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Learning Outcomes

This module is designed to help you understand:
● What a Requirement Document (RD) is
● What a refinement is
● Writing formal specifications○ (Static) contexts: constants, axioms, theorems○ (Dynamic) machines: variables, invariants, events, guards, actions
● Proof Obligations (POs) associated with proving:○ refinements○ system properties

● Applying inference rules of the sequent calculus
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Recall: Correct by Construction

● Directly reasoning about source code (written in a programming
language) is too complicated to be feasible.

● Instead, given a requirements document , prior to implementation,
we develop models through a series of refinement steps:○ Each model formalizes an external observer ’s perception of the system.○ Models are “sorted” with increasing levels of accuracy w.r.t. the system.○ The first model , though the most abstract , can already be proved

satisfying some requirements.○ Starting from the second model , each model is analyzed and proved
correct relative to two criteria:
1. Some requirements (i.e., R-descriptions)
2. Proof Obligations (POs) related to the preceding model being

refined by the current model (via “extra” state variables and
events).○ The last model (which is correct by construction ) should be

sufficiently close to be transformed into a working program (e.g., in C).
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State Space of a Model
● A model’s state space is the set of all configurations:○ Each configuration assigns values to constants & variables, subject to:

● axiom (e.g., typing constraints, assumptions)● invariant properties/theorems○ Say an initial model of a bank system with two constants and a variable:
c ∈ N1 ∧ L ∈ N1 ∧ accounts ∈ String � Z /* typing constraint */∀id ● id ∈ dom(accounts)⇒ −c ≤ accounts(id) ≤ L /* desired property */

Q. What is the state space of this initial model?
A. All valid combinations of c, L, and accounts.● Configuration 1: (c = 1,000,L = 500,000,b = �)● Configuration 2: (c = 2,375,L = 700,000,b = {(”id1”,500), (”id2”,1,250)})

. . . [ Challenge: Combinatorial Explosion ]○ Model Concreteness ↑ ⇒ (State Space ↑ ∧ Verification Difficulty ↑)● A model’s complexity should be guided by those properties intended to be
verified against that model.
⇒ Infeasible to prove all desired properties on a model.

⇒ Feasible to distribute desired properties over a list of refinements.
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Roadmap of this Module

● We will walk through the development process of constructing
models of a control system regulating cars on a bridge.

Such controllers exemplify a reactive system.
(with sensors and actuators)

● Always stay on top of the following roadmap:
1. A Requirements Document (RD) of the bridge controller
2. A brief overview of the refinement strategy

3. An initial, the most abstract model
4. A subsequent model representing the 1st refinement

5. A subsequent model representing the 2nd refinement

6. A subsequent model representing the 3rd refinement
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Requirements Document: Mainland, Island
Imagine you are asked to build a bridge (as an alternative to ferry) connecting
the downtown and Toronto Island.

Page Source: https://soldbyshane.com/area/toronto-islands/
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Requirements Document: E-Descriptions

Each E-Description is an atomic specification of a constraint or
an assumption of the system’s working environment.

ENV1 The system is equipped with two traffic lights with two colors: green and red.

ENV2 The traffic lights control the entrance to the bridge at both ends of it.

ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

ENV4 The system is equipped with four sensors with two states: on or off.

ENV5 The sensors are used to detect the presence of a car entering or leaving the bridge:
“on” means that a car is willing to enter the bridge or to leave it.
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Requirements Document: R-Descriptions

Each R-Description is an atomic specification of an intended
functionality or a desired property of the working system.

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.

REQ2 The number of cars on bridge and island is limited.

REQ3 The bridge is one-way or the other, not both at the same time.

8 of 124



Requirements Document:
Visual Summary of Equipment Pieces

A Requirements Document (4) 8

- One of the traffic lights is situated on the mainland and the other

one on the island. Both are close to the bridge.

- This can be illustrated as follows

Bridge MainlandIsland

8
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Refinement Strategy
● Before diving into details of the models, we first clarify the adopted

design strategy of progressive refinements.
0. The initial model (m0) will address the intended functionality of

a limited number of cars on the island and bridge.
[ REQ2 ]

1. A 1st refinement (m1 which refines m0) will address
the intended functionality of the bridge being one-way .

[ REQ1, REQ3 ]
2. A 2nd refinement (m2 which refines m1) will address

the environment constraints imposed by traffic lights.
[ ENV1, ENV2, ENV3 ]

3. A final, 3rd refinement (m3 which refines m2) will address
the environment constraints imposed by sensors and
the architecture: controller, environment, communication channels.

[ ENV4, ENV5 ]● Recall Correct by Construction :
From each model to its refinement , only a manageable amount of details

are added, making it feasible to conduct analysis and proofs.
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Model m0: Abstraction
● In this most abstract perception of the bridge controller, we do not

even consider the bridge, traffic lights, and sensors!● Instead, we focus on this single requirement :

● Analogies:○ Observe the system from the sky: island and bridge appear only as a
compound.

○ “Zoom in” on the system as refinements are introduced.
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Model m0: State Space
1. The static part is fixed and may be seen/imported.

A constant d denotes the maximum number of cars allowed to be on the
island-bridge compound at any time.

(whereas cars on the mainland is unbounded)

constants: d
axioms:

axm0 1 ∶ d ∈ N
Remark. Axioms are assumed true and may be used to prove theorems.

2. The dynamic part changes as the system evolves.
A variable n denotes the actual number of cars, at a given moment, in the
island-bridge compound .

variables: n
invariants:

inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

Remark. Invariants should be (subject to proofs):● Established when the system is first initialized● Preserved /Maintained after any enabled event ’s actions take effect
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Model m0: State Transitions via Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● At any given state (a valid configuration of constants/variables):○ An event is said to be enabled if its guard evaluates to true.○ An event is said to be disabled if its guard evaluates to false.○ An enabled event makes a state transition if it occurs and its
actions take effect.● 1st event : A car exits mainland (and enters the island-bridge compound).

ML out
begin

n ∶= n + 1
end

Correct Specification? Say d = 2.
Witness: Event Trace �init ,ML out ,ML out ,ML out�

● 2nd event : A car enters mainland (and exits the island-bridge compound).

ML in
begin

n ∶= n − 1
end

Correct Specification? Say d = 2.
Witness: Event Trace �init ,ML in�
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Model m0: Actions vs. Before-After Predicates
● When an enabled event e occurs there are two notions of state:○ Before-/Pre-State: Configuration just before e’s actions take effect○ After-/Post-State: Configuration just after e’s actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the
pre-state to the post-state.● As examples, consider actions of m0’s two events:

2.4 Initial model: limiting the number of cars 31

that exists between the value of the concerned variable just before and just after the
transition. This is indicated as shown below:

Events

before–after predicates

ML_out
n := n + 1

n� = n + 1

ML_in
n := n � 1

n� = n � 1

As can be seen, the before–after predicate is easily obtained from the action: the
variable on the left-hand side of the action symbol “:=” is primed, the action symbol
“:=” is changed to an equality symbol “=”, and, finally, the expression on the right-hand
side of the action symbol is taken as is.

In a before–after predicate, a primed variable such as n� denotes, by convention, the
value of the variable n just after the transition has occurred, whereas n represents its
value just before. For instance, just after an occurrence of the event ML_out, the value
of the variable n is equal to the value it had just before plus one, that is n� = n + 1.

The before–after predicates we present here have got very simple shapes, where
the primed value is equal to some expression depending on the non-primed value. Of
course, more complicated shapes can be encountered, but in this example, which is
deterministic, we shall not encounter more complicated cases.

2.4.5 Proving invariant preservation
When writing the actions corresponding to the events ML_in and ML_out, we did
not necessarily take into account invariants inv0_1 and inv0_2, because we only
concentrated on the way the variable n was modified. As a consequence, there is no
reason a priori for these invariants to be preserved by these events. In fact, it has to
be proved in a rigorous fashion. The purpose of this section is thus to define precisely
what we have to prove in order to ensure that the invariants are indeed invariant!

The statement to be proved is generated in a systematic fashion by means of a rule,
called INV, which is defined once and for all. Such a rule is called a proof obligation
rule or a verification condition rule.

Generally speaking, suppose that our constants are collectively called c. And let
A(c) denote the axioms associated with these constants c. More precisely, A(c) stands
for the list: A1(c), A2(c), . . . of axioms associated with the constants. In our example
model, A(c) is reduced to a list consisting of the single element axm0_1. Likewise,
let v denote the variables and let I(c, v) denote the invariants of these variables. As for

○ An event action “n ∶= n + 1” is not a variable assignment; instead, it is a
specification: “n becomes n + 1 (when the state transition completes)”.○ The before-after predicate (BAP) “n’ = n + 1” expresses that
n′ (the post-state value of n) is one more than n (the pre-state value of n).

● When we express proof obligations (POs) associated with events, we use BAP.
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Design of Events: Invariant Preservation
● Our design of the two events

ML out
begin

n ∶= n + 1
end

ML in
begin

n ∶= n − 1
end

only specifies how the variable n should be updated.● Remember, invariants are conditions that should never be violated !

