Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System Specification and Refinement Winter 2023

Chen-Wei Wang

Recall: Correct by Construction

- Directly reasoning about <u>source code</u> (written in a programming language) is <u>too</u> complicated to be feasible.
- Instead, given a *requirements document*, prior to <u>implementation</u>, we develop *models* through a series of *refinement* steps:
 - Each model formalizes an external observer's perception of the system.
 - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
 - The *first model*, though the most *abstract*, can <u>already</u> be proved satisfying <u>some</u> *requirements*.
 - Starting from the *second model*, each model is analyzed and proved *correct* relative to two criteria:
 - 1. <u>Some</u> *requirements* (i.e., R-descriptions)
 - Proof Obligations (POs) related to the preceding model being refined by the <u>current</u> model (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

3 of 124

This module is designed to help you understand:

- What a *Requirement Document (RD*) is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

State Space of a Model

- A model's state space is the set of all configurations:
 - Each *configuration* assigns values to constants & variables, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - *invariant* properties/theorems
 - Say an initial model of a bank system with two constants and a variable:

 $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String
ightarrow \mathbb{Z}$

```
/* typing constraint */
```

 $\forall id \bullet id \in \text{dom}(accounts) \Rightarrow -c \leq accounts(id) \leq L \quad /^* \text{ desired property } */$

Q. What is the state space of this initial model?

- **A**. All valid combinations of *c*, *L*, and *accounts*.
- Configuration 1: (*c* = 1,000, *L* = 500,000, *b* = ∅)
- Configuration 2: (*c* = 2,375, *L* = 700,000, *b* = {("*id*1",500), ("*id*2", 1,250)})
 - [Challenge: Combinatorial Explosion]
- Model Concreteness $\uparrow \Rightarrow$ (State Space $\uparrow \land$ Verification Difficulty \uparrow)
- A model's *complexity* should be guided by those properties intended to be <u>verified</u> against that model.
 - \Rightarrow *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.
 - \Rightarrow *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.
- 4 of 124

Roadmap of this Module

 We will walk through the *development process* of constructing *models* of a control system regulating cars on a bridge. Such controllers exemplify a *reactive system*.

(with sensors and actuators)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
 - 2. A brief overview of the *refinement strategy*
 - 3. An initial, the most *abstract* model

5 of 124

6 of 124

- 4. A subsequent model representing the 1st refinement
- 5. A subsequent model representing the 2nd refinement
- 6. A subsequent model representing the 3rd refinement

Requirements Document: E-Descriptions

LASSONDE

Each *E-Description* is an <u>atomic specification</u> of a *constraint* or an *assumption* of the system's working environment.

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic specification</u> of an intended *functionality* or a desired *property* of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ2	The number of cars on bridge and island is limited.
REQ3	The bridge is one-way or the other, not both at the same time.

Requirements Document: Visual Summary of Equipment Pieces

Model *m*₀: Abstraction

- In this <u>most</u> *abstract* perception of the bridge controller, we do <u>not</u> even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

Analogies:

11 of 124

 Observe the system from the sky: island and bridge appear only as a compound.

"Zoom in" on the system as refinements are introduced.

9 of 124

Refinement Strategy

- Before diving into details of the *models*, we first clarify the adopted design strategy of progressive refinements.
 - **0.** The *initial model* (*m*₀) will address the intended functionality of a limited number of cars on the island and bridge.
- [REQ2]

LASSONDE

- A 1st refinement (m₁ which refines m₀) will address the intended functionality of the bridge being one-way.
- **2.** A *2nd refinement* (*m*₂ which *refines m*₁) will address the environment constraints imposed by *traffic lights*.

[ENV1, ENV2, ENV3]

[REQ1, REQ3]

3. A *final, 3rd refinement* (*m*₃ which *refines m*₂) will address the environment constraints imposed by *sensors* and the *architecture*: controller, environment, communication channels.

[ENV4, ENV5]

• Recall *Correct by Construction* :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it *feasible* to conduct **analysis** and **proofs**.

Model *m*₀: State Space

LASSONDE

The static part is fixed and may be seen/imported.
 A constant d denotes the maximum number of cars allowed to be on the island-bridge compound at any time.

(whereas cars on the mainland is unbounded)

constants: d

Remark. Axioms are assumed true and may be used to prove theorems.

- 2. The *dynamic* part changes as the system *evolves*.
 - A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

- Remark. Invariants should be (subject to proofs):
- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

Model *m*₀: State Transitions via Events

 The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.

- At any given *state* (a valid *configuration* of constants/variables):
 - An event is said to be *enabled* if its guard evaluates to *true*.
 - An event is said to be *disabled* if its guard evaluates to *false*.
 - An <u>enabled</u> event makes a state transition if it occurs and its actions take effect.
- <u>1st</u> event: A car exits mainland (and enters the island-bridge compound).

 ML_out
 Correct Specification? Say d = 2.

 n := n + 1 Witness: Event Trace (init, ML_out, ML_out, ML_out)

 end
 M_{init}

• <u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).

Design of Events: Invariant Preservation

• Our design of the two events

only specifies how the *variable* n should be updated.

• Remember, *invariants* are conditions that should never be violated!

 By simulating the system as an *ASM*, we discover *witnesses* (i.e., <u>event traces</u>) of the *invariants* <u>not</u> being preserved <u>all the time</u>.
 ∃s • s ∈ STATE SPACE ⇒ ¬*invariants*(s)

We formulate such a commitment to preserving *invariants* as a *proof* obligation (PO) rule (a.k.a. a verification condition (VC) rule).

15 of 124

Model mo: Actions vs. Before-After Predicates on De

- When an enabled event e occurs there are two notions of state:
 - Before-/Pre-State: Configuration just before e's actions take effect
 - · After-/Post-State: Configuration just after e's actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the

pre-state to the post-state.

• As examples, consider *actions* of *m*₀'s two events:

- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The *before-after predicate* (*BAP*) "n' = n + 1" expresses that
 - n' (the **post-state** value of n) is one more than n (the **pre-state** value of n).
- When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*. 14 of 124

Sequents: Syntax and Semantics

LASSONDE

• We formulate each **PO/VC** rule as a (horizontal or vertical) **sequent**:

- The symbol \vdash is called the *turnstile*.
- *H* is a <u>set</u> of predicates forming the *hypotheses*/*assumptions*.

[assumed as *true*]

false ⊢ G

?1

• G is a <u>set</u> of predicates forming the *goal/conclusion*.

Н

[claimed to be *provable* from *H*]

• Informally:

Α.

16 of 124

- $H \vdash G$ is *true* if G can be proved by assuming H.
 - [i.e., We say "H entails G" or "H yields G"]

=

⊢G

• $H \vdash G$ is *false* if G cannot be proved by assuming H.

true ⊢ G

• Formally: $H \vdash G \iff (H \Rightarrow G)$

⊢ G

Q. What does it mean when *H* is empty (i.e., no hypotheses)?

[Why not

PO of Invariant Preservation: Sketch

- Here is a sketch of the PO/VC rule for *invariant preservation*:

Axioms	
Invariants Satisfied at Pre-State	
Guards of the Event	
F	
<i>Invariants</i> Satisfied at <i>Post-State</i>	

 Informally, this is what the above PO/VC requires to prove : Assuming all <u>axioms</u>, <u>invariants</u>, and the event's <u>guards</u> hold at the pre-state, after the state transition is made by the event,

all invariants hold at the post-state.

17 of 124

• Based on the components (*c*, *A*(*c*), *v*, *I*(*c*, *v*), *E*(*c*, *v*)), we are able to formally state the *PO/VC Rule of Invariant Preservation*:

A(c)		
l(c, v)		
$G(c, \mathbf{v})$	INV	where I_i denotes a single invariant condition
-		·
l _i (c, E(c, v))		

LASSONDE

LASSONDE

- Accordingly, how many *sequents* to be proved? [# events × # invariants]
- We have two sequents generated for event ML_out of model m₀:

$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \le d$	ML_out/ inv0_1 /INV	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$	ML_out/ inv0_2 /INV
⊢ <i>n</i> + 1 ∈ ℕ		⊢ <i>n</i> + 1 ≤ <i>d</i>	

Exercise. Write the **POs of invariant preservation** for event *ML_in*.

• Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all *POs*</u> must be <u>proved/discharged</u>.

19 of 124

20 of 124

Inference Rules: Syntax and Semantics

- An *inference rule (IR)* has the following form:
 - $\frac{A}{C}$ L

Formally: $A \Rightarrow C$ is an <u>axiom</u>.

- Informally: To prove C, it is sufficient to prove A instead.
- **Informally**: *C* is the case, assuming that *A* is the case.
- *L* is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a <u>set</u> of sequents known as *antecedents* of rule L.
- **C** is a **<u>single</u>** sequent known as *consequent* of rule *L*.
- Let's consider inference rules (IRs) with two different flavours:

• IR **MON**: To prove $H1, H2 \vdash G$, it <u>suffices</u> to prove $H1 \vdash G$ instead. • IR **P2**: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an **axiom**.

[proved automatically without further justifications]

Proof of Sequent: Steps and Structure

• To prove the following sequent (related to *invariant preservation*):

- 1. Apply a *inference rule*, which *transforms* some "outstanding" sequent to <u>one</u> or <u>more</u> other sequents to be proved instead.
- Keep applying *inference rules* until <u>all</u> *transformed* sequents are axioms that do <u>not</u> require any further justifications.

21 of 124

• Here is a *formal proof* of ML_out/inv0_1/INV, by applying IRs MON and P2:

Example Inference Rules (2)

n-1 is strictly less than m, assuming that n is less than or equal to m.

Revisiting Design of Events: *ML_out*

LASSONDE

• Recall that we already proved PO ML_out/inv0_1/INV :

- .: *ML_out/inv0_1/INV* succeeds in being discharged.
- How about the other **PO** ML_out/inv0_2/INV for the same event?

... ML_out/inv0_2/INV fails to be discharged.

25 of 124

Revisiting Design of Events: *ML_in*

• How about the *PO* ML_in/inv0_1/INV for *ML_in*:

- ... *ML_in/inv0_1/INV* fails to be discharged.
- How about the other *PO* ML_in/inv0_2/INV for the same event?

.: *ML_in/inv0_2/INV* succeeds in being discharged.

Fixing the Design of Events

LASSONDE

- Proofs of <u>ML_out/inv0_2/INV</u> and <u>ML_in/inv0_1/INV</u> fail due to the two events being <u>enabled</u> when they should <u>not</u>.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:

ML₋out when	ML₋in when
n < d	<i>n</i> > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

- Having changed both events, <u>updated</u> sequents will be generated for the PO/VC rule of *invariant preservation*.
- <u>All sequents</u> ({*ML_out*, *ML_in*} × {**inv0_1**, **inv0_2**}) now *provable*?

27 of 124

28 of 124

Revisiting Fixed Design of Events: *ML_out*

• How about the *PO* ML_out/inv0_1/INV for *ML_out*:

- .:. *ML_out/inv0_1/INV* still <u>succeeds</u> in being discharged!
- How about the other **PO** ML_out/inv0_2/INV for the same event?

.:. ML_out/inv0_2/INV now succeeds in being discharged!

Revisiting Fixed Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:

- .: ML_in/inv0_1/INV now succeeds in being discharged!
- How about the other **PO** ML_in/inv0_2/INV for the same event?

PO of Invariant Establishment

Invariants Satisfied at *Post-State*

INV $I_i(c, \mathbf{K(c)})$

LASSONDE

31 of 124

LASSONDE

LASSONDE

Initializing the Abstract System m_0

- Discharging the four sequents proved that both invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the *invariants established* in the first place? Analogy. Proving *P* via *mathematical induction*, two cases to prove:
 - *P*(1), *P*(2), ... $\circ P(n) \Rightarrow P(n+1)$

begin

end

n := 0

init

- [base cases ≈ establishing inv.] [inductive cases ~ preserving inv.]
- Therefore, we specify how the **ASM**'s initial state looks like:

✓ The IB compound, once *initialized*, has no cars.

 \checkmark Initialization always possible: guard is *true*.

✓ There is no *pre-state* for *init*.

- .: The RHS of := must not involve variables.
- \therefore The RHS of := may only involve constants.
- ✓ There is only the **post-state** for *init*.
 - \therefore Before-*After Predicate*: n' = 0

Discharging PO of Invariant Establishment

• How many sequents to be proved?

[# invariants]

• We have two *sequents* generated for *event init* of model *m*₀:

• Can we discharge the **PO** init/inv0_1/INV ?

• Can we discharge the **PO** init/inv0_2/INV ?

 $d \in \mathbb{N}$

 $0 \leq d$

⊢

System Property: Deadlock Freedom

LASSONDE

 $\langle d \rangle$

 $\langle axm0_1 \rangle$

 $\mathbf{v} \cong \langle n \rangle, \mathbf{v}' \cong \langle n' \rangle$

 $(inv0_1, inv0_2)$

- So far we have proved that our initial model m₀ is s.t. <u>all invariant</u> conditions are:
 - Established when system is first initialized via init
 - Preserved whenevner there is a state transition

(via an enabled event: ML_out or ML_in)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
 - A state where guards of all events evaluate to false
 - When a *deadlock* happens, <u>none</u> of the *events* is *enabled*.
 - \Rightarrow The system is blocked and \underline{not} reactive anymore!
- We express this *non-blocking* property as a new requirement:

33 of 124

PO of Deadlock Freedom (2)

- Deadlock freedom is not necessarily a desired property.
 ⇒ When it is (like m₀), then the generated sequents must be discharged.
- Applying the PO of *deadlock freedom* to the initial model *m*₀:

Our bridge controller being *deadlock-free* means that cars can *always* <u>enter</u> (via *ML_out*) or <u>leave</u> (via *ML_in*) the island-bridge compound.

• Can we formally discharge this PO for our initial model m₀?

35 of 124

- Recall some of the formal components we discussed:
 - c: list of constants
 - A(c): list of **axioms**
 - *v* and *v*': list of *variables* in *pre* and *post*-states
 - l(c, v): list of *invariants*
 - G(c, v): the event's list of *guards*

 $G(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \ \widehat{=} \ \langle n < d \rangle, \ G(\langle d \rangle, \langle n \rangle) \text{ of } ML_in \ \widehat{=} \ \langle n > 0 \rangle$

• A system is *deadlock-free* if <u>at least one</u> of its *events* is *enabled*:

To prove about deadlock freedom

- An event's effect of state transition is not relevant.
- Instead, the evaluation of <u>all</u> events' *guards* at the *pre-state* is relevant.

Example Inference	ce Rules (4)
$H,P \vdash P$ HYP	A goal is proved if it can be assumed.
$ FALSE_L$	Assuming <i>false</i> (⊥), anything can be proved.
$ TRUE_R$	<i>true</i> (⊤) is proved, regardless of the assumption.
$P \vdash E = E$ EQ	An expression being equal to itself is proved, regardless of the assumption.
36 of 124	

Example Inference Rules (5)

To prove a goal $P(\mathbf{E})$ assuming $H(\mathbf{E})$, where both P and H depend on expression E, it suffices to prove $P(\mathbf{F})$ assuming $H(\mathbf{F})$, where both P and H depend on expression F, given that **E** is equal to **F**.

To prove a goal $P(\mathbf{F})$ assuming $H(\mathbf{F})$, where both P and H depend on expression F, it suffices to prove $P(\mathbf{E})$ assuming $H(\mathbf{E})$, where both P and H depend on expression E. given that **E** is equal to **F**.

Discharging PO of DLF: First Attempt

LASSONDE

39 of 124

d ∈ ℕ

Discharging PO of DLF: Exercise

Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This unprovable sequent gave us a good hint:
 - For the model under consideration (m_0) to be *deadlock-free*, $[\geq 1 \text{ car allowed in the IB compound }]$ it is required that d > 0.
 - But current **specification** of m_0 **not** strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given **axm0_1** : *d* ∈ ℕ
 - \Rightarrow d = 0 is allowed by m_0 which causes a *deadlock*.
- Recall the *init* event and the two *guarded* events:

init	ML_out when	ML₋in when
begin	n < d	<i>n</i> > 0
<i>n</i> := 0	then	then
end	<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> – 1
	end	end

When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$ ⇒ As soon as the system is initialized, it *deadlocks immediately*

as no car can either enter or leave the IR compound!!

40 of 124

38 of 124

Fixing the Context of Initial Model

LASSONDE

• Having understood the <u>failed</u> proof, we add a proper **axiom** to m₀:

• We have effectively elaborated on REQ2:

REQ2	The number of cars on bridge and island is limited but positive.
------	--

- Having changed the context, an <u>updated</u> *sequent* will be generated for the PO/VC rule of *deadlock freedom*.
- Is this new sequent now provable?

41 of 124

Initial Model: Summary

LASSONDE

- The final version of our *initial model* m₀ is **provably correct** w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the <u>final</u> **specification** of m_0 :

Discharging PO of DLF: Second Attempt

Model *m*₁: "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
 We "zoom in" by observing the system from closer to the ground,
 - so that the island-bridge <u>compound</u> is split into:
 - the island
 - the (one-way) bridge

- Nonetheless, traffic lights and sensors remain *abstracted* away!
- That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

We are obliged to prove this added concreteness is consistent with m₀.
 44 of 124

Model *m*₁: Refined State Space

1. The **<u>static</u>** part is the same as m_0 's: **constants**: *d*

LASSONDE

LASSONDE

2. The dynamic part of the concrete state consists of three variables:

Model *m*₁: Actions vs. Before-After Predicates on De

Consider the concrete/refined version of actions of m₀'s two events:

- An event's *actions* are a **specification**: "c becomes c 1 after the transition".
- The *before-after predicate* (*BAP*) "c' = c 1" expresses that
- c' (the **post-state** value of c) is one less than c (the **pre-state** value of c).
- Given that the concrete state consists of three variables:
 - An event's <u>actions only</u> specify those <u>changing</u> from <u>pre</u>-state to <u>post</u>-state.
 [e.g., c' = c 1]
 - Other <u>unmentioned</u> variables have their **post**-state values remain <u>unchanged</u>. [e.g., $a' = a \land b' = b$]

• When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*. 47 of 124

Model *m*₁: State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" events already existing in m₀.
- Concrete/Refined version of event ML_out:

- Meaning of *ML_out* is *refined*:

 a car <u>exits</u> mainland (getting on the bridge).
 ML_out enabled only when:
 - the bridge's current traffic flows to the island
 - number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

 Meaning of *ML_in* is *refined*: a car <u>enters</u> mainland (getting off the bridge).
 ML_in enabled only when:

there is some car on the bridge heading to the mainland.

States & Invariants: Abstract vs. Concrete

- *m*₀ <u>refines</u> *m*₁ by introducing more *variables*:
 - **Abstract** State (of *m*₀ being <u>refined</u>):
 - Concrete State (of the refinement model m_1):

variables: *n* variables: *a*, *b*, *c* LASSONDE

- Accordingly, *invariants* may involve different states:
 - Abstract Invariants

 (involving the abstract state only):
 - Concrete Invariants (involving <u>at least</u> the concrete state):

	variables: <i>a</i> , <i>b</i> , <i>c</i>	
nt	states:	
	invariants: inv0 1 : n ∈ N	
	$inv0_1: n < d$	

$inv0_2: n \le d$	
invariants:	
inv1₋1 : <i>a</i> ∈ ℕ	
inv1_2 : <mark>b</mark> ∈ ℕ	
inv1_3 :	
inv1_4 : <u>a</u> + <u>b</u> + <u>c</u> = n	
inv1 5 : $a = 0 \lor c = 0$	

Events: Abstract vs. Concrete

- When an *event* exists in both models m_0 and m_1 , there are two versions of it:
 - The *abstract* version modifies the *abstract* state.

The concrete version modifies the concrete state.

 A <u>new event</u> may <u>only</u> exist in m₁ (the *concrete* model): we will deal with this kind of events later, separately from "redefined/overridden" events.

49 of 124

LASSONDE

• *G*(*c*, *v*): list of guards of the *abstract event*

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n < d \rangle$, G(c, v) of $ML_in \cong \langle n > 0 \rangle$

• *H*(*c*, *w*): list of guards of the *concrete event*

 $H(\langle d \rangle, \langle a, b, c \rangle)$ of $ML_out \cong \langle a + b < d, c = 0 \rangle$, H(c, w) of $ML_in \cong \langle c > 0 \rangle$

51 of 124

PO of Refinement: Components (3)

• E(c, v): effect of the **abstract event**'s actions i.t.o. what variable values **become**

 $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n-1 \rangle$

• F(c, w): effect of the *concrete event*'s actions i.t.o. what variable values **become**

F(c, v) of $ML_out \cong \langle a+1, b, c \rangle$, F(c, w) of $ML_out \cong \langle a, b, c-1 \rangle$

Sketching PO of Refinement

The PO/VC rule for a *proper refinement* consists of two parts:

1. Guard Strengthening

• A concrete transition always has an abstract counterpart.

LASSONDE

LASSONDE

- A concrete event is enabled only if abstract counterpart is enabled.
- A *concrete* event performs a transition on concrete states.
- This concrete state transition must be consistent with how its abstract counterpart performs a corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable to events that might be *enabled* after the system is launched.

The special, <u>non-guarded</u> init event will be discussed separately later.

PO Rule: Guard Strengthening of *ML_out*

LASSONDE

$axm0_2 \begin{cases} d > 0 \\ inv0_1 \\ n \in \mathbb{N} \\ inv0_2 \\ n \le d \\ inv1_1 \\ a \in \mathbb{N} \\ inv1_2 \\ b \in \mathbb{N} \\ inv1_3 \\ c \in \mathbb{N} \\ inv1_4 \\ a+b+c=n \\ inv1_5 \\ a=0 \lor c=0 \\ a+b < d \\ c=0 \\ \vdash \end{cases} ML_out/GRD$	axm0_1	{ d ∈ ℕ	
$\begin{array}{c c} \operatorname{inv0_{-1}} & \left\{ \begin{array}{l} n \in \mathbb{N} \\ n \leq d \\ \operatorname{inv1_{-1}}} \\ a \in \mathbb{N} \\ \operatorname{inv1_{-2}} \\ b \in \mathbb{N} \\ \operatorname{inv1_{-3}} \\ c \in \mathbb{N} \\ \operatorname{inv1_{-3}} \\ a + b + c = n \\ \operatorname{inv1_{-5}} \\ a = 0 \lor c = 0 \\ A + b < d \\ c = 0 \\ \end{array} \right. \end{array} $ ML_out/GRD	axm0_2	{ <i>d</i> > 0	
$inv0_2 \{ n \le d \\ inv1_1 \{ a \in \mathbb{N} \\ inv1_2 \{ b \in \mathbb{N} \\ inv1_3 \{ c \in \mathbb{N} \\ inv1_4 \{ a+b+c=n \\ inv1_5 \{ a=0 \lor c=0 \\ a+b < d \\ c=0 \\ \vdash \\ \end{cases} ML_out/GRD$	inv0_1	$\{ n \in \mathbb{N} \}$	
$\begin{array}{c c} \operatorname{inv1_1} & \left\{ \begin{array}{l} a \in \mathbb{N} \\ inv1_2 & \left\{ \begin{array}{l} b \in \mathbb{N} \\ inv1_3 & \left\{ \begin{array}{l} c \in \mathbb{N} \\ inv1_4 & \left\{ \begin{array}{l} a+b+c=n \\ inv1_5 & \left\{ \begin{array}{l} a=0 \lor c=0 \\ a+b < d \\ c=0 \end{array} \right. \right. \right.} \end{array} \right. \\ \begin{array}{c} \end{array} ML_out/GRD \end{array}$	inv0_2	{ <i>n</i> ≤ <i>d</i>	
$ \begin{array}{c c} $	inv1_1	{ <i>a</i> ∈ ℕ	
$ \begin{array}{c c} $	inv1_2	$\left\{ b \in \mathbb{N} \right\}$	
$ \begin{array}{c} $	inv1_3	$\left\{ c \in \mathbb{N} \right\}$	ML_out/GRD
$inv1_5 \begin{cases} a = 0 \lor c = 0 \\ a + b < d \\ c = 0 \\ \vdash \end{cases}$	inv1_4	$\{a+b+c=n$	
<i>Concrete</i> guards of <i>ML_out</i> $\begin{cases} a+b < d \\ c = 0 \\ \vdash \end{cases}$	inv1_5	$\{a=0\lor c=0$	
$\begin{array}{c} concrete guards of ML_OUT \\ \vdash c = 0 \\ \vdash \end{array}$	Concrete quards of ML out	∫ a+b <d< th=""><th></th></d<>	
⊢) <i>c</i> = 0	
		-	
Abstract guards of $ML_out \{ n < d \}$	Abstract guards of ML_out	{ <i>n</i> < <i>d</i>	

55 of 124

Refinement Rule: Guard Strengthening

 Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

A(c) $I(c, \mathbf{v})$ $J(c, \mathbf{v}, \mathbf{w})$ where G_i denotes a single guard condition GRD $H(c, \mathbf{W})$ of the abstract event $G_i(c, \mathbf{v})$

- How many *sequents* to be proved?
- [# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $b \in \mathbb{N}$ $c \in \mathbb{N}$ a+b+c=n $a=0 \lor c=0$ *a* ∈ ℕ ML_out/GRD a+b < d = 0n < d

• Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of *ML_in*

Proving Refinement: ML_out/GRD

Refinement Rule: Invariant Preservation

 Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

A(c)		
<i>l</i> (<i>c</i> , <i>v</i>)		
$J(c, \mathbf{v}, \mathbf{w})$	INIV	where <i>l</i> denotes a single concrete invariant
H(c, w)	<u></u>	where of denotes a single concrete invariant
⊢		
$J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$		

LASSONDE

• # sequents to be proved? [# concrete, old evts × # concrete invariants]

• Here are two (of the ten) sequents generated:

• <u>Exercises</u>. <u>Specify</u> and <u>prove</u> other <u>eight</u> *POs of Invariant Preservation*.

57 of 124

Proving Refinement: ML_in/GRD

LASSONDE

Each *concrete* event (w to w') is *simulated by* an *abstract* event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')

INV PO of *m*₁: ML_out/inv1_4/INV

Proving Refinement: ML_out/inv1_4/INV

61 of 124

Initializing the Refined System m₁

- Discharging the twelve sequents proved that:
 - concrete invariants preserved by ML_out & ML_in
 - concrete guards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM**'s *initial state* looks like:

Discharging PO of m_1 **Concrete Invariant Establishment**

- How many *sequents* to be proved? [# concrete invariants]
- Two (of the five) sequents generated for concrete init of m₁:

⊢ Т

• Can we discharge the **PO** init/inv1_4/INV ?

∴ init/inv1_4/INV succeeds in being discharged.

• Can we discharge the PO init/inv1_5/INV ?

ARI. MON

: init/inv1_5/INV succeeds in being discharged.

PO of *m*₁ **Concrete Invariant Establishment**

• Some (new) formal components are needed:

- *K*(*c*): effect of *abstract init*'s actions:
- e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0 \rangle$ • v' = K(c): **before-after predicate** formalizing **abstract** init's actions e.g., BAP of *init*: $\langle \mathbf{n}' \rangle = \langle 0 \rangle$
- L(c): effect of concrete init's actions:
 - e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0, 0, 0 \rangle$
- w' = L(c): before-after predicate formalizing concrete init's actions e.g., BAP of *init*: $\langle \boldsymbol{a}', \boldsymbol{b}', \boldsymbol{c}' \rangle = \langle 0, 0, 0 \rangle$
- Accordingly, PO of *invariant establisment* is formulated as a sequent:

$ \begin{array}{ c c } \vdash & & \\ \hline Concrete Invariants \text{ Satisfied at Post-State} \end{array} & \begin{array}{ c c } \vdash & & \\ \hline J_i(c, K(c), L(c)) \end{array} \end{array} $	Axioms		A(c)	
<i>Concrete Invariants</i> Satisfied at Post-State $J_i(c, K(c), L(c))$	⊢	INV	+	INV
	Concrete Invariants Satisfied at Post-State		$J_i(c, K(c), L(c))$	

Model *m*₁: New, Concrete Events

LASSONDE

• The system acts as an **ABSTRACT STATE MACHINE (ASM)** : it *evolves* as actions of enabled events change values of variables, subject to invariants.

TRUE_R

- Considered concrete/refined events already existing in m₀: ML_out & ML_in
- New event IL_in:

 $d \in \mathbb{N}$

d > 0

67 of 124

 $0 = 0 \lor 0 = 0$

- IL_in denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
 - · The bridge's current traffic flows to the island.
 - **Q**. Limited number of cars on the bridge and the island?
 - A. Ensured when the earlier *ML_out* (of same car) occurred
- New event IL_out:

- IL_out denotes a car exiting the island (getting on the bridge).
- IL_out enabled only when:
 - There is some car on the island.
 - The bridge's current traffic flows to the mainland.

Model *m*₁: BA Predicates of Multiple Actions

Consider *actions* of *m*₁'s two *new* events:

• What is the **BAP** of *ML_in*'s actions?

$$a' = a - 1 \land b' = b + 1 \land c' = c$$

• What is the **BAP** of *ML_in*'s actions?

$$a' = a \wedge b' = b - 1 \wedge c' = c + 1$$

69 of 124

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do not exist in **m**₀, but:
 - They **exist** in **m**₁ and may impact upon the *concrete* state space.
 - They *preserve* the *concrete invariants*, just as *ML_out* & *ML_in* do.
- Recall the *PO/VC Rule of <u>Invariant Preservation</u> for <u>Refinement</u>:*

- How many *sequents* to be proved? [# *new* evts × # *concrete* invariants]
- Here are two (of the ten) sequents generated:

• Exercises. Specify and prove other eight POs of Invariant Preservation.

71 of 124

Visualizing Inv. Preservation in Refinement

Recall how a concrete event is simulated by its abstract counterpart:

- For each *new* event:
 - Strictly speaking, it does not have an abstract counterpart.
 - It is **simulated by** a special **abstract** event (transforming v to v'):

INV PO of m_1 : IL_in/inv1_4/INV

LASSONDE

Proving Refinement: IL_in/inv1_5/INV

axm0_1	{ <i>d</i> ∈ ℕ	
axm0_2	{ <i>d</i> > 0	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	{ a ∈ℕ	
inv1_2	<i>δ</i> ∈ ℕ	
inv1_3	{ <i>c</i> ∈ ℕ	IL_in/inv1_5/INV
inv1_4	a+b+c=n	
inv1_5	$a = 0 \lor c = 0$	
Guards of IL_in	{ a > 0	
	F	
<i>Concrete</i> invariant inv1_5 with <i>IL_in</i> 's effect in the <u>post</u> -state	$\{ (a-1) = 0 \lor c = 0 \}$	

75 of 124

Proving Refinement: IL_in/inv1_4/INV

• An alter	rnative m ₁ (with	inv1_4, inv1_5,	ew Ever	nts Diverging	
constants: d	axioms: axm0_1 : <i>d</i> ∈ ℕ axm0_2 : <i>d</i> > 0	variables: a, b, c	invariants: inv1_1: $a \in \mathbb{Z}$ inv1_2: $b \in \mathbb{Z}$ inv1_3: $c \in \mathbb{Z}$	Concrete invariants are under-specified: only typing constraints.	e
ML_out when a + b < d c = 0 then a := a + 1 end	ML_in when c > 0 then c := c - 1 end	IL_in begin <i>a</i> := <i>a</i> - 1 <i>b</i> := <i>b</i> + 1 end	IL.out begin b := b - 1 c := c + 1 end	Exercises : Show that Invariant Preservation provable, but Guard Strengthening is <u>not</u> .	is
 Say this IL_in an events (Q: What 	alternative <i>m</i> 1 d <i>IL_out</i> always (<i>ML_out</i> and <i>ML</i> t are the corres	is implemented enabled and r <i>in</i>) from ever h (<i>init</i> , <i>IL_in</i> , <i>IL</i> ponding abstra	as is: may occur <i>inde</i> appening: out, IL_in, IL_c ct transitions?		old"
A : (<i>init</i> ,	skip, skip, skip,	skip,)		[≈ executing while (tru	e);]]
 We sav 	that these two	new events div	verge . creating	a <i>livelock</i> :	<u> </u>
 Diffe 	erent from a dea	adlock ∵ alway	s an event occ	surring (<i>IL_in</i> or <i>IL_out</i>).	
∘ But	their <i>indefinite</i>	occurrences co	ntribute nothir	ng useful.	
76 of 124					

PO of Convergence of New Events: VAR

• Recall: PO related to A New Event Occurrence Decreases Variant

$ \begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ V(c,F(c,w)) < V(c,w) \end{array} $	VAR	How many <i>sequents</i> to be proved?
---	-----	--

• For the **new** event *IL in*:

$d \in \mathbb{N}$	<i>d</i> > 0		
<i>n</i> ∈ ℕ	n≤d		
<i>a</i> ∈ ℕ	$b \in \mathbb{N}$	$\boldsymbol{c} \in \mathbb{N}$	
a+b+c=n	$a = 0 \lor c = 0$		IL_in/VAR
<i>a</i> > 0			
F			
$2 \cdot (a - 1) + (b)$	$(+1) < 2 \cdot a + b$		
	,		

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

Recall: PO related to Variant Stays Non-Negative:

[# *new* events]

LASSONDE

• For the **new** event *IL_in*:

<i>d</i> ∈ ℕ	<i>d</i> > 0		
<i>n</i> ∈ ℕ	n≤d		
<i>a</i> ∈ ℕ	$b \in \mathbb{N}$	$c \in \mathbb{N}$	
a+b+c=n	$a = 0 \lor c = 0$		IL_in/NAT
a > 0			
F			
2 · <i>a</i> + <i>b</i> ∈ ℕ			

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

Convergence of New Events: Exercise

Given the original m₁, what if the following *variant* expression is used:

variants : *a* + *b*

Are the formulated sequents still provable?

PO of Refinement: Deadlock Freedom

• Recall:

- We proved that the initial model m_0 is deadlock free (see **DLF**).
- We proved, according to *guard strengthening*, that if a *concrete* event is <u>enabled</u>, then its *abstract* counterpart is <u>enabled</u>.
- PO of *relative deadlock freedom* for a *refinement* model:

- If an *abstract* state does <u>not</u> *deadlock* $\underbrace{\text{DLF}}_{\text{i.e., }G_1(c, v) \lor \cdots \lor G_m(c, v)}, \text{ then}$ its *concrete* counterpart does <u>not</u> *deadlock* (i.e., $H_1(c, w) \lor \cdots \lor H_n(c, w)).$
- Another way to think of the above PO:

The *refinement* does <u>not</u> introduce, in the *concrete*, any "new" *deadlock* scenarios <u>not</u> existing in the *abstract* state.

81 of 124

Example Inference Rules (6)

83 of 124

84 of 124

PO Rule: Relative Deadlock Freedom *m*₁

		-
axm0.1 axm0.2 inv0.1 inv0.2 inv1.1 inv1.2 inv1.3 inv1.4	$\begin{cases} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \leq d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \end{cases}$	וח
inv1_5	$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
Disjunction of <i>abstract</i> guards	$\left\{ \begin{array}{c} n < d \\ v \\ - \end{array} \right\}$ guards of <i>ML_out</i> in m_0 guards of <i>ML_in</i> in m_0	
Disjunction of <i>concrete</i> guards	$ \left\{ \begin{array}{c} a+b < d \land c = 0 \\ \lor & c > 0 \end{array} \right\} \begin{array}{c} \text{guards of } ML_out \text{ in } m_1 \\ \text{guards of } ML_in \text{ in } m_1 \\ \lor & a > 0 \end{array} \right\} \begin{array}{c} \text{guards of } ML_in \text{ in } m_1 \\ \text{guards of } IL_in \text{ in } m_1 \\ \lor & b > 0 \land a = 0 \end{array} $	

Proving Refinement: DLF of *m*₁

LASSONDE

Proving Refinement: DLF of *m*₁ (continued)

85 of 124

Model *m*₂: "More Concrete" Abstraction

LASSONDE

- <u>2nd</u> refinement has even more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:
 - *ml_tl*: a traffic light for exiting the ML *il_tl*: a traffic light for exiting the IL

<u>**abstract**</u> variables a, b, c from m_1 still used (instead of being replaced)

- Nonetheless, sensors remain *abstracted* away!
- That is, we focus on these three environment constraints:

ENV1 The system is equipped with two traffic lights with two colors: green and red.					
ENV2 The traffic lights control the entrance to the bridge at both ends of it.					
	ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.			
Ne	Ve are obliged to prove this added concreteness is consistent with m				

We are obliged to prove this added concreteness is consistent wit
 Area of 124

First Refinement: Summary

- The final version of our *first refinement* m₁ is **provably correct** w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - Convergence (a.k.a. livelock freedom, non-divergence) [new events]
 - <u>Relative</u> *Deadlock* Freedom
- Here is the <u>final</u> specification of *m*₁:

Model *m*₂: Refined, Concrete State Space

1. The static part introduces the notion of traffic light colours:

sets: COLOR	constants:	red, green	axioms: axm2_1 : COLOR = {green, red} axm2_2 : green ≠ red
		,	axmz_z: green ≠ red

2. The dynamic part shows the superposition refinement scheme:

invariants:

inv2_3 : ??

inv2_4 : ??

inv2_1 : $ml_tl \in COLOUR$

inv2_2 : *il_tl* ∈ COLOUR

- Abstract variables a, b, c from m₁ are still in use in m_2.
- Two new, concrete variables are introduced: ml_tl and il_tl
- <u>Constrast</u>: In *m*₁, *abstract* variable *n* is <u>replaced</u> by *concrete* variables *a*, *b*, *c*.
 - ◊ inv2_1 & inv2_2: typing constraints
 - o inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
 - inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

88 of 124

variables:

a, b, c

ml_tl

il_tl

LASSONDE

[init]

[old & new events]

[old events]

- The system acts as an **ABSTRACT STATE MACHINE (ASM)** : it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out:

- the traffic light *il_tl* allows
- Q1. How about the other two "old" events IL_in and ML_in?
- A1. No need to *refine* as already *quarded* by *ML_out* and *IL_out*. Q2. What if the driver disobeys *ml_tl* or *il_tl*?

[A2. ENV3]

LASSONDE

LASSONDE

89 of 124

IL_out

then

end

il_tl := green

end

90 of 124

Recall the PO/VC Rule of Invariant Preservation for Refinement:

axioms:

INV where J_i denotes a single *concrete invariant*

- How many sequents to be proved? [# concrete evts \times # concrete invariants = 6 \times 4]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV

Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation. 91 of 124

Model *m*₂: New, Concrete Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Considered events already existing in m₁: • ML_out & IL_out [REFINED] • IL_in & ML_in [UNCHANGED] • New event ML_tl_green: • *ML_tl_green* denotes the traffic light *ml_tl* turning green. ML_tl_green • *ML_tl_green* enabled only when: when the traffic light not already green 22 · limited number of cars on the bridge and the island then ml_tl := areen No opposite traffic end $[\Rightarrow ML_out's abstract guard in m_1]$ New event IL_tl_green: • *IL_tl_green* denotes the traffic light *il_tl* turning green. IL_tl_green • IL_tl_green enabled only when: when the traffic light not already green ?? then some cars on the island (i.e., island not empty)
 - No opposite traffic
 - $[\Rightarrow IL_out's abstract guard in m_1]$

INV PO of m₂: ML_out/inv2_4/INV

LASSONDE

axm0_1	{ <i>d</i> ∈ ℕ	
axm0_2	{ d > 0	
axm2_1	COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	{ n ≤ d	
inv1_1	} a ∈ℕ	
inv1_2	$b \in \mathbb{N}$	
inv1_3	$C \in \mathbb{N}$	
inv1_4	a+b+c=n	ML_out/inv2_4/INV
inv1_5	$\begin{cases} a = 0 \lor c = 0 \end{cases}$	
inv2_1	{ ml_tl ∈ COLOUR	
inv2_2	{ il_tl ∈ COLOUR	
inv2_3	$intriangle ml_t = green \Rightarrow a + b < d \land c = 0$	
inv2_4	$iI_t = green \Rightarrow b > 0 \land a = 0$	
Concrete guards of ML_out	} ml_tl = green	
-	<u> </u>	
Concrete invariant inv2_4	$\int il t = areen \Rightarrow b > 0 \land (a + 1) = 0$	
with ML_out's effect in the post-state	$\int \frac{d^2}{dt^2} = \frac{1}{2} \int \frac{d^2}{dt^2} = \frac{1}{2} \int \frac{d^2}{dt^2} \int \frac{d^2}{dt^2} = \frac{1}{2} \int \frac{d^2}{dt^2} \int $	

INV PO of *m*₂: IL_out/inv2_3/INV

Proving ML_out/inv2_4/INV: First Attempt

axm0_1	{ <i>d</i> ∈ ℕ]
axm0_2	{ <i>d</i> > 0	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	{ n∈ℕ	
inv0_2	} n ≤ d	
inv1_1	{ a∈ℕ	
inv1_2	{ b∈ ℕ	
inv1_3	{ c ∈ ℕ	
inv1_4	a+b+c=n	IL_out/inv2_3/INV
inv1_5	$a = 0 \lor c = 0$	
inv2_1	} ml_tl ∈ COLOUR	
inv2_2	} il_tl ∈ COLOUR	
inv2_3	$\begin{cases} ml_t = qreen \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$i_{1,t} = qreen \Rightarrow b > 0 \land a = 0$	
Concrete guards of IL_out	il_tl = green	
Concrete invariant inv2_3 with ML_out's effect in the post-state	$\{ ml_t = green \Rightarrow a + (b-1) < d \land (c+1) = 0$	

93 of 124

Example Inference Rules (7)

$$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} \quad \text{IMP}_{-L}$$

If a hypothesis **P** matches the assumption of another *implicative hypothesis* $P \Rightarrow Q$, then the conclusion *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathbf{IMP}_{-}\mathbf{R}$$

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption *P* serving as a new hypotheses.

 $H, \neg Q \vdash$ Р NOT_L $H, \neg P \vdash Q$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the negated hypothesis $\neg(\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new hypothesis.

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

 Our first attempts of proving <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> <u>both</u> failed the <u>2nd case</u> (resulted from applying IR AND_R):

green \neq red \wedge il_tl = green \wedge ml_tl = green \vdash 1 = 0

- This unprovable sequent gave us a good hint:
 - Goal 1 = 0 = false suggests that the safety requirements
 a = 0 (for inv2_4) and c = 0 (for inv2_3) contradict with the current m₂.
 - Hyp. $|il_tl| = green = ml_tl|$ suggests a *possible, dangerous state* of m_2 , where two cars heading <u>different</u> directions are on the <u>one-way</u> bridge:

init ,	ML_tl_green ,	ML_out ,	IL_in	, <u>IL_tI_green</u> ,	IL_out	ML_out)	
<i>d</i> = 2	d = 2	<i>d</i> = 2	<i>d</i> = 2	d = 2	<i>d</i> = 2	<i>d</i> = 2	
<i>a</i> ′ = 0	<i>a</i> ′ = 0	a' = 1	a' = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	a' = 1	
b' = 0	<i>b</i> ′ = 0	b' = 0	b' = 1	<i>b</i> ′ = 1	b' = 0	b' = 0	
<i>c</i> ′ = 0	c' = 1	c' = 1					
ml_tl' = red	ml_tl' = green	ml_tl' = green	ml_tl' = green	$ml_tl' = qreen$	ml_tl′ = green	ml_tl' = green	
il tl' = red	il tl' - rod	il tl' = red	il tl' = red	il tl' - groop	il tl' = areen	il tl' = areen	

97 of 124

INV PO of m₂: ML_out/inv2_4/INV – Updated

Fixing m₂: Adding an Invariant

• Having understood the <u>failed</u> proofs, we add a proper *invariant* to *m*₂:

invariants:

inