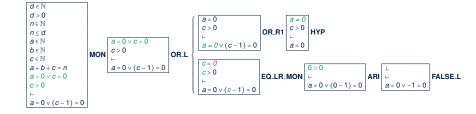
INV PO of *m*₁: ML_in/inv1_5/INV



Proving Refinement: ML_out/inv1_4/INV

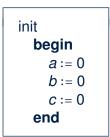


Proving Refinement: ML_in/inv1_5/INV



Initializing the Refined System m₁

- Discharging the twelve sequents proved that:
 - concrete invariants preserved by ML_out & ML_in
 - concrete guards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM** 's *initial state* looks like:



- \sqrt{No} cars on bridge (heading either way) and island
- \checkmark Initialization always possible: guard is *true*.
- ✓ There is no *pre-state* for *init*.
 - \therefore The <u>RHS</u> of := must <u>not</u> involve variables.
 - \therefore The <u>RHS</u> of := may <u>only</u> involve constants.
- \checkmark There is only the *post-state* for *init*.

 \therefore Before-*After Predicate*: $a' = 0 \land b' = 0 \land c' = 0$

PO of *m*₁ **Concrete Invariant Establishment**

- · Some (new) formal components are needed:
 - *K*(*c*): effect of *abstract init*'s actions:
- e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0 \rangle$

LASSO

- v' = K(c): before-after predicate formalizing abstract init's actions
 e.g., BAP of init: (n') = (0)
- *L*(*c*): effect of *concrete init*'s actions:

e.g., K(⟨d⟩) of init = ⟨0,0,0⟩
w' = L(c): before-after predicate formalizing concrete init's actions
e.g., BAP of init: ⟨a', b', c'⟩ = ⟨0,0,0⟩

Accordingly, PO of *invariant establisment* is formulated as a <u>sequent</u>:

 Axioms
 \vdash
Concrete Invariants Satisfied at Post-State
 \boxed{INV}

Discharging PO of *m*₁

Concrete Invariant Establishment

How many sequents to be proved?

[# concrete invariants]

<u>Two</u> (of the <u>five</u>) sequents generated for *concrete* init of m₁:

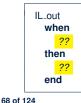
 $\begin{bmatrix} d \in \mathbb{N} \\ d > 0 \\ \vdash \\ 0 + 0 + 0 = 0 \end{bmatrix}$ init/inv1_4/INV $\begin{bmatrix} d \in \mathbb{N} \\ d > 0 \\ \vdash \\ 0 = 0 \lor 0 = 0 \end{bmatrix}$ init/inv1_5/INV

• Can we discharge the PO init/inv1_4/INV ?

Model *m*₁: New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in mo: ML_out & ML_in
- New event IL_in:

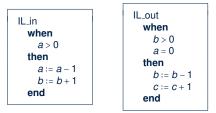
- *IL_in* denotes a car <u>entering</u> the island (getting off the bridge).
- IL_in enabled only when:
 - The bridge's current traffic <u>flows to</u> the island.
 <u>Q</u>. <u>Limited</u> number of cars on the <u>bridge</u> and the <u>island</u>?
 - <u>A</u>. Ensured when the earlier ML_out (of same car) occurred
- New event IL_out:



- *IL_out* denotes a car exiting the island (getting on the bridge).
- IL_out enabled only when:
 - There is some car on the island.
 - The bridge's current traffic flows to the mainland.

Model *m*₁: BA Predicates of Multiple Actions

Consider *actions* of *m*₁'s two *new* events:



What is the **BAP** of *ML_in*'s actions?

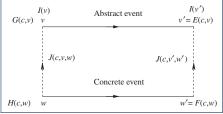
$$a' = a - 1 \land b' = b + 1 \land c' = c$$

What is the **BAP** of *ML_in*'s actions?

$$a' = a \land b' = b - 1 \land c' = c + 1$$

Visualizing Inv. Preservation in Refinement

Recall how a concrete event is simulated by its abstract counterpart:



• For each *new* event:

- Strictly speaking, it does **<u>not</u>** have an *abstract* counterpart.
- It is *simulated by* a special *abstract* event (transforming v to v'):

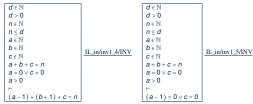
	skip begin	 <i>skip</i> is a "dummy" event: <u>non</u>-guarded and does <u>nothing</u> <u>Q</u>. <i>BAP</i> of the skip event?
124	end	$\underline{\mathbf{A}}$. $n' = n$

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do not exist in **m**₀, but:
 - They \underline{exist} in m_1 and may impact upon the *concrete* state space.
 - They preserve the concrete invariants, just as ML_out & ML_in do.
- Recall the PO/VC Rule of <u>Invariant Preservation</u> for <u>Refinement</u>:

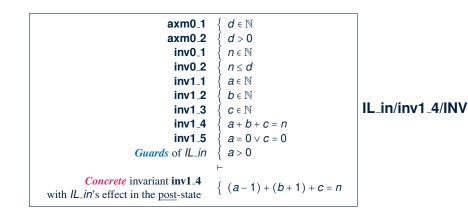
```
 \begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ J_i(c,E(c,v),F(c,w)) \end{array}  \quad \text{where } J_i \text{ denotes a } \underline{\text{single } concrete invariant} \\ \end{array}
```

- How many *sequents* to be proved? [# *new* evts × # *concrete* invariants]
- Here are two (of the ten) sequents generated:

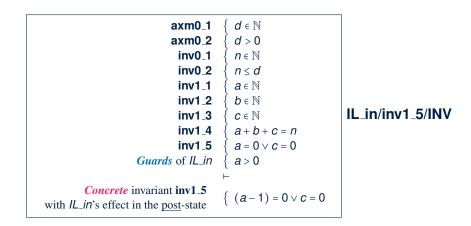


• Exercises. Specify and prove other eight POs of Invariant Preservation.

INV PO of *m*₁: IL_in/inv1_4/INV



INV PO of *m*₁: IL_in/inv1_5/INV



Ν

$$d \in \mathbb{N}$$

$$d > 0$$

$$n \in \mathbb{N}$$

$$n \le d$$

$$a \in \mathbb{N}$$

$$b \in \mathbb{N}$$

$$c \in \mathbb{N}$$

$$a + b + c = n$$

$$a = 0 \lor c = 0$$

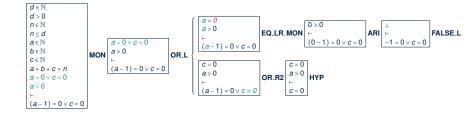
$$a > 0$$

$$\vdash$$

$$(a - 1) + (b + 1) + c = n$$

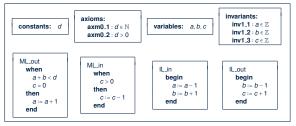
$$\mathbf{MON} \begin{vmatrix} a+b+c=n \\ \vdash \\ (a-1)+(b+1)+c=n \end{vmatrix} \mathbf{ARI} \begin{vmatrix} a+b+c=n \\ \vdash \\ a+b+c=n \end{vmatrix} \mathbf{HYP}$$

Proving Refinement: IL_in/inv1_5/INV



Livelock Caused by New Events Diverging

• An alternative *m*₁ (with **inv1_4**, **inv1_5**, and **guards** of <u>new</u> events removed):



Concrete invariants are under-specified: only typing constraints.

Exercises: Show that **Invariant Preservation** is provable, but **Guard Strengthening** is <u>not</u>.

 Say this alternative m₁ is implemented as is: *IL_in* and *IL_out* <u>always</u> <u>enabled</u> and may occur <u>indefinitely</u>, preventing other "old" events (*ML_out* and *ML_in*) from ever happening:

 $(init, IL_in, IL_out, IL_in, IL_out, ...)$

Q: What are the corresponding *abstract* transitions?

<u>A</u>: (*init*, *skip*, *skip*, *skip*, *skip*, ...) [≈ executing while(true);

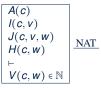
- We say that these two *new* events *diverge*, creating a *livelock*:
 - Different from a *deadlock* :: <u>always</u> an event occurring (*IL_in* or *IL_out*).
 - But their *indefinite* occurrences contribute <u>nothing</u> useful.

PO of Convergence of New Events

The PO/VC rule for *non-divergence/livelock freedom* consists of two parts:

- Interleaving of *new* events characterized as an integer expr.: *variant*.
- A variant V(c, w) may refer to constants and/or *concrete* variables.
- In the original m_1 , let's try **variants** : $2 \cdot a + b$

1. Variant Stays Non-Negative



- Variant V(c, w) measures how many more times the new events can occur.
- If a *new* event is *enabled*, then V(c, w) > 0.
 - When V(c, w) reaches 0, some "old" events must happen s.t. V(c, w) goes back above 0.

2. A New Event Occurrence Decreases Variant

$$\begin{array}{c}
A(c) \\
I(c,v) \\
J(c,v,w) \\
H(c,w) \\
\vdash \\
V(c,F(c,w)) < V(c,w)
\end{array}$$
VAR

If a *new* event is *enabled* and occurs, the value of V(c, w) ↓.

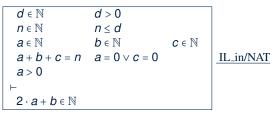
PO of Convergence of New Events: NAT

• Recall: PO related to Variant Stays Non-Negative:

How many *sequents* to be proved?

[#new events]

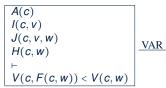
• For the *new* event *IL_in*:



Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

PO of Convergence of New Events: VAR

• Recall: PO related to A New Event Occurrence Decreases Variant



How many sequents to be proved?

[#new events]

• For the *new* event *IL_in*:

 $\begin{array}{cccc} d \in \mathbb{N} & d > 0 \\ n \in \mathbb{N} & n \leq d \\ a \in \mathbb{N} & b \in \mathbb{N} & c \in \mathbb{N} \\ a + b + c = n & a = 0 \lor c = 0 \\ a > 0 \\ \vdash \\ 2 \cdot (a - 1) + (b + 1) < 2 \cdot a + b \end{array}$ IL.in/VAR

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

Given the original \mathbf{m}_1 , what if the following *variant* expression is used:

variants : a + b

Are the formulated sequents still provable?

PO of Refinement: Deadlock Freedom

- Recall:
 - We proved that the initial model m_0 is deadlock free (see **DLF**).
 - We proved, according to *guard strengthening*, that if a *concrete* event is <u>enabled</u>, then its *abstract* counterpart is <u>enabled</u>.
- PO of <u>relative</u> deadlock freedom for a refinement model:

$$\begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ G_1(c,v) \lor \cdots \lor G_m(c,v) \\ \vdash \\ H_1(c,w) \lor \cdots \lor H_n(c,w) \end{array} \end{array}$$

 $\begin{array}{l} \text{If an } \textbf{abstract} \text{ state does } \underline{\text{not}} \quad \textbf{deadlock} \\ \text{(i.e., } G_1(c,v) \lor \cdots \lor G_m(c,v) \text{), then} \\ \text{its } \textbf{concrete} \text{ counterpart does } \underline{\text{not}} \quad \textbf{deadlock} \\ \text{(i.e., } H_1(c,w) \lor \cdots \lor H_n(c,w) \text{).} \end{array}$

• Another way to think of the above PO:

The *refinement* does <u>not</u> introduce, in the *concrete*, any "new" *deadlock* scenarios <u>not</u> existing in the *abstract* state.

PO Rule: Relative Deadlock Freedom *m*₁

axm0_1 axm0_2 inv0_1 inv0_2 inv1_1 inv1_2 inv1_3 inv1_4 inv1_5	$\begin{cases} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \le d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a = 0 \lor c = 0 \\ n < d \end{cases}$ guards of <i>ML</i> -out in <i>m</i> ₀	DLF
Disjunction of <i>abstract</i> guards	$\{ \vee n > 0 \}$ guards of <i>ML_out</i> in <i>m</i> ₀ $\{ \vee n > 0 \}$ guards of <i>ML_in</i> in <i>m</i> ₀	
Disjunction of <i>concrete</i> guards	$ \left\{ \begin{array}{c} a+b < d \land c = 0 \\ \lor & c > 0 \\ \lor & a > 0 \\ \lor & b > 0 \land a = 0 \end{array} \right\} \begin{array}{c} \text{guards of } ML_out \text{ in } m_1 \\ \text{guards of } IL_in \text{ in } m_1 \\ \text{guards of } IL_out \text{ in } m_1 \end{array} $	

Example Inference Rules (6)

To prove a *disjunctive goal*,

it suffices to prove one of the disjuncts, with the the <u>negation</u> of the the other disjunct serving as an additional <u>hypothesis</u>.

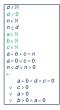
$$\frac{H, P, Q \vdash R}{H, P \land Q \vdash R} \quad \text{AND}_{-L}$$

To prove a goal with a <u>conjunctive hypothesis</u>, it suffices to prove the same goal, with the the two <u>conjuncts</u> serving as two separate <u>hypotheses</u>.

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \text{AND}_{-}\mathbf{R}$$

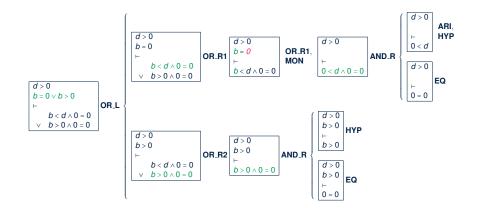
To prove a goal with a *<u>conjunctive goal</u>*, it suffices to prove each <u>conjunct</u> as a separate <u>goal</u>.

Proving Refinement: DLF of *m*₁



MON

Proving Refinement: DLF of *m*₁ (continued)



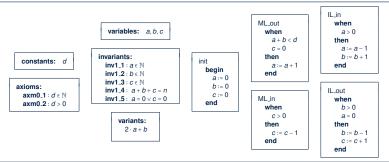
First Refinement: Summary

[init]

[old & new events] [old events]

[new events]

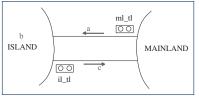
- The <u>final</u> version of our *first refinement* m₁ is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants
 - Strengthening of *guards*
 - *Convergence* (a.k.a. livelock freedom, non-divergence)
 - <u>Relative</u> *Deadlock* Freedom
- Here is the <u>final</u> specification of *m*₁:



Model *m*₂: "More Concrete" Abstraction

- 2nd refinement has even more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML *il_tl*: a traffic light for exiting the IL <u>abstract</u> variables *a*, *b*, *c* from *m*₁ still used (instead of being replaced)



- Nonetheless, sensors remain *abstracted* away!
- That is, we focus on these three *environment constraints*:

ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2 The traffic lights control the entrance to the bridge at both ends of it.	
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.

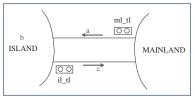
• We are **obliged to prove** this **added concreteness** is **consistent** with *m*₁.

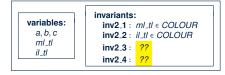
Model *m*₂: Refined, Concrete State Space

1. The <u>static</u> part introduces the notion of traffic light colours:

			axioms:
sets: COLOR	constants:	red, green	axm2_1 : COLOR = {green, red}
		, o	
			axm2_2 : green ≠ red

2. The dynamic part shows the superposition refinement scheme:





- Abstract variables a, b, c from m₁ are still in use in m_2.
- Two new, concrete variables are introduced: ml_tl and il_tl
- <u>Constrast</u>: In m₁, *abstract* variable n is replaced by *concrete* variables a, b, c.
 - ◊ inv2_1 & inv2_2: typing constraints
 - inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
 - inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

Model m₂: Refining Old, Abstract Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out:

• Recall the *abstract* guard of *ML_out* in m_1 : $(c = 0) \land (a + b < d)$

 \Rightarrow <u>Unrealistic</u> as drivers should <u>**not**</u> know about *a*, *b*, *c*!

- *ML_out* is *refined*: a car <u>exits</u> the ML (to the bridge) only when:
 - the traffic light *ml_tl* allows
- Concrete/Refined version of event IL_out:

- Recall the *abstract* guard of *IL_out* in m_1 : $(a = 0) \land (b > 0)$
 - \Rightarrow <u>Unrealistic</u> as drivers should <u>**not**</u> know about *a*, *b*, *c*!
- *IL_out* is *refined*: a car <u>exits</u> the IL (to the bridge) only when:
 - the traffic light *il_tl* allows
- Q1. How about the other two "old" events IL_in and ML_in?
- A1. No need to *refine* as already *guarded* by *ML_out* and *IL_out*.
- **Q2**. What if the driver disobeys *ml_tl* or *il_tl*?

[A2. ENV3]

Model *m*₂: New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered *events* <u>already</u> existing in *m*₁:
 - ML_out & IL_out
 - IL_in & ML_in

ML_tl_green

when

then

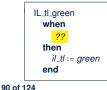
end

- New event ML_tl_green:
 - *ML_tl_green* denotes the traffic light *ml_tl* turning green.
 - *ML_tl_green* enabled only when:
 - the traffic light not already green
 - limited number of cars on the bridge and the island
 - <u>No</u> opposite traffic

 $[\Rightarrow ML_out$'s **abstract** guard in m_1]

• *New event IL_tl_green*:

ml_tl := *qreen*

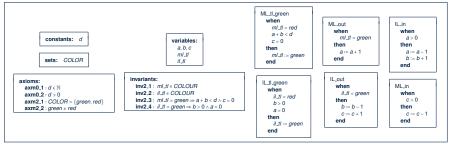


- *IL_tl_green* denotes the traffic light *il_tl* turning green.
- IL_tl_green enabled only when:
 - the traffic light not already green
 - some cars on the island (i.e., island not empty)
 - <u>No</u> opposite traffic

$[\Rightarrow IL_out$'s **abstract** guard in m_1]

[REFINED] [UNCHANGED]

Invariant Preservation in Refinement m₂



Recall the PO/VC Rule of Invariant Preservation for Refinement:

- How many sequents to be proved? [# concrete evts × # concrete invariants = 6 × 4]
- We discuss two sequents: <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u>

Exercises. Specify and prove (some of) other <u>twenty-two</u> *POs of Invariant Preservation*. 91 of 124

INV PO of *m*₂: ML_out/inv2_4/INV

		1
axm0_1	$\{ d \in \mathbb{N} \}$	
axm0_2	{ <i>d</i> > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	{n≤d	
inv1_1	{ a ∈ℕ	
inv1_2	} b ∈ ℕ	
inv1_3	} c ∈ ℕ	
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	ML_out/inv2_4/IN
inv1_5	$a = 0 \lor c = 0$	
inv2_1	{ ml₋tl ∈ COLOUR	
inv2_2	Ì il_tl ∈ COLOUR	
inv2_3	$\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$il_tl = green \Rightarrow b > 0 \land a = 0$	
Concrete guards of ML_out	{ ml_tl = green	
<i>Concrete</i> invariant inv2_4 with <i>ML_out</i> 's effect in the <u>post</u> -state	$\{ il_t = green \Rightarrow b > 0 \land (a+1) = 0$	

INV PO of *m*₂: IL_out/inv2_3/INV

axm0_1	$d \in \mathbb{N}$	
axm0_2	{ d > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0₋1	{ <i>n</i> ∈ ℕ	
inv0_2	{ n≤d	
inv1_1	<i>a</i> ∈ ℕ	
inv1_2	{ b ∈ ℕ	
inv1_3	C∈N	
inv1_4	a+b+c=n	IL_out/inv2_3/INV
inv1_5	$a = 0 \lor c = 0$	
inv2_1	} ml_tl ∈ COLOUR	
inv2_2	} il_tl ∈ COLOUR	
inv2_3	$\int ml_t l = qreen \Rightarrow a + b < d \land c = 0$	
inv2_4	$i_{t} = qreen \Rightarrow b > 0 \land a = 0$	
Concrete guards of IL_out	il_tl = green	
Ũ	-	
Concrete invariant inv2_3 with ML_out 's effect in the <u>post</u> -state	$\{ ml_t = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$	

Example Inference Rules (7)

$$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} \quad \mathsf{IMP_L}$$

If a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis* $P \Rightarrow Q$, then the <u>conclusion</u> *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

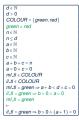
$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \text{IMP}_{-}\mathbf{R}$$

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

$$\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \mathsf{NOT_L}$$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the <u>negated</u> hypothesis $\neg(\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new <u>hypothesis</u>.

Proving ML_out/inv2_4/INV: First Attempt



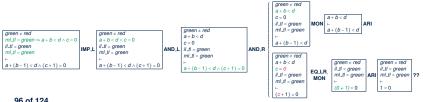
Proving IL_out/inv2_3/INV: First Attempt

Q 6 14
<i>d</i> > 0
COLOUR = {green, red}
green ≠ red
$n \in \mathbb{N}$
$n \le d$
a∈N
$b \in \mathbb{N}$
$C \in \mathbb{N}$
a+b+c=n
$a = 0 \lor c = 0$
ml_tl ∈ COLOUR
il_tl ∈ COLOUR
$ml_tl = green \Rightarrow a + b < d \land c = 0$
$iI_tI = green \Rightarrow b > 0 \land a = 0$
il_tl = green
E C
$ml_{a}tl = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$

MON

areen ≠ red $ml_tl = green \Rightarrow a + b < d \land c = 0$ il_tl = areen $ml_t = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$

IMP B



Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

 Our first attempts of proving <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> both failed the <u>2nd case</u> (resulted from applying IR AND_R):

green \neq red \wedge il_tl = green \wedge ml_tl = green \vdash 1 = 0

- This unprovable sequent gave us a good hint:
 - Goal 1 = 0 =**false** suggests that the *safety requirements* a = 0 (for inv2_4) and c = 0 (for inv2_3) *contradict* with the current m_2 .
 - Hyp. <u>*il_tl = green = ml_tl*</u> suggests a *possible, dangerous state* of *m*₂, where two cars heading <u>different</u> directions are on the <u>one-way</u> bridge:

(init	, <u>ML_tl_green</u>	, <u>ML_out</u> ,	<u>IL_in</u>	, IL_tl_green	IL_out	ML_out >
	d = 2	d = 2	<i>d</i> = 2	<i>d</i> = 2	d = 2	<i>d</i> = 2	<i>d</i> = 2
	<i>a</i> ′ = 0	<i>a</i> ′ = 0	a' = 1	a' = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	a' = 1
	<i>b</i> ′ = 0	<i>b</i> ′ = 0	b' = 0	b' = 1	<i>b</i> ′ = 1	b' = 0	b' = 0
	<i>c</i> ′ = 0	<i>c</i> ′ = 0	c' = 0	<i>c</i> ′ = 0	<i>c</i> ′ = 0	c' = 1	<i>c</i> ′ = 1
r.	nl_tl' = red	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = green
	il_tl' = red	$iI_tI' = red$	il_tl' = red	il_tl' = red	il_tl' = green	il_tl' = green	il_tl′ = green

Fixing *m*₂: Adding an Invariant

Having understood the <u>failed</u> proofs, we add a proper *invariant* to m₂:

invariants: ... inv2_5 : ml_tl = red \vee il_tl = red

• We have effectively resulted in an improved *m*₂ more faithful w.r.t. **REQ3**:

REQ3	The bridge is one-way or the other, not both at the same time.
------	--

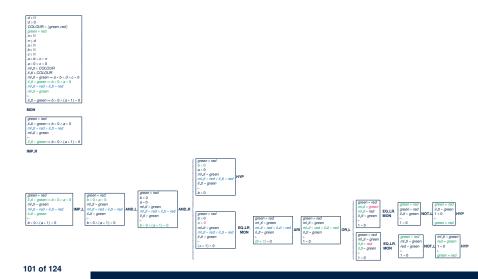
- Having added this new invariant *inv2_5*:
 - Original 6 × 4 generated sequents to be <u>updated</u>: inv2_5 a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now provable?
 - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are *ML_tl_green/inv2_5/INV* and *IL_tl_green/inv2_5/INV provable*?

INV PO of *m*₂: ML_out/inv2_4/INV – Updated

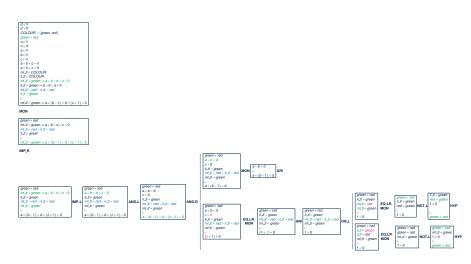
INV PO of *m*₂: IL_out/inv2_3/INV – Updated

	(, , , , , , , , , , , , , , , , , , ,	
axm0_1	$d \in \mathbb{N}$	
axm0_2	{ d > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	Ìn≤d	
inv1_1	} a∈ ℕ	
inv1_2	} b ∈ ℕ	
inv1_3	{ <i>c</i> ∈ ℕ	
inv1_4	a+b+c=n	IL out/inv2 3/INV
inv1_5	$a = 0 \lor c = 0$	
inv2_1	{ ml_tl ∈ COLOUR	
inv2_2	} il_tl ∈ COLOUR	
inv2_3	$\begin{cases} m_{t} = green \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$i_{l}t_{l} = green \Rightarrow b > 0 \land a = 0$	
inv2_5	$ml_tl = red \lor il_tl = red$	
Concrete guards of IL_out	{ il_tl = green	
-	È -	
Concrete invariant inv2_3	$\{ ml_t = green \Rightarrow a + (b-1) < d \land (c+1) = 0 $	
with ML_out's effect in the post-state	$\int \lim_{a} u - \operatorname{green} \to a + (b - 1) < d \land (c + 1) = 0$	
L		1

Proving ML_out/inv2_4/INV: Second Attempt



Proving IL_out/inv2_3/INV: Second Attempt



Fixing m₂: Adding Actions

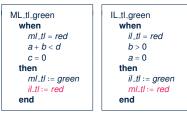
Recall that an *invariant* was added to m₂:

```
invariants:
  inv2 5 : ml tl = red \lor il tl = red
```

- Additional 6 × 1 sequents to be generated due to this new invariant:
 - e.g., *ML_tl_green*/inv2_5/INV

[for *ML_tl_green* to preserve inv2_5] e.g., IL_tl_green/inv2_5/INV [for *IL_tI_green* to preserve inv2_5]

• For the above sequents to be provable, we need to revise the two events:

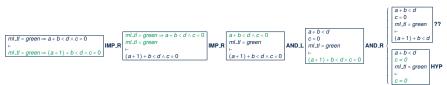


Exercise: Specify and prove ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV. 103 of 124

INV PO of *m*₂: ML_out/inv2_3/INV

axm0.1 axm0.2 axm2.1 axm2.2 inv0_1 inv0_1 inv1.2 inv1.3 inv1.4 inv1.5 inv2.1 inv2.2 inv2.3 inv2.4 inv2.5 <i>Concrete</i> guards of <i>ML_out</i> <i>Concrete</i> invariant inv2.3 with <i>ML_out</i> 's effect in the <u>post</u> -state	$ \left\{ \begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \\ n \in \mathbb{N} \\ n \in \mathbb{N} \\ d = \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml_{-}ti \in COLOUR \\ ml_{-}ti \in COLOUR \\ ml_{-}ti = green \Rightarrow a + b < d \land c = 0 \\ il_{-}ti = green \Rightarrow b > 0 \land a = 0 \\ ml_{-}ti = green \Rightarrow b > 0 \land a = 0 \\ ml_{-}ti = green \Rightarrow (a + 1) + b < d \land c = 0 \\ \end{array} \right. $	ML_out/inv2_3/INV
---	---	-------------------

Proving ML_out/inv2_3/INV: First Attempt



Failed: ML_out/inv2_3/INV

- Our first attempt of proving *ML_out/inv2_3/INV* failed the <u>1st case</u> (resulted from applying IR AND_R):

 $a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$

• This *unprovable* sequent gave us a good hint:

b'

• Goal (a+1) + b < d specifies the *capacity requirement*.

• Hypothesis $c = 0 \land ml_t l = green$ assumes that it's safe to exit the ML.

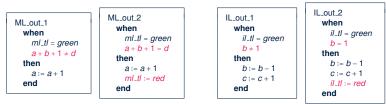
• Hypothesis |a + b < d| is **not** strong enough to entail (a + 1) + b < d. e.g., d = 3, b = 0, a = 0[(a+1)+b < d evaluates to true]e.g., d = 3, b = 1, a = 0 [(a+1)+b < d evaluates to true]e.g., d = 3, b = 0, a = 1 [(a+1)+b < d evaluates to true]e.g., d = 3, b = 0, a = 2[(a+1)+b < d evaluates to false]e.g., d = 3, b = 1, a = 1 [(a+1)+b < d evaluates to false]e.g., d = 3, b = 2, a = 0[(a+1)+b < d evaluates to false]• Therefore, a + b < d (allowing one more car to exit ML) should be split: $a+b+1 \neq d$ [more later cars may exit ML, *ml_tl* remains *green*]

[no more later cars may exit ML, *ml_tl* turns red]

a + b + 1 = d

Fixing *m*₂**: Splitting** *ML_out* **and** *IL_out*

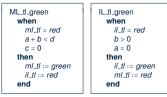
- Recall that *ML_out/inv2_3/INV* failed :: two cases not handled separately:
 - $a + b + 1 \neq d$ [more later cars may exit ML, *ml_tl* remains *green*] a + b + 1 = d [no more later cars may exit ML, *ml_tl* turns *red*]
- Similarly, IL_out/inv2_4/INV would fail :: two cases not handled separately:
 - $b-1 \neq 0$ [more later cars may exit IL, *il_tl* remains *green*] b-1=0 [no more later cars may exit IL, *il_tl* turns *red*]
- Accordingly, we split *ML_out* and *IL_out* into two with corresponding guards.



Exercise: Given the latest m_2 , how many sequents to prove for *invariant preservation*? **Exercise**: Specify and prove *ML_out_i/inv2_3/INV* & *IL_out_i/inv2_4/INV* (where $i \in 1..2$). **Exercise**: Each split event (e.g., *ML_out_1*) refines its *abstract* counterpart (e.g., *ML_out*)? 107 of 124

m₂ Livelocks: New Events Diverging

- Recall that a system may *livelock* if the <u>new</u> events diverge.
- Current m₂'s two <u>new</u> events ML_tl_green and IL_tl_green may diverge :



 ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

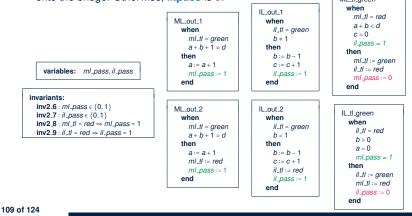
(init	,	ML_tl_green	, <u>ML_out_1</u> ,	$, \underbrace{IL_{-in}}{},$	IL_tl_green ,	ML_tl_green ,	$\underbrace{IL_tI_green}$,}	
	d = 2		d = 2	<i>d</i> = 2	d = 2	d = 2	d = 2	d = 2	
	<i>a</i> ′ = 0		<i>a</i> ′ = 0	<i>a</i> ′ = 1	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	
	<i>b</i> ′ = 0		b' = 0	b' = 0	<i>b</i> ′ = 1	<i>b</i> ′ = 1	b' = 1	b' = 1	
	c'=0		c' = 0	c' = 0	c'=0	<i>c</i> ′ = 0	c' = 0	<i>c</i> ′ = 0	
	nl_tl = <mark>rea</mark>		ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = red	ml_tl' = green	ml_tl' = red	
	il_tl = <mark>red</mark>		il_tl' = red	il_tl′ = <mark>red</mark>	il_tl′ = <mark>red</mark>	il_tl' = green	il_tl' = red	il_tl' = green	

 \Rightarrow Two traffic lights keep changing colors so rapidly that **no** drivers can ever pass!

• Solution: Allow color changes between traffic lights in a disciplined way.

Fixing *m*₂: Regulating Traffic Light Changes

- *ml_pass* is 1 <u>if</u>, since *ml_tl* was last turned *green*, <u>at least one</u> car exited the <u>ML</u> onto the bridge. Otherwise, *ml_pass* is 0.
- *il_pass* is 1 <u>if</u>, since *il_tl* was last turned *green*, <u>at least one</u> car exited the <u>IL</u> onto the bridge. Otherwise, *il_pass* is 0.



Fixing *m*₂: Measuring Traffic Light Changes

- Recall:
 - Interleaving of *new* events charactered as an integer expression: *variant*.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - In the latest m_2 , let's try **variants** : $ml_pass + il_pass$
- Accordingly, for the *new* event *ML_tl_green*:

```
d \in \mathbb{N}
                                           d > 0
 COLOUR = {green, red}
                                           areen ≠ red
 n \in \mathbb{N}
                                          n < d
 a \in \mathbb{N}
                                          b∈ℕ
                                                                              C \in \mathbb{N}
                                      a = 0 \lor c = 0
 a+b+c=n
 ml tl ∈ COLOUR
                                       il tl ∈ COLOUR
 ml_t = green \Rightarrow a + b < d \land c = 0 il_t = green \Rightarrow b > 0 \land a = 0
                                                                                         ML_tl_green/VAR
 ml tl = red \lor il tl = red
 ml_pass \in \{0, 1\}
                                       il_pass ∈ {0, 1}
 ml_t = red \Rightarrow ml_pass = 1
                                         il_t = red \Rightarrow il_pass = 1
                                          a+b < d
 ml tl = red
                                                                              c = 0
 il_pass = 1
\vdash
 0 + il_pass < ml_pass + il_pass
```

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/NAT.

PO Rule: Relative Deadlock Freedom of m_2

1			1
	axm0_1	d∈ℕ	
	axm0_2	d > 0	
	axm2_1	COLOUR = {green, red}	
	axm2_2	green ≠ red	
	inv0_1	n∈ℕ	
	inv0_2	n≤d	
	inv1_1	a∈N	
	inv1_2	b∈ℕ	
	inv1_3	C∈N	
	inv1_4	a+b+c=n	
	inv1_5	$a = 0 \lor c = 0$	
	inv2_1	ml_tl	
	inv2_2	{ il_tl ∈ COLOUR	
	inv2_3	$ml_t = green \Rightarrow a + b < d \land c = 0$	
	inv2_4	$\{ il_t = green \Rightarrow b > 0 \land a = 0 \}$	
	inv2_5	$\{ ml_t l = red \lor il_t l = red \}$	DLF
	inv2_6	{ <i>ml_pass</i> ∈ {0,1}	DLF
	inv2_7	{ <i>il_pass</i> ∈ {0, 1}	
	inv2_8	$ml_t = red \Rightarrow ml_pass = 1$	
	inv2_9	$\{ il_t l = red \Rightarrow il_pass = 1 \}$	
		$a+b < d \land c = 0$ guards of ML_out in m_1	
	Disjunction of <i>abstract</i> guards	\vee c > 0 guards of ML_in in m ₁	
	Disjunction of upsiviter gained	∨ a > 0 } guards of IL_in in m₁	
		$\{ \lor b > 0 \land a = 0 \}$ guards of <i>IL_out</i> in m_1	
		-	
		$ml_tl = red \land a + b < d \land c = 0 \land il_pass = 1$ guards of ML_tl_green in m_2	
	Disjunction of <i>concrete</i> guards	\vee il_tl = red \land b > 0 \land a = 0 \land ml_pass = 1 } guards of lL_tl_green in m ₂	
		\vee ml_tl = green \land a + b + 1 ≠ d } guards of ML_out_1 in m ₂	
		\vee ml_tl = green \land a + b + 1 = d } guards of ML_out_2 in m ₂	
		\vee il_tl = green \land b \neq 1 } guards of lL_out_1 in m ₂	
		\vee il_tl = green \land b = 1 } guards of lL_out_2 in m ₂	
		✓ a > 0 } guards of ML_in in m₂	
		$\langle v \rangle c > 0$ guards of <i>IL_in</i> in m_2	

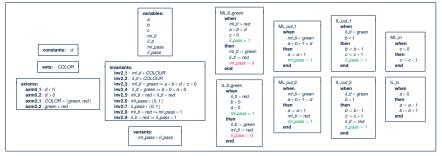
Proving Refinement: DLF of *m*₂

HYP

d∈N	
d > 0	
COLOUR = {green, red}	
green ≠ red	
$n \in \mathbb{N}$	
n ≤ d	
a∈N	
$b \in \mathbb{N}$	
$c \in \mathbb{N}$	
a+b+c=n	
$a = 0 \lor c = 0$	
ml_tl ∈ COLOUR	
il_tl ∈ COLOUR	
$ml_{a}tl = green \Rightarrow a + b < d \land c = 0$	
$il_{a}tl = green \Rightarrow b > 0 \land a = 0$	
$ml_t = red \lor il_t = red$	
<i>ml_pass</i> ∈ {0, 1}	
<i>il_pass</i> ∈ {0, 1}	
$ml_{t} = red \Rightarrow ml_{pass} = 1$	
$il_t l = red \Rightarrow il_pass = 1$	
$a+b < d \land c = 0$	
v c>0	
v a>0	
$\vee b > 0 \land a = 0$	
E	
$ml_{t} = red \wedge a + b < d \wedge c = 0 \wedge il_{p}$	38 = 1
∨ il_tl = red ∧ b > 0 ∧ a = 0 ∧ ml_pass	
∨ ml_tl = green	
v il_tl = green	
v a>0	
v c>0	
1	
d∈N	$d \in \mathbb{N}$ ($d > 0$)
d > 0	
$b \in \mathbb{N}$	DEN OR R2 HYP
ml_tl = red	mLt = red d>0 d>0 b>0 b>0
il_tl = red	$ d = red$ $b \in \mathbb{N}$ and $b > 0 \lor b = 0$ on the second
$ml_tl = red \Rightarrow ml_pass = 1$	mi_pass=1
$il_t = red \Rightarrow il_pass = 1$	1/pass = 1 D < a < b > 0 D < a < b > 0
F	EQ.LR. MON OR.R1
$b < d \land ml_pass = 1 \land il_pass = 1$	b < d \ ml_pass = 1 \ // pass = 1
v b > 0 ^ ml_pass = 1 ^ il_pass = 1	v b>0∧ml_pass = 1∧il_pass = 1 (b <a∨b>0 (b<a∨b>0 (b)))))))))))))))))))))))))))))))))))</a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b></a∨b>

Second Refinement: Summary

- The final version of our second refinement m₂ is provably correct w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants
 - Strengthening of guards
 - Convergence (a.k.a. livelock freedom, non-divergence)
 - <u>Relative</u> *Deadlock* Freedom
- Here is the <u>final</u> specification of *m*₂:



113 of 124

[init] [old & new events] [old events] [new events]

| old & | |

Index (1)

- **Learning Outcomes**
- **Recall: Correct by Construction**
- State Space of a Model
- **Roadmap of this Module**
- **Requirements Document: Mainland, Island**
- **Requirements Document: E-Descriptions**
- **Requirements Document: R-Descriptions**
- **Requirements Document:**
- **Visual Summary of Equipment Pieces**
- **Refinement Strategy**
- Model *m*₀: Abstraction

Index (2)

- Model *m*₀: State Space
- Model *m*₀: State Transitions via Events
- Model *m*₀: Actions vs. Before-After Predicates
- **Design of Events: Invariant Preservation**
- **Sequents: Syntax and Semantics**
- PO of Invariant Preservation: Sketch
- **PO of Invariant Preservation: Components**
- **Rule of Invariant Preservation: Sequents**
- Inference Rules: Syntax and Semantics
- **Proof of Sequent: Steps and Structure**
- Example Inference Rules (1)

Index (3)

- **Example Inference Rules (2)**
- **Example Inference Rules (3)**
- **Revisiting Design of Events:** *ML_out*
- Revisiting Design of Events: ML_in
- **Fixing the Design of Events**
- **Revisiting Fixed Design of Events:** *ML_out*
- Revisiting Fixed Design of Events: ML_in
- Initializing the Abstract System m₀
- **PO of Invariant Establishment**
- **Discharging PO of Invariant Establishment**
- System Property: Deadlock Freedom

Index (4)

- PO of Deadlock Freedom (1)
- PO of Deadlock Freedom (2)
- **Example Inference Rules (4)**
- **Example Inference Rules (5)**
- **Discharging PO of DLF: Exercise**
- **Discharging PO of DLF: First Attempt**
- Why Did the DLF PO Fail to Discharge?
- **Fixing the Context of Initial Model**
- **Discharging PO of DLF: Second Attempt**
- **Initial Model: Summary**
- Model *m*₁: "More Concrete" Abstraction

Index (5)

- Model *m*₁: Refined State Space
- Model *m*₁: State Transitions via Events
- Model *m*₁: Actions vs. Before-After Predicates
- States & Invariants: Abstract vs. Concrete
- **Events: Abstract vs. Concrete**
- PO of Refinement: Components (1)
- PO of Refinement: Components (2)
- PO of Refinement: Components (3)
- **Sketching PO of Refinement**
- **Refinement Rule: Guard Strengthening**
- PO Rule: Guard Strengthening of ML_out

Index (6)

PO Rule: Guard Strengthening of *ML_in* Proving Refinement: ML_out/GRD Proving Refinement: ML_in/GRD **Refinement Rule: Invariant Preservation** Visualizing Inv. Preservation in Refinement INV PO of m₁: ML_out/inv1_4/INV INV PO of m₁: ML_in/inv1_5/INV Proving Refinement: ML_out/inv1_4/INV Proving Refinement: ML_in/inv1_5/INV Initializing the Refined System m₁ **PO of** *m***₁ Concrete Invariant Establishment** 119 of 124

Index (7)

Discharging PO of m₁ Concrete Invariant Establishment Model *m*₁: New, Concrete Events Model m₁: BA Predicates of Multiple Actions Visualizing Inv. Preservation in Refinement **Refinement Rule: Invariant Preservation** INV PO of m₁: IL_in/inv1_4/INV INV PO of m₁: IL_in/inv1_5/INV Proving Refinement: IL_in/inv1_4/INV Proving Refinement: IL_in/inv1_5/INV Livelock Caused by New Events Diverging

Index (8)

- PO of Convergence of New Events
- PO of Convergence of New Events: NAT
- PO of Convergence of New Events: VAR
- **Convergence of New Events: Exercise**
- PO of Refinement: Deadlock Freedom
- **PO Rule: Relative Deadlock Freedom of** *m*₁
- **Example Inference Rules (6)**
- **Proving Refinement: DLF of** *m*₁
- **Proving Refinement: DLF of** *m*₁ (continued)
- **First Refinement: Summary**
- Model *m*₂: "More Concrete" Abstraction

Index (9)

Model *m*₂: Refined, Concrete State Space Model m₂: Refining Old, Abstract Events Model m₂: New, Concrete Events Invariant Preservation in Refinement m₂ INV PO of m₂: ML_out/inv2_4/INV INV PO of m₂: IL_out/inv2_3/INV Example Inference Rules (7) Proving ML_out/inv2_4/INV: First Attempt Proving IL_out/inv2_3/INV: First Attempt Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV Fixing m₂: Adding an Invariant 122 of 124

Index (10)

INV PO of m₂: ML_out/inv2_4/INV – Updated INV PO of m₂: IL_out/inv2_3/INV – Updated Proving ML_out/inv2_4/INV: Second Attempt Proving IL_out/inv2_3/INV: Second Attempt Fixing m₂: Adding Actions INV PO of m₂: ML_out/inv2_3/INV Proving ML_out/inv2_3/INV: First Attempt Failed: ML out/inv2 3/INV **Fixing** *m*₂: **Splitting** *ML_out* **and** *IL_out* m₂ Livelocks: New Events Diverging Fixing m₂: Regulating Traffic Light Changes 123 of 124

Index (11)

Fixing m_2 : Measuring Traffic Light Changes PO Rule: Relative Deadlock Freedom of m_2 Proving Refinement: DLF of m_2 Second Refinement: Summary