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

● By simulating the system as an ASM , we discover witnesses

(i.e., event traces) of the invariants not being preserved all the time.
∃s ● s ∈ STATE SPACE⇒ ¬invariants(s)

● We formulate such a commitment to preserving invariants as a proof

obligation (PO) rule (a.k.a. a verification condition (VC) rule).
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Sequents: Syntax and Semantics
● We formulate each PO/VC rule as a (horizontal or vertical) sequent :

H � G
H�
G

○ The symbol � is called the turnstile.○ H is a set of predicates forming the hypotheses/assumptions.
[ assumed as true ]○ G is a set of predicates forming the goal /conclusion.

[ claimed to be provable from H ]● Informally:○ H � G is true if G can be proved by assuming H.
[ i.e., We say “H entails G” or “H yields G” ]○ H � G is false if G cannot be proved by assuming H.

● Formally: H � G ⇐⇒ (H⇒G)
Q. What does it mean when H is empty (i.e., no hypotheses)?
A. � G ≡ true � G [ Why not � G ≡ false � G ? ]
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PO of Invariant Preservation: Sketch

● Here is a sketch of the PO/VC rule for invariant preservation :

Axioms
Invariants Satisfied at Pre-State
Guards of the Event�
Invariants Satisfied at Post-State

INV

● Informally, this is what the above PO/VC requires to prove :
Assuming all axioms, invariants, and the event’s guards hold at the pre-state,

after the state transition is made by the event,

all invariants hold at the post-state.
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PO of Invariant Preservation: Components

constants: d

axioms:
axm0 1 ∶ d ∈ N

variables: n

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

ML out
begin

n ∶= n + 1
end

ML in
begin

n ∶= n − 1
end

● c: list of constants �d�● A(c): list of axioms �axm0 1�● v and v’: list of variables in pre- and post-states v =̂ �n�, v’ =̂ �n′�● I(c, v): list of invariants �inv0 1, inv0 2�● G(c, v): the event ’s list of guards
G(�d�, �n�) of ML out =̂ �true�, G(�d�, �n�) of ML in =̂ �true�● E(c, v): effect of the event ’s actions i.t.o. what variable values become

E(�d�, �n�) of ML out =̂ �n + 1�, E(�d�, �n�) of ML out =̂ �n − 1�● v ′ = E(c, v): before-after predicate formalizing E ’s actions
BAP of ML out : �n’� = �n + 1�, BAP of ML in: �n’� = �n − 1�
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Rule of Invariant Preservation: Sequents
● Based on the components (c, A(c), v , I(c, v), E(c, v)), we are able to

formally state the PO/VC Rule of Invariant Preservation:
A(c)
I(c,v)
G(c,v)�
Ii(c,E(c, v))

INV where Ii denotes a single invariant condition

○ Accordingly, how many sequents to be proved? [ # events × # invariants ]○ We have two sequents generated for event ML out of model m0:
d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

ML out/inv0 1/INV

d ∈ N
n ∈ N
n ≤ d�
n + 1 ≤ d

ML out/inv0 2/INV

Exercise. Write the POs of invariant preservation for event ML in.

● Before claiming that a model is correct , outstanding sequents associated
with all POs must be proved/discharged.
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Inference Rules: Syntax and Semantics
● An inference rule (IR) has the following form:

A

C

L

Formally: A⇒C is an axiom.

Informally: To prove C, it is sufficient to prove A instead.

Informally: C is the case, assuming that A is the case.

○ L is a name label for referencing the inference rule in proofs.○ A is a set of sequents known as antecedents of rule L.○ C is a single sequent known as consequent of rule L.● Let’s consider inference rules (IRs) with two different flavours:

H1 � G

H1,H2 � G
MON

n ∈ N � n + 1 ∈ N P2

○ IR MON: To prove H1,H2 � G , it suffices to prove H1 � G instead.○ IR P2: n ∈ N � n + 1 ∈ N is an axiom.
[ proved automatically without further justifications ]
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Proof of Sequent: Steps and Structure
● To prove the following sequent (related to invariant preservation):

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

ML out/inv0 1/INV

1. Apply a inference rule, which transforms some “outstanding” sequent
to one or more other sequents to be proved instead.

2. Keep applying inference rules until all transformed sequents are
axioms that do not require any further justifications.

● Here is a formal proof of ML out/inv0 1/INV, by applying IRs MON and P2:

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2
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Example Inference Rules (1)

� 0 ∈ N P1 1st Peano axiom: 0 is a natural number.

n ∈ N � n + 1 ∈ N P2
2nd Peano axiom: n + 1 is a natural number,
assuming that n is a natural number.

0 < n � n − 1 ∈ N P2’
n − 1 is a natural number,
assuming that n is positive.

n ∈ N � 0 ≤ n
P3

3rd Peano axiom: n is non-negative,
assuming that n is a natural number.
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Example Inference Rules (2)

n <m � n + 1 ≤m
INC

n + 1 is less than or equal to m,
assuming that n is strictly less than m.

n ≤m � n − 1 <m
DEC

n − 1 is strictly less than m,
assuming that n is less than or equal to m.
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Example Inference Rules (3)

H1 � G

H1,H2 � G
MON

To prove a goal under certain hypotheses,
it suffices to prove it under less hypotheses.

H,P � R H,Q � R

H,P ∨Q � R
OR L

Proof by Cases:
To prove a goal under a disjunctive assumption,
it suffices to prove independently
the same goal, twice, under each disjunct.

H � P

H � P ∨Q
OR R1

To prove a disjunction,
it suffices to prove the left disjunct.

H � Q

H � P ∨Q
OR R2

To prove a disjunction,
it suffices to prove the right disjunct.
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Revisiting Design of Events: ML out
● Recall that we already proved PO ML out/inv0 1/INV :

d ∈ N
n ∈ N
n ≤ d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2

∴ ML out/inv0 1/INV succeeds in being discharged.
● How about the other PO ML out/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d�
n + 1 ≤ d

MON
n ≤ d�
n + 1 ≤ d

?

∴ ML out/inv0 2/INV fails to be discharged.
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Revisiting Design of Events: ML in
● How about the PO ML in/inv0 1/INV for ML in:

d ∈ N
n ∈ N
n ≤ d�
n − 1 ∈ N

MON
n ∈ N�
n − 1 ∈ N ?

∴ ML in/inv0 1/INV fails to be discharged.
● How about the other PO ML in/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d�
n − 1 ≤ d

MON
n ≤ d�
n − 1 < d ∨ n − 1 = d

OR 1
n ≤ d�
n − 1 < d

DEC

∴ ML in/inv0 2/INV succeeds in being discharged.
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Fixing the Design of Events

● Proofs of ML out/inv0 2/INV and ML in/inv0 1/INV fail due to the
two events being enabled when they should not .

● Having this feedback, we add proper guards to ML out and ML in:

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end

● Having changed both events, updated sequents will be generated for
the PO/VC rule of invariant preservation.

● All sequents ({ML out , ML in} × {inv0 1, inv0 2}) now provable?
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Revisiting Fixed Design of Events: ML out
● How about the PO ML out/inv0 1/INV for ML out :

d ∈ N
n ∈ N
n ≤ d
n < d�
n + 1 ∈ N

MON
n ∈ N�
n + 1 ∈ N P2

∴ ML out/inv0 1/INV still succeeds in being discharged!
● How about the other PO ML out/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d
n < d�
n + 1 ≤ d

MON
n < d�
n + 1 ≤ d

INC

∴ ML out/inv0 2/INV now succeeds in being discharged!
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Revisiting Fixed Design of Events: ML in
● How about the PO ML in/inv0 1/INV for ML in:

d ∈ N
n ∈ N
n ≤ d
n > 0�
n − 1 ∈ N

MON
n > 0�
n − 1 ∈ N P2’

∴ ML in/inv0 1/INV now succeeds in being discharged!
● How about the other PO ML in/inv0 2/INV for the same event?

d ∈ N
n ∈ N
n ≤ d
n > 0�
n − 1 ≤ d

MON
n ≤ d�
n − 1 < d ∨ n − 1 = d

OR 1
n ≤ d�
n − 1 < d

DEC

∴ ML in/inv0 2/INV still succeeds in being discharged!
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Initializing the Abstract System m0
● Discharging the four sequents proved that both invariant conditions are

preserved between occurrences/interleavings of events ML out and ML in.● But how are the invariants established in the first place?
Analogy. Proving P via mathematical induction, two cases to prove:○ P(1), P(2), . . . [ base cases ≈ establishing inv. ]○ P(n)⇒P(n + 1) [ inductive cases ≈ preserving inv. ]● Therefore, we specify how the ASM ’s initial state looks like:

init
begin

n ∶= 0
end

✓ The IB compound, once initialized , has no cars.

✓ Initialization always possible: guard is true.

✓ There is no pre-state for init .

∴ The RHS of ∶= must not involve variables.

∴ The RHS of ∶= may only involve constants.

✓ There is only the post-state for init .

∴ Before-After Predicate: n′ = 0
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PO of Invariant Establishment

init
begin

n ∶= 0
end

✓ An reactive system, once initialized , should never terminate.

✓ Event init cannot “preserve” the invariants.

∵ State before its occurrence (pre-state) does not exist.

✓ Event init only required to establish invariants for the first time

○ A new formal component is needed:
● K (c): effect of init ’s actions i.t.o. what variable values become

e.g., K (�d�) of init =̂ �0�● v ′ = K (c): before-after predicate formalizing init ’s actions
e.g., BAP of init : �n’� = �0�○ Accordingly, PO of invariant establisment is formulated as a sequent :

Axioms�
Invariants Satisfied at Post-State

INV
A(c)�
Ii(c,K(c)) INV
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Discharging PO of Invariant Establishment
● How many sequents to be proved? [ # invariants ]● We have two sequents generated for event init of model m0:

d ∈ N�
0 ∈ N init/inv0 1/INV

d ∈ N�
0 ≤ d

init/inv0 2/INV

● Can we discharge the PO init/inv0 1/INV ?

d ∈ N�
0 ∈ N MON �

0 ∈ N P1 ∴ init/inv0 1/INV

succeeds in being discharged.

● Can we discharge the PO init/inv0 2/INV ?

d ∈ N�
0 ≤ d

P3 ∴ init/inv0 2/INV

succeeds in being discharged.
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System Property: Deadlock Freedom

● So far we have proved that our initial model m0 is s.t. all invariant

conditions are:○ Established when system is first initialized via init○ Preserved whenevner there is a state transition

(via an enabled event: ML out or ML in)
● However, whenever event occurrences are conditional (i.e., guards

stronger than true), there is a possibility of deadlock :○ A state where guards of all events evaluate to false○ When a deadlock happens, none of the events is enabled .⇒ The system is blocked and not reactive anymore!
● We express this non-blocking property as a new requirement:

REQ4 Once started, the system should work for ever.
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PO of Deadlock Freedom (1)
● Recall some of the formal components we discussed:○ c: list of constants �d�○ A(c): list of axioms �axm0 1�○ v and v’: list of variables in pre- and post-states v =̂ �n�, v’ =̂ �n′�○ I(c, v): list of invariants �inv0 1, inv0 2�○ G(c, v): the event’s list of guards

G(�d�, �n�) of ML out =̂ �n < d�, G(�d�, �n�) of ML in =̂ �n > 0�
● A system is deadlock-free if at least one of its events is enabled :

Axioms
Invariants Satisfied at Pre-State�
Disjunction of the guards satisfied at Pre-State

DLF

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

To prove about deadlock freedom○ An event’s effect of state transition is not relevant.○ Instead, the evaluation of all events’ guards at the pre-state is relevant.
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PO of Deadlock Freedom (2)

● Deadlock freedom is not necessarily a desired property.
⇒When it is (like m0), then the generated sequents must be discharged.● Applying the PO of deadlock freedom to the initial model m0:

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

DLF

Our bridge controller being deadlock-free means that cars can always

enter (via ML out) or leave (via ML in) the island-bridge compound.

● Can we formally discharge this PO for our initial model m0?
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Example Inference Rules (4)

H,P � P
HYP A goal is proved if it can be assumed.

� � P
FALSE L

Assuming false (�),
anything can be proved.

P � � TRUE R
true (�) is proved,

regardless of the assumption.

P � E = E
EQ

An expression being equal to itself is proved,
regardless of the assumption.
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Example Inference Rules (5)

H(F),E = F � P(F)
H(E),E = F � P(E) EQ LR

To prove a goal P(E) assuming H(E),
where both P and H depend on expression E,

it suffices to prove P(F) assuming H(F),
where both P and H depend on expresion F,

given that E is equal to F.

H(E),E = F � P(E)
H(F),E = F � P(F) EQ RL

To prove a goal P(F) assuming H(F),
where both P and H depend on expression F,

it suffices to prove P(E) assuming H(E),
where both P and H depend on expresion E,

given that E is equal to F.
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Discharging PO of DLF: Exercise

A(c)
I(c,v)�
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)

DLF

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

??
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Discharging PO of DLF: First Attempt

d ∈ N
n ∈ N
n ≤ d�
n < d ∨ n > 0

≡
d ∈ N
n ∈ N
n < d ∨ n = d�
n < d ∨ n > 0

MON
n < d ∨ n = d�
n < d ∨ n > 0

OR L

�����������������������������

n < d�
n < d ∨ n > 0

OR R1
n < d�
n < d

HYP

n = d�
n < d ∨ n > 0

EQ LR,MON �
d < d ∨ d > 0

OR R2 �
d > 0

?
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Why Did the DLF PO Fail to Discharge?
● In our first attempt, proof of the 2nd case failed: � d > 0● This unprovable sequent gave us a good hint:○ For the model under consideration (m0) to be deadlock-free,

it is required that d > 0. [ ≥ 1 car allowed in the IB compound ]○ But current specification of m0 not strong enough to entail this:● ¬(d > 0) ≡ d ≤ 0 is possible for the current model● Given axm0 1 ∶ d ∈ N⇒ d = 0 is allowed by m0 which causes a deadlock .● Recall the init event and the two guarded events:

init
begin

n ∶= 0
end

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end

When d = 0, the disjunction of guards evaluates to false: 0 < 0 ∨ 0 > 0⇒ As soon as the system is initialized, it deadlocks immediately

as no car can either enter or leave the IR compound!!
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Fixing the Context of Initial Model

● Having understood the failed proof, we add a proper axiom to m0:

axioms:
axm0 2 ∶ d > 0

● We have effectively elaborated on REQ2:

REQ2 The number of cars on bridge and island is limited
but positive.

● Having changed the context, an updated sequent will be generated
for the PO/VC rule of deadlock freedom.

● Is this new sequent now provable?
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Discharging PO of DLF: Second Attempt

d ∈ N
d > 0
n ∈ N
n ≤ d�
n < d ∨ n > 0

≡
d ∈ N
d > 0
n ∈ N
n < d ∨ n = d�
n < d ∨ n > 0

MON

d > 0
n < d ∨ n = d�
n < d ∨ n > 0

OR L

���������������������������������������

d > 0
n < d�
n < d ∨ n > 0

OR R1

d > 0
n < d�
n < d

HYP

d > 0
n = d�
n < d ∨ n > 0

EQ LR,MON
d > 0�
d < d ∨ d > 0

OR R2
d > 0�
d > 0

HYP
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Initial Model: Summary
● The final version of our initial model m0 is provably correct w.r.t.:○ Establishment of Invariants○ Preservation of Invariants○ Deadlock Freedom● Here is the final specification of m0:

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: n

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

init
begin

n ∶= 0
end

ML out
when

n < d
then

n ∶= n + 1
end

ML in
when

n > 0
then

n ∶= n − 1
end
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Model m1: “More Concrete” Abstraction
● First refinement has a more concrete perception of the bridge controller:○ We “zoom in” by observing the system from closer to the ground,

so that the island-bridge compound is split into:

● the island
● the (one-way) bridge

○ Nonetheless, traffic lights and sensors remain abstracted away!● That is, we focus on these two requirement :

● We are obliged to prove this added concreteness is consistent with m0.
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Model m1: Refined State Space

1. The static part is the same as m0’s: constants: d
axioms:

axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

2. The dynamic part of the concrete state consists of three variables:
● a: number of cars on the bridge,

heading to the island
● b: number of cars on the island
● c: number of cars on the bridge,

heading to the mainland

variables: a,b, c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ ??
inv1 5 ∶ ??

✓ inv1 1, inv1 2, inv1 3 are
typing constraints.

✓ inv1 4 links/glues the
abstract and concrete states.

✓ inv1 5 specifies
that the bridge is one-way.
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Model m1: State Transitions via Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● We first consider the “old” events already existing in m0.● Concrete/Refined version of event ML out :

ML out
when

??
then

a ∶= a + 1
end

○ Meaning of ML out is refined :
a car exits mainland (getting on the bridge).

○ ML out enabled only when:

● the bridge’s current traffic flows to the island● number of cars on both the bridge and the island is limited● Concrete/Refined version of event ML in:

ML in
when

??
then

c ∶= c − 1
end

○ Meaning of ML in is refined :
a car enters mainland (getting off the bridge).

○ ML in enabled only when:

there is some car on the bridge heading to the mainland.
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Model m1: Actions vs. Before-After Predicates● Consider the concrete/refined version of actions of m0’s two events:

○ An event’s actions are a specification: “c becomes c - 1 after the transition”.○ The before-after predicate (BAP) “c’ = c − 1” expresses that
c′ (the post-state value of c) is one less than c (the pre-state value of c).○ Given that the concrete state consists of three variables:● An event’s actions only specify those changing from pre-state to post-state.

[ e.g., c
′ = c − 1 ]● Other unmentioned variables have their post-state values remain unchanged.

[ e.g., a
′ = a ∧ b

′ = b ]

● When we express proof obligations (POs) associated with events, we use BAP.
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States & Invariants: Abstract vs. Concrete
● m0 refines m1 by introducing more variables:

○ Abstract State
(of m0 being refined): variables: n

○ Concrete State
(of the refinement model m1): variables: a,b, c

● Accordingly, invariants may involve different states:

○ Abstract Invariants
(involving the abstract state only):

invariants:
inv0 1 ∶ n ∈ N
inv0 2 ∶ n ≤ d

○ Concrete Invariants
(involving at least the concrete state):

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0
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Events: Abstract vs. Concrete
● When an event exists in both models m0 and m1, there are two versions of it:○ The abstract version modifies the abstract state.

(abstract )ML out
when

n < d
then

n ∶= n + 1
end

(abstract )ML in
when

n > 0
then

n ∶= n − 1
end

○ The concrete version modifies the concrete state.

(concrete )ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

(concrete )ML in
when

c > 0
then

c ∶= c − 1
end

● A new event may only exist in m1 (the concrete model): we will deal with
this kind of events later, separately from “redefined/overridden” events.
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PO of Refinement: Components (1)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● c: list of constants �d�● A(c): list of axioms �axm0 1�● v and v ′: abstract variables in pre- & post-states v =̂ �n�, v ′ =̂ �n�● w and w ′: concrete variables in pre- & post-states w =̂ �a,b, c�, w ′ =̂ �a′,b′, c′�● I(c, v): list of abstract invariants �inv0 1, inv0 2�● J(c, v,w): list of concrete invariants �inv1 1, inv1 2, inv1 3, inv1 4, inv1 5�
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PO of Refinement: Components (2)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● G(c, v): list of guards of the abstract event

G(�d�, �n�) of ML out =̂ �n < d�, G(c, v) of ML in =̂ �n > 0�● H(c,w): list of guards of the concrete event

H(�d�, �a,b, c�) of ML out =̂ �a + b < d , c = 0�, H(c,w) of ML in =̂ �c > 0�
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PO of Refinement: Components (3)

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

● E(c, v): effect of the abstract event ’s actions i.t.o. what variable values become

E(�d�, �n�) of ML out =̂ �n + 1�, E(�d�, �n�) of ML out =̂ �n − 1�● F(c,w): effect of the concrete event ’s actions i.t.o. what variable values become

F(c, v) of ML out =̂ �a + 1,b, c�, F(c,w) of ML out =̂ �a,b,c − 1�
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Sketching PO of Refinement
The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event�
Guards of the Abstract Event

GRD

○ A concrete transition always has an
abstract counterpart.

○ A concrete event is enabled only if
abstract counterpart is enabled.

2. Invariant Preservation

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event�
Concrete Invariants Satisfied at Post-State

INV

○ A concrete event performs a
transition on concrete states.

○ This concrete state transition must
be consistent with how
its abstract counterpart performs a
corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable
to events that might be enabled after the system is launched.

The special, non-guarded init event will be discussed separately later.
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Refinement Rule: Guard Strengthening
● Based on the components, we are able to formally state the PO/VC Rule of

Guard Strengthening for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Gi(c,v)

GRD where Gi denotes a single guard condition
of the abstract event

○ How many sequents to be proved? [ # abstract guards ]○ For ML out , only one abstract guard, so one sequent is generated :
d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N a + b + c = n a = 0 ∨ c = 0
a + b < d c = 0�
n < d

ML out/GRD

● Exercise. Write ML in’s PO of Guard Strengthening for Refinement .
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PO Rule: Guard Strengthening of ML out

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML out � a + b < d
c = 0�

Abstract guards of ML out � n < d

ML out/GRD
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PO Rule: Guard Strengthening of ML in

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML in � c > 0�
Abstract guards of ML in � n > 0

ML in/GRD
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Proving Refinement: ML out/GRD

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�
n < d

MON

a + b + c = n
a + b < d
c = 0�
n < d

EQ LR,MON

a + b + 0 = n
a + b < d�
n < d

ARI

a + b = n
a + b < d�
n < d

EQ LR,MON
n < d�
n < d

HYP
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Proving Refinement: ML in/GRD

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
n > 0

MON

b ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
n > 0

OR L

�����������������������������������������������������������

b ∈ N
a + b + c = n
a = 0
c > 0�
n > 0

EQ LR,MON

b ∈ N
0 + b + c = n
c > 0�
n > 0

ARI

b ∈ N
b + c = n
c > 0�
n > 0

ARI

c ≤ n
c > 0�
n > 0

ARI
n > 0�
n > 0

HYP

b ∈ N
a + b + c = n
c = 0
c > 0�
n > 0

EQ LR

b ∈ N
a + b + 0 = n
c = 0
0 > 0�
n > 0

MON
0 > 0�
n > 0

ARI
��
n > 0

FALSE L
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Refinement Rule: Invariant Preservation
● Based on the components, we are able to formally state the PO/VC Rule of

Invariant Preservation for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ # sequents to be proved? [ # concrete, old evts × # concrete invariants ]○ Here are two (of the ten) sequents generated:
d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�(a + 1) + b + c = (n + 1)

ML out/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

ML in/inv1 5/INV

● Exercises. Specify and prove other eight POs of Invariant Preservation.
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Visualizing Inv. Preservation in Refinement
Each concrete event (w to w ′) is simulated by an abstract event (v to v ′):● abstract & concrete pre-states related by concrete invariants J(c, v ,w)● abstract & concrete post-states related by concrete invariants J(c, v ′,w ′)

2.5 First refinement: introducing the one-way bridge 55

following for each concrete guard Gi(c, v):

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)

�
Gi(c, v)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards

�
Abstract guard

Notice again that the set of concrete invariants denoted by J(c, v, w) contains some
elementary invariants dealing with concrete variables w only, while others are deal-
ing with both abstract and concrete variables v and w. This is the reason why we
collectively denote this set of concrete invariants by J(c, v, w).

Also note that it is possible to introduce new constants in a refinement. But we
have not stated this in the concrete invariants J(c, v, w) in order to keep the formulae
small.

Correct refinement We have to prove that the concrete event transforms the con-
crete variables w into w�, in a way which does not contradict the abstract event. While
this transition happens, the abstract event changes the abstract variables v, which are
related to w by the concrete invariant J(c, v, w), into v�, which must be related to
w� by the modified concrete invariant J(c, v�, w�). This is illustrated in the following
diagram:

v

w

Abstract event

Concrete event

J(c,v,w)

I(v) I(v ′)

J(c,v′,w′ )

v ′= E(c,v)

w′= F(c,w)H(c,w)

G(c,v)

With our usual conventions, this leads to the following proof obligation rule named
INV, where Jj(c, v, w) denotes a single invariant of the set of concrete invariants
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INV PO of m1: ML out/inv1 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML out � a + b < d
c = 0�

Concrete invariant inv1 4
with ML out’s effect in the post-state � (a + 1) + b + c = (n + 1)

ML out/inv1 4/INV
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INV PO of m1: ML in/inv1 5/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Concrete guards of ML in � c > 0�
Concrete invariant inv1 5

with ML in’s effect in the post-state � a = 0 ∨ (c − 1) = 0

ML in/inv1 5/INV
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Proving Refinement: ML out/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0�(a + 1) + b + c = (n + 1)

MON
a + b + c = n�
(a + 1) + b + c = (n + 1)

ARI
a + b + c = n�
a + b + c + 1 = n + 1

EQ LR,MON �
n + 1 = n + 1

EQ

63 of 124

Proving Refinement: ML in/inv1 5/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

MON

a = 0 ∨ c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

OR L

���������������������������������������

a = 0
c > 0�
a = 0 ∨ (c − 1) = 0

OR R1

a = 0
c > 0�
a = 0

HYP

c = 0
c > 0�
a = 0 ∨ (c − 1) = 0

EQ LR,MON
0 > 0�
a = 0 ∨ (0 − 1) = 0

ARI
��
a = 0 ∨ −1 = 0

FALSE L
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Initializing the Refined System m1

● Discharging the twelve sequents proved that:○ concrete invariants preserved by ML out & ML in○ concrete guards of ML out & ML in entail their abstract counterparts

● What’s left is the specification of how the ASM ’s initial state looks like:

init
begin

a ∶= 0
b ∶= 0
c ∶= 0

end

✓ No cars on bridge (heading either way) and island

✓ Initialization always possible: guard is true.

✓ There is no pre-state for init .

∴ The RHS of ∶= must not involve variables.

∴ The RHS of ∶= may only involve constants.

✓ There is only the post-state for init .

∴ Before-After Predicate: a′ = 0 ∧ b′ = 0 ∧ c′ = 0
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PO of m1 Concrete Invariant Establishment

○ Some (new) formal components are needed:
● K (c): effect of abstract init ’s actions:

e.g., K (�d�) of init =̂ �0�● v ′ = K (c): before-after predicate formalizing abstract init ’s actions
e.g., BAP of init : �n’� = �0�● L(c): effect of concrete init ’s actions:

e.g., K (�d�) of init =̂ �0,0,0�● w ′ = L(c): before-after predicate formalizing concrete init ’s actions
e.g., BAP of init : �a’,b’,c’� = �0,0,0�○ Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms�
Concrete Invariants Satisfied at Post-State

INV
A(c)�
Ji(c,K(c),L(c)) INV
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Discharging PO of m1
Concrete Invariant Establishment
● How many sequents to be proved? [ # concrete invariants ]● Two (of the five) sequents generated for concrete init of m1:

d ∈ N
d > 0�
0 + 0 + 0 = 0

init/inv1 4/INV

d ∈ N
d > 0�
0 = 0 ∨ 0 = 0

init/inv1 5/INV

● Can we discharge the PO init/inv1 4/INV ?

d ∈ N
d > 0�
0 + 0 + 0 = 0

ARI, MON � � TRUE R ∴ init/inv1 4/INV

succeeds in being discharged.

● Can we discharge the PO init/inv1 5/INV ?

d ∈ N
d > 0�
0 = 0 ∨ 0 = 0

ARI, MON � � TRUE R ∴ init/inv1 5/INV

succeeds in being discharged.
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Model m1: New, Concrete Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Considered concrete/refined events already existing in m0: ML out & ML in● New event IL in:

IL in
when

??
then

??
end

○ IL in denotes a car entering the island (getting off the bridge).

○ IL in enabled only when:

● The bridge’s current traffic flows to the island.
Q. Limited number of cars on the bridge and the island?
A. Ensured when the earlier ML out (of same car) occurred● New event IL out :

IL out
when

??
then

??
end

○ IL out denotes a car exiting the island (getting on the bridge).

○ IL out enabled only when:

● There is some car on the island.● The bridge’s current traffic flows to the mainland.
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Model m1: BA Predicates of Multiple Actions
Consider actions of m1’s two new events:

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

IL out
when

b > 0
a = 0

then
b ∶= b − 1
c ∶= c + 1

end

○ What is the BAP of ML in’s actions?

a′ = a − 1 ∧ b′ = b + 1 ∧ c′ = c

○ What is the BAP of ML in’s actions?

a′ = a ∧ b′ = b − 1 ∧ c′ = c + 1
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Visualizing Inv. Preservation in Refinement
● Recall how a concrete event is simulated by its abstract counterpart:

2.5 First refinement: introducing the one-way bridge 55

following for each concrete guard Gi(c, v):

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)

�
Gi(c, v)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards

�
Abstract guard

Notice again that the set of concrete invariants denoted by J(c, v, w) contains some
elementary invariants dealing with concrete variables w only, while others are deal-
ing with both abstract and concrete variables v and w. This is the reason why we
collectively denote this set of concrete invariants by J(c, v, w).

Also note that it is possible to introduce new constants in a refinement. But we
have not stated this in the concrete invariants J(c, v, w) in order to keep the formulae
small.

Correct refinement We have to prove that the concrete event transforms the con-
crete variables w into w�, in a way which does not contradict the abstract event. While
this transition happens, the abstract event changes the abstract variables v, which are
related to w by the concrete invariant J(c, v, w), into v�, which must be related to
w� by the modified concrete invariant J(c, v�, w�). This is illustrated in the following
diagram:

v

w

Abstract event

Concrete event

J(c,v,w)

I(v) I(v ′)

J(c,v′,w′ )

v ′= E(c,v)

w′= F(c,w)H(c,w)

G(c,v)

With our usual conventions, this leads to the following proof obligation rule named
INV, where Jj(c, v, w) denotes a single invariant of the set of concrete invariants

● For each new event:○ Strictly speaking, it does not have an abstract counterpart.○ It is simulated by a special abstract event (transforming v to v ′):

skip
begin

end

● skip is a “dummy” event: non-guarded and does nothing
● Q. BAP of the skip event?

A. n′ = n
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Refinement Rule: Invariant Preservation
● The new events IL in and IL out do not exist in m0, but:○ They exist in m1 and may impact upon the concrete state space.○ They preserve the concrete invariants, just as ML out & ML in do.● Recall the PO/VC Rule of Invariant Preservation for Refinement:

A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ How many sequents to be proved? [ # new evts × # concrete invariants ]○ Here are two (of the ten) sequents generated:
d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) + (b + 1) + c = n

IL in/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

IL in/inv1 5/INV

● Exercises. Specify and prove other eight POs of Invariant Preservation.
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INV PO of m1: IL in/inv1 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Guards of IL in � a > 0�
Concrete invariant inv1 4

with IL in’s effect in the post-state � (a − 1) + (b + 1) + c = n

IL in/inv1 4/INV
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INV PO of m1: IL in/inv1 5/INV

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Guards of IL in � a > 0�
Concrete invariant inv1 5

with IL in’s effect in the post-state � (a − 1) = 0 ∨ c = 0

IL in/inv1 5/INV
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Proving Refinement: IL in/inv1 4/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) + (b + 1) + c = n

MON
a + b + c = n�(a − 1) + (b + 1) + c = n

ARI
a + b + c = n�
a + b + c = n

HYP
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Proving Refinement: IL in/inv1 5/INV

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

MON

a = 0 ∨ c = 0
a > 0�(a − 1) = 0 ∨ c = 0

OR L

���������������������������������������

a = 0
a > 0�(a − 1) = 0 ∨ c = 0

EQ LR,MON
0 > 0�(0 − 1) = 0 ∨ c = 0

ARI
��−1 = 0 ∨ c = 0

FALSE L

c = 0
a > 0�(a − 1) = 0 ∨ c = 0

OR R2

c = 0
a > 0�
c = 0

HYP
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Livelock Caused by New Events Diverging
● An alternative m1 (with inv1 4, inv1 5, and guards of new events removed):

constants: d
axioms:

axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c
invariants:

inv1 1 ∶ a ∈ Z
inv1 2 ∶ b ∈ Z
inv1 3 ∶ c ∈ Z

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
begin

a ∶= a − 1
b ∶= b + 1

end

IL out
begin

b ∶= b − 1
c ∶= c + 1

end

Concrete invariants are
under-specified: only
typing constraints.

Exercises : Show that
Invariant Preservation is
provable, but Guard
Strengthening is not.

● Say this alternative m1 is implemented as is:
IL in and IL out always enabled and may occur indefinitely , preventing other “old”
events (ML out and ML in) from ever happening:�init , IL in, IL out , IL in, IL out , . . . �
Q: What are the corresponding abstract transitions?
A: �init , skip, skip, skip, skip, . . . � [ ≈ executing while(true); ]● We say that these two new events diverge , creating a livelock :○ Different from a deadlock ∵ always an event occurring (IL in or IL out).○ But their indefinite occurrences contribute nothing useful.
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PO of Convergence of New Events
The PO/VC rule for non-divergence/livelock freedom consists of two parts:○ Interleaving of new events characterized as an integer expr.: variant .○ A variant V(c,w) may refer to constants and/or concrete variables.○ In the original m1, let’s try variants ∶ 2 ⋅ a + b
1. Variant Stays Non-Negative

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,w) ∈ N

NAT

○ Variant V(c, w) measures
how many more times the new events can occur.

○ If a new event is enabled , then V(c,w) > 0.

○ When V(c,w) reaches 0, some “old” events
must happen s.t. V(c,w) goes back above 0.

2. A New Event Occurrence Decreases Variant

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,F(c,w)) < V(c,w)

VAR
○ If a new event is enabled and

occurs, the value of V(c,w) ↓.
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PO of Convergence of New Events: NAT
● Recall: PO related to Variant Stays Non-Negative:

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,w) ∈ N

NAT
How many sequents to be proved?

[ # new events ]

● For the new event IL in:

d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
a > 0�
2 ⋅ a + b ∈ N

IL in/NAT

Exercises: Prove IL in/NAT and Formulate/Prove IL out/NAT.
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PO of Convergence of New Events: VAR
● Recall: PO related to A New Event Occurrence Decreases Variant

A(c)
I(c, v)
J(c, v ,w)
H(c,w)�
V(c,F(c,w)) < V(c,w)

VAR
How many sequents to be proved?

[ # new events ]

● For the new event IL in:

d ∈ N d > 0
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
a > 0�

2 ⋅ (a − 1) + (b + 1) < 2 ⋅ a + b

IL in/VAR

Exercises: Prove IL in/VAR and Formulate/Prove IL out/VAR.
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Convergence of New Events: Exercise

Given the original m1, what if the following variant expression
is used:

variants ∶ a + b

Are the formulated sequents still provable?
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PO of Refinement: Deadlock Freedom

● Recall:○ We proved that the initial model m0 is deadlock free (see DLF).○ We proved, according to guard strengthening, that if a concrete

event is enabled, then its abstract counterpart is enabled.
● PO of relative deadlock freedom for a refinement model:

A(c)
I(c,v)
J(c,v ,w)
G1(c,v) ∨ ⋅ ⋅ ⋅ ∨Gm(c,v)�
H1(c,w) ∨ ⋅ ⋅ ⋅ ∨Hn(c,w)

DLF

If an abstract state does not deadlock
(i.e., G1(c, v) ∨ ⋅ ⋅ ⋅ ∨Gm(c, v)), then
its concrete counterpart does not deadlock
(i.e., H1(c,w) ∨ ⋅ ⋅ ⋅ ∨Hn(c,w)).

● Another way to think of the above PO:
The refinement does not introduce, in the concrete, any “new”
deadlock scenarios not existing in the abstract state.
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PO Rule: Relative Deadlock Freedom m1

axm0 1 � d ∈ N
axm0 2 � d > 0

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0

Disjunction of abstract guards � n < d � guards of ML out in m0∨ n > 0 � guards of ML in in m0�
Disjunction of concrete guards

���������������

a + b < d ∧ c = 0 � guards of ML out in m1∨ c > 0 � guards of ML in in m1∨ a > 0 � guards of IL in in m1∨ b > 0 ∧ a = 0 � guards of IL out in m1

DLF
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Example Inference Rules (6)

H,¬P � Q

H � P ∨Q
OR R

To prove a disjunctive goal,
it suffices to prove one of the disjuncts,

with the the negation of the the other disjunct
serving as an additional hypothesis.

H,P,Q � R

H,P ∧Q � R
AND L

To prove a goal with a conjunctive hypothesis,
it suffices to prove the same goal,

with the the two conjuncts
serving as two separate hypotheses.

H � P H � Q

H � P ∧Q
AND R

To prove a goal with a conjunctive goal,
it suffices to prove each conjunct
as a separate goal.
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Proving Refinement: DLF of m1

d ∈ N
d > 0
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
n < d ∨ n > 0�

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

MON

d > 0
a ∈ N
b ∈ N
c ∈ N�

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

OR R,
ARI

d > 0
a ∈ N
b ∈ N
c = 0

�
a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0

EQ LR,
MON

d > 0
a ∈ N
b ∈ N�

a + b < d ∧ 0 = 0∨ 0 > 0∨ a > 0∨ b > 0 ∧ a = 0

OR R,
ARI

d > 0
a = 0
b ∈ N�

a + b < d ∧ 0 = 0∨ b > 0 ∧ a = 0

EQ LR,
MON

d > 0
b ∈ N�

0 + b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

ARI

d > 0
b = 0 ∨ b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

. . .
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Proving Refinement: DLF of m1 (continued)

d > 0
b = 0 ∨ b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR L

�����������������������������������������������������������������������������������������

d > 0
b = 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR R1

d > 0
b = 0�
b < d ∧ 0 = 0

OR R1,
MON

d > 0

�
0 < d ∧ 0 = 0

AND R

���������������������������������������

d > 0

�
0 < d

ARI,
HYP

d > 0

�
0 = 0

EQ

d > 0
b > 0�

b < d ∧ 0 = 0∨ b > 0 ∧ 0 = 0

OR R2

d > 0
b > 0�
b > 0 ∧ 0 = 0

AND R

���������������������������������������

d > 0
b > 0�
b > 0

HYP

d > 0
b > 0�
0 = 0

EQ
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First Refinement: Summary
● The final version of our first refinement m1 is provably correct w.r.t.:○ Establishment of Concrete Invariants [ init ]○ Preservation of Concrete Invariants [ old & new events ]○ Strengthening of guards [ old events ]○ Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]○ Relative Deadlock Freedom● Here is the final specification of m1:

constants: d

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0

variables: a,b,c

invariants:
inv1 1 ∶ a ∈ N
inv1 2 ∶ b ∈ N
inv1 3 ∶ c ∈ N
inv1 4 ∶ a + b + c = n
inv1 5 ∶ a = 0 ∨ c = 0

variants:
2 ⋅ a + b

init
begin

a ∶= 0
b ∶= 0
c ∶= 0

end

ML out
when

a + b < d
c = 0

then
a ∶= a + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

IL out
when

b > 0
a = 0

then
b ∶= b − 1
c ∶= c + 1

end
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Model m2: “More Concrete” Abstraction● 2nd refinement has even more concrete perception of the bridge controller:○ We “zoom in” by observing the system from even closer to the ground,
so that the one-way traffic of the bridge is controlled via:

ml tl : a traffic light for exiting the ML

il tl : a traffic light for exiting the IL

abstract variables a, b, c from m1

still used (instead of being replaced)

70 Controlling cars on a bridge

init
a := 0
b := 0
c := 0

2.6 Second refinement: introducing the traffic lights
In its present form, the model of the bridge appears to be a bit magical. It seems, from
our observation, that car drivers can count cars and thus decide to enter into the bridge
from the mainland (event ML_out) or from the island (event IL_out). This means they
can observe the state of the system. Clearly, this is not realistic. In reality, as we know,
drivers follow the indication of some traffic lights; they clearly do not count cars!

This refinement then consists in introducing first the two traffic lights, named ml_tl
and il_tl, then the corresponding invariants, and, finally, some new events that can
change the colors of the traffic lights. Fig. 2.7 illustrates the new physical situation,
which can be observed in this refinement.

il_tl

ml_tl

MAINLANDISLAND

Fig. 2.7. The traffic lights

2.6.1 Refining the state
At this stage, we must extend our set of constants by first introducing the set COLOR
and its two distinct values red and green. It is done as follows:

set: COLOR

constants: red, green

axm2_1: COLOR = {green, red}

axm2_2: green �= red

a

c

b

○ Nonetheless, sensors remain abstracted away!● That is, we focus on these three environment constraints:

● We are obliged to prove this added concreteness is consistent with m1.
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Model m2: Refined, Concrete State Space
1. The static part introduces the notion of traffic light colours:

sets: COLOR constants: red ,green
axioms:

axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

2. The dynamic part shows the superposition refinement scheme:

70 Controlling cars on a bridge

init
a := 0
b := 0
c := 0

2.6 Second refinement: introducing the traffic lights
In its present form, the model of the bridge appears to be a bit magical. It seems, from
our observation, that car drivers can count cars and thus decide to enter into the bridge
from the mainland (event ML_out) or from the island (event IL_out). This means they
can observe the state of the system. Clearly, this is not realistic. In reality, as we know,
drivers follow the indication of some traffic lights; they clearly do not count cars!

This refinement then consists in introducing first the two traffic lights, named ml_tl
and il_tl, then the corresponding invariants, and, finally, some new events that can
change the colors of the traffic lights. Fig. 2.7 illustrates the new physical situation,
which can be observed in this refinement.

il_tl

ml_tl

MAINLANDISLAND

Fig. 2.7. The traffic lights

2.6.1 Refining the state
At this stage, we must extend our set of constants by first introducing the set COLOR
and its two distinct values red and green. It is done as follows:

set: COLOR

constants: red, green

axm2_1: COLOR = {green, red}

axm2_2: green �= red

a

c

b

● Abstract variables a, b, c from m1 are
still in use in m 2.

● Two new, concrete variables are
introduced: ml tl and il tl

● Constrast: In m1, abstract variable n is
replaced by concrete variables a, b, c.

variables:
a,b, c
ml tl
il tl

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ??
inv2 4 ∶ ??

◇ inv2 1 & inv2 2: typing constraints
◇ inv2 3: being allowed to exit ML means

cars within limit and no opposite traffic

◇ inv2 4: being allowed to exit IL means
some car in IL and no opposite traffic
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Model m2: Refining Old, Abstract Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Concrete/Refined version of event ML out :
ML out

when
??

then
a ∶= a + 1

end

○ Recall the abstract guard of ML out in m1: (c = 0)∧ (a + b < d)
⇒ Unrealistic as drivers should not know about a, b, c!

○ ML out is refined : a car exits the ML (to the bridge) only when:

● the traffic light ml tl allows● Concrete/Refined version of event IL out :
IL out

when
??

then
b ∶= b − 1
c ∶= c + 1

end

○ Recall the abstract guard of IL out in m1: (a = 0) ∧ (b > 0)
⇒ Unrealistic as drivers should not know about a, b, c!

○ IL out is refined : a car exits the IL (to the bridge) only when:

● the traffic light il tl allows
Q1. How about the other two “old” events IL in and ML in?
A1. No need to refine as already guarded by ML out and IL out .
Q2. What if the driver disobeys ml tl or il tl? [ A2. ENV3 ]
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Model m2: New, Concrete Events
● The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.● Considered events already existing in m1:○ ML out & IL out [ REFINED ]○ IL in & ML in [ UNCHANGED ]● New event ML tl green:

ML tl green
when

??
then

ml tl ∶= green
end

○ ML tl green denotes the traffic light ml tl turning green.○ ML tl green enabled only when:● the traffic light not already green● limited number of cars on the bridge and the island● No opposite traffic
[⇒ ML out ’s abstract guard in m1 ]● New event IL tl green:

IL tl green
when

??
then

il tl ∶= green
end

○ IL tl green denotes the traffic light il tl turning green.○ IL tl green enabled only when:● the traffic light not already green● some cars on the island (i.e., island not empty)● No opposite traffic
[⇒ IL out ’s abstract guard in m1 ]
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Invariant Preservation in Refinement m2

constants: d

sets: COLOR

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0
axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

variables:
a,b,c
ml tl
il tl

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 ∶ il tl = green⇒ b > 0 ∧ a = 0

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green

end

ML out
when

ml tl = green
then

a ∶= a + 1
end

IL out
when

il tl = green
then

b ∶= b − 1
c ∶= c + 1

end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

Recall the PO/VC Rule of Invariant Preservation for Refinement:
A(c)
I(c,v)
J(c,v,w)
H(c,w)�
Ji(c,E(c,v),F(c,w))

INV where Ji denotes a single concrete invariant

○ How many sequents to be proved? [ # concrete evts × # concrete invariants = 6 × 4 ]○ We discuss two sequents: ML out�inv2 4�INV and IL out�inv2 3�INV
Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.
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INV PO of m2: ML out/inv2 4/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 4

with ML out’s effect in the post-state � il tl = green⇒ b > 0 ∧ (a + 1) = 0

ML out/inv2 4/INV
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INV PO of m2: IL out/inv2 3/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0

Concrete guards of IL out � il tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IL out/inv2 3/INV
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Example Inference Rules (7)

H,P,Q � R

H,P,P⇒Q � R
IMP L

If a hypothesis P matches the assumption of
another implicative hypothesis P ⇒ Q,

then the conclusion Q of the implicative hypothesis

can be used as a new hypothesis for the sequent.

H,P � Q

H � P⇒Q
IMP R

To prove an implicative goal P ⇒ Q,
it suffices to prove its conclusion Q,
with its assumption P serving as a new hypotheses.

H,¬Q � P

H,¬P � Q
NOT L

To prove a goal Q with a negative hypothesis ¬ P,
it suffices to prove the negated hypothesis ¬(¬P) ≡ P

with the negated original goal ¬ Q

serving as a new hypothesis.
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Proving ML out/inv2 4/INV: First Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

MON

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

IMP R

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

IMP L

green ≠ red
b > 0 ∧ a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

AND L

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�
b > 0 ∧ (a + 1) = 0

AND R

���������������������������������������������������������������������

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�
b > 0

HYP

green ≠ red
b > 0
a = 0
ml tl = green
il tl = green�(a + 1) = 0

EQ LR,
MON

green ≠ red
ml tl = green
il tl = green�
(0 + 1) = 0

ARI

green ≠ red
ml tl = green
il tl = green�
1 = 0

??
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Proving IL out/inv2 3/INV: First Attempt
d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

MON

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IMP R

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

IMP L

green ≠ red
a + b < d ∧ c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND L

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND R

���������������������������������������������������������������������

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�
a + (b − 1) < d

MON
a + b < d�
a + (b − 1) < d

ARI

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = green�(c + 1) = 0

EQ LR,
MON

green ≠ red
il tl = green
ml tl = green�
(0 + 1) = 0

ARI

green ≠ red
il tl = green
ml tl = green�
1 = 0

??
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Failed: ML out/inv2 4/INV, IL out/inv2 3/INV

● Our first attempts of proving ML out/inv2 4/INV and IL out/inv2 3/INV both
failed the 2nd case (resulted from applying IR AND R):

green ≠ red ∧ il tl = green ∧ml tl = green � 1 = 0

● This unprovable sequent gave us a good hint:
○ Goal 1 = 0 ≡ false suggests that the safety requirements

a = 0 (for inv2 4) and c = 0 (for inv2 3) contradict with the current m2.

○ Hyp. il tl = green = ml tl suggests a possible, dangerous state of m2,
where two cars heading different directions are on the one-way bridge:

� init���
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl ′ = red
il tl ′ = red

, ML tl green�����������������������������������������������������������
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl’ = green
il tl ′ = red

, ML out����������������������
d = 2
a’ = 1
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL in���
d = 2
a’ = 0
b’ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�������������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl’ = green

, IL out�������������
d = 2
a′ = 0
b’ = 0
c’ = 1

ml tl ′ = green
il tl ′ = green

, ML out����������������������
d = 2
a’ = 1
b′ = 0
c′ = 1

ml tl ′ = green
il tl ′ = green

�
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Fixing m2: Adding an Invariant
● Having understood the failed proofs, we add a proper invariant to m2:

invariants:
. . .
inv2 5 ∶ ml tl = red ∨ il tl = red

● We have effectively resulted in an improved m2 more faithful w.r.t. REQ3:

REQ3 The bridge is one-way or the other, not both at the same time.

● Having added this new invariant inv2 5:○ Original 6× 4 generated sequents to be updated: inv2 5 a new hypothesis
e.g., Are ML out/inv2 4/INV and IL out/inv2 3/INV now provable?○ Additional 6 × 1 sequents to be generated due to this new invariant
e.g., Are ML tl green/inv2 5/INV and IL tl green/inv2 5/INV provable?
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INV PO of m2: ML out/inv2 4/INV – Updated

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 4

with ML out’s effect in the post-state � il tl = green⇒ b > 0 ∧ (a + 1) = 0

ML out/inv2 4/INV
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INV PO of m2: IL out/inv2 3/INV – Updated

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of IL out � il tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IL out/inv2 3/INV
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Proving ML out/inv2 4/INV: Second Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

MON

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
il tl = green⇒ b > 0 ∧ (a + 1) = 0

IMP R

green ≠ red
il tl = green⇒ b > 0 ∧ a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

IMP L

green ≠ red
b > 0 ∧ a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

AND L

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0 ∧ (a + 1) = 0

AND R

���������������������������������������������������������������������������������������������������������

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
b > 0

HYP

green ≠ red
b > 0
a = 0
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�(a + 1) = 0

EQ LR,
MON

green ≠ red
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
(0 + 1) = 0

ARI

green ≠ red
ml tl = green
ml tl = red ∨ il tl = red
il tl = green�
1 = 0

OR L

�����������������������������������������������������������

green ≠ red
ml tl = green
ml tl = red
il tl = green�
1 = 0

EQ LR,
MON

green ≠ red
green = red
il tl = green�
1 = 0

NOT L

green = red
il tl = green
1 ≠ 0�
green = red

HYP

green ≠ red
ml tl = green
il tl = red
il tl = green�
1 = 0

EQ LR,
MON

green ≠ red
ml tl = green
red = green�
1 = 0

NOT L

ml tl = green
red = green
1 ≠ 0�
green = red

HYP
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Proving IL out/inv2 3/INV: Second Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

MON

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
ml tl = red ∨ il tl = red
il tl = green�
ml tl = green⇒ a + (b − 1) < d ∧ (c + 1) = 0

IMP R

green ≠ red
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

IMP L

green ≠ red
a + b < d ∧ c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND L

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d ∧ (c + 1) = 0

AND R

���������������������������������������������������������������������������������������������������������

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
a + (b − 1) < d

MON
a + b < d�
a + (b − 1) < d

ARI

green ≠ red
a + b < d
c = 0
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�(c + 1) = 0

EQ LR,
MON

green ≠ red
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
(0 + 1) = 0

ARI

green ≠ red
il tl = green
ml tl = red ∨ il tl = red
ml tl = green�
1 = 0

OR L

�����������������������������������������������������������

green ≠ red
il tl = green
ml tl = red
ml tl = green�
1 = 0

EQ LR,
MON

green ≠ red
il tl = green
red = green�
1 = 0

NOT L

il tl = green
red = green
1 ≠ 0

�
green = red

HYP

green ≠ red
il tl = green
il tl = red
ml tl = green�
1 = 0

EQ LR,
MON

green ≠ red
green = red
ml tl = green�
1 = 0

NOT L

green = red
ml tl = green
1 ≠ 0�
green = red

HYP
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Fixing m2: Adding Actions
● Recall that an invariant was added to m2:

invariants:
inv2 5 ∶ ml tl = red ∨ il tl = red

● Additional 6 × 1 sequents to be generated due to this new invariant:○ e.g., ML tl green/inv2 5/INV [ for ML tl green to preserve inv2 5 ]○ e.g., IL tl green/inv2 5/INV [ for IL tl green to preserve inv2 5 ]● For the above sequents to be provable, we need to revise the two events:

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green
il tl ∶= red

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green
ml tl ∶= red

end

Exercise: Specify and prove ML tl green/inv2 5/INV & IL tl green/inv2 5/INV.
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INV PO of m2: ML out/inv2 3/INV

axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red

Concrete guards of ML out � ml tl = green�
Concrete invariant inv2 3

with ML out’s effect in the post-state � ml tl = green⇒ (a + 1) + b < d ∧ c = 0

ML out/inv2 3/INV
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Proving ML out/inv2 3/INV: First Attempt

d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml tl = green�
ml tl = green⇒ (a + 1) + b < d ∧ c = 0

MON

ml tl = green⇒ a + b < d ∧ c = 0�
ml tl = green⇒ (a + 1) + b < d ∧ c = 0

IMP R

ml tl = green⇒ a + b < d ∧ c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

IMP R

a + b < d ∧ c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

AND L

a + b < d
c = 0
ml tl = green�(a + 1) + b < d ∧ c = 0

AND R

�������������������������������������������������

a + b < d
c = 0
ml tl = green�(a + 1) + b < d

??

a + b < d
c = 0
ml tl = green�
c = 0

HYP
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Failed: ML out/inv2 3/INV
● Our first attempt of proving ML out/inv2 3/INV failed the 1st case (resulted

from applying IR AND R):

a + b < d ∧ c = 0 ∧ml tl = green � (a + 1) + b < d
● This unprovable sequent gave us a good hint:○ Goal (a + 1���

a′
) + b���

b′
< d specifies the capacity requirement .

○ Hypothesis c = 0 ∧ml tl = green assumes that it’s safe to exit the ML.

○ Hypothesis a + b < d is not strong enough to entail (a + 1) + b < d .
e.g., d = 3, b = 0, a = 0 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 1, a = 0 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 0, a = 1 [ (a + 1) + b < d evaluates to true ]
e.g., d = 3, b = 0, a = 2 [ (a + 1) + b < d evaluates to false ]
e.g., d = 3, b = 1, a = 1 [ (a + 1) + b < d evaluates to false ]
e.g., d = 3, b = 2, a = 0 [ (a + 1) + b < d evaluates to false ]○ Therefore, a + b < d (allowing one more car to exit ML) should be split:
a + b + 1 ≠ d [ more later cars may exit ML, ml tl remains green ]
a + b + 1 = d [ no more later cars may exit ML, ml tl turns red ]
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Fixing m2: Splitting ML out and IL out
● Recall that ML out/inv2 3/INV failed ∵ two cases not handled separately:

a + b + 1 ≠ d [ more later cars may exit ML, ml tl remains green ]
a + b + 1 = d [ no more later cars may exit ML, ml tl turns red ]

● Similarly, IL out/inv2 4/INV would fail ∵ two cases not handled separately:
b − 1 ≠ 0 [ more later cars may exit IL, il tl remains green ]
b − 1 = 0 [ no more later cars may exit IL, il tl turns red ]● Accordingly, we split ML out and IL out into two with corresponding guards.

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red

end

Exercise: Given the latest m2, how many sequents to prove for invariant preservation?
Exercise: Specify and prove ML out i /inv2 3/INV & IL out i /inv2 4/INV (where i ∈ 1 .. 2).
Exercise: Each split event (e.g., ML out 1) refines its abstract counterpart (e.g., ML out)?
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m2 Livelocks: New Events Diverging● Recall that a system may livelock if the new events diverge.● Current m2’s two new events ML tl green and IL tl green may diverge :

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl ∶= green
il tl ∶= red

end

IL tl green
when

il tl = red
b > 0
a = 0

then
il tl ∶= green
ml tl ∶= red

end

● ML tl green and IL tl green both enabled and may occur indefinitely , preventing
other “old” events (e.g., ML out) from ever happening:

� init���
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl = red
il tl = red

, ML tl green��������������������������������������������������������
d = 2
a′ = 0
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, ML out 1�������������������������������������
d = 2
a′ = 1
b′ = 0
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL in���
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�����������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = red
il tl ′ = green

, ML tl green��������������������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = green
il tl ′ = red

, IL tl green�����������������������������������������������
d = 2
a′ = 0
b′ = 1
c′ = 0

ml tl ′ = red
il tl ′ = green

, . . . �

⇒ Two traffic lights keep changing colors so rapidly that no drivers can ever pass!● Solution: Allow color changes between traffic lights in a disciplined way.
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Fixing m2: Regulating Traffic Light Changes
We introduce two variables/flags for regulating traffic light changes:○ ml pass is 1 if, since ml tl was last turned green, at least one car exited the ML

onto the bridge. Otherwise, ml pass is 0.○ il pass is 1 if, since il tl was last turned green, at least one car exited the IL
onto the bridge. Otherwise, il pass is 0.

variables: ml pass, il pass

invariants:
inv2 6 ∶ml pass ∈ {0,1}
inv2 7 ∶ il pass ∈ {0,1}
inv2 8 ∶ml tl = red ⇒ml pass = 1
inv2 9 ∶ il tl = red ⇒ il pass = 1

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1
ml pass ∶= 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red
ml pass ∶= 1

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1
il pass ∶= 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red
il pass ∶= 1

end

ML tl green
when

ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl ∶= green
il tl ∶= red
ml pass ∶= 0

end

IL tl green
when

il tl = red
b > 0
a = 0
ml pass = 1

then
il tl ∶= green
ml tl ∶= red
il pass ∶= 0

end
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Fixing m2: Measuring Traffic Light Changes
● Recall:○ Interleaving of new events charactered as an integer expression: variant .○ A variant V(c,w) may refer to constants and/or concrete variables.○ In the latest m2, let’s try variants ∶ ml pass + il pass
● Accordingly, for the new event ML tl green:

d ∈ N d > 0
COLOUR = {green, red} green ≠ red
n ∈ N n ≤ d
a ∈ N b ∈ N c ∈ N
a + b + c = n a = 0 ∨ c = 0
ml tl ∈ COLOUR il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0 il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml pass ∈ {0,1} il pass ∈ {0,1}
ml tl = red⇒ml pass = 1 il tl = red⇒ il pass = 1
ml tl = red a + b < d c = 0
il pass = 1�
0 + il pass < ml pass + il pass

ML tl green/VAR

Exercises: Prove ML tl green/VAR and Formulate/Prove IL tl green/NAT.
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PO Rule: Relative Deadlock Freedom of m2
axm0 1 � d ∈ N
axm0 2 � d > 0
axm2 1 � COLOUR = {green, red}
axm2 2 � green ≠ red

inv0 1 � n ∈ N
inv0 2 � n ≤ d
inv1 1 � a ∈ N
inv1 2 � b ∈ N
inv1 3 � c ∈ N
inv1 4 � a + b + c = n
inv1 5 � a = 0 ∨ c = 0
inv2 1 � ml tl ∈ COLOUR
inv2 2 � il tl ∈ COLOUR
inv2 3 � ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 � il tl = green⇒ b > 0 ∧ a = 0
inv2 5 � ml tl = red ∨ il tl = red
inv2 6 � ml pass ∈ {0,1}
inv2 7 � il pass ∈ {0,1}
inv2 8 � ml tl = red ⇒ml pass = 1
inv2 9 � il tl = red ⇒ il pass = 1

Disjunction of abstract guards

���������������

a + b < d ∧ c = 0 � guards of ML out in m1∨ c > 0 � guards of ML in in m1∨ a > 0 � guards of IL in in m1∨ b > 0 ∧ a = 0 � guards of IL out in m1�

Disjunction of concrete guards

�����������������������������������

ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1 � guards of ML tl green in m2∨ il tl = red ∧ b > 0 ∧ a = 0 ∧ml pass = 1 � guards of IL tl green in m2∨ ml tl = green ∧ a + b + 1 ≠ d � guards of ML out 1 in m2∨ ml tl = green ∧ a + b + 1 = d � guards of ML out 2 in m2∨ il tl = green ∧ b ≠ 1 � guards of IL out 1 in m2∨ il tl = green ∧ b = 1 � guards of IL out 2 in m2∨ a > 0 � guards of ML in in m2∨ c > 0 � guards of IL in in m2

DLF
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Proving Refinement: DLF of m2
d ∈ N
d > 0
COLOUR = {green, red}
green ≠ red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOUR
il tl ∈ COLOUR
ml tl = green⇒ a + b < d ∧ c = 0
il tl = green⇒ b > 0 ∧ a = 0
ml tl = red ∨ il tl = red
ml pass ∈ {0,1}
il pass ∈ {0,1}
ml tl = red ⇒ml pass = 1
il tl = red ⇒ il pass = 1

a + b < d ∧ c = 0∨ c > 0∨ a > 0∨ b > 0 ∧ a = 0�
ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1∨ il tl = red ∧ b > 0 ∧ a = 0 ∧ml pass = 1∨ ml tl = green∨ il tl = green∨ a > 0∨ c > 0

⋮
d ∈ N
d > 0
b ∈ N
ml tl = red
il tl = red
ml tl = red ⇒ml pass = 1
il tl = red ⇒ il pass = 1�

b < d ∧ml pass = 1 ∧ il pass = 1∨ b > 0 ∧ml pass = 1 ∧ il pass = 1

...

d ∈ N
d > 0
b ∈ N
ml tl = red
il tl = red
ml pass = 1
il pass = 1�

b < d ∧ml pass = 1 ∧ il pass = 1∨ b > 0 ∧ml pass = 1 ∧ il pass = 1

...

d > 0
b ∈ N�
b < d ∨ b > 0

ARI

d > 0
b > 0 ∨ b = 0�
b < d ∨ b > 0

OR L

���������������������������������������

d > 0
b > 0�
b < d ∨ b > 0

OR R2

d > 0
b > 0�
b > 0

HYP

d > 0
b = 0�
b < d ∨ b > 0

EQ LR,MON

d > 0

�
0 < d ∨ 0 > 0

OR R1

d > 0

�
0 < d

HYP
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Second Refinement: Summary
● The final version of our second refinement m2 is provably correct w.r.t.:○ Establishment of Concrete Invariants [ init ]○ Preservation of Concrete Invariants [ old & new events ]○ Strengthening of guards [ old events ]○ Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]○ Relative Deadlock Freedom● Here is the final specification of m2:

constants: d

sets: COLOR

axioms:
axm0 1 ∶ d ∈ N
axm0 2 ∶ d > 0
axm2 1 ∶ COLOR = {green, red}
axm2 2 ∶ green ≠ red

variables:
a
b
c
ml tl
il tl
ml pass
il pass

invariants:
inv2 1 ∶ ml tl ∈ COLOUR
inv2 2 ∶ il tl ∈ COLOUR
inv2 3 ∶ ml tl = green⇒ a + b < d ∧ c = 0
inv2 4 ∶ il tl = green⇒ b > 0 ∧ a = 0
inv2 5 ∶ ml tl = red ∨ il tl = red
inv2 6 ∶ ml pass ∈ {0,1}
inv2 7 ∶ il pass ∈ {0,1}
inv2 8 ∶ ml tl = red⇒ml pass = 1
inv2 9 ∶ il tl = red⇒ il pass = 1

variants:
ml pass + il pass

ML tl green
when

ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl ∶= green
il tl ∶= red
ml pass ∶= 0

end

IL tl green
when

il tl = red
b > 0
a = 0
ml pass = 1

then
il tl ∶= green
ml tl ∶= red
il pass ∶= 0

end

ML out 1
when

ml tl = green
a + b + 1 ≠ d

then
a ∶= a + 1
ml pass ∶= 1

end

ML out 2
when

ml tl = green
a + b + 1 = d

then
a ∶= a + 1
ml tl ∶= red
ml pass ∶= 1

end

IL out 1
when

il tl = green
b ≠ 1

then
b ∶= b − 1
c ∶= c + 1
il pass ∶= 1

end

IL out 2
when

il tl = green
b = 1

then
b ∶= b − 1
c ∶= c + 1
il tl ∶= red
il pass ∶= 1

end

ML in
when

c > 0
then

c ∶= c − 1
end

IL in
when

a > 0
then

a ∶= a − 1
b ∶= b + 1

end
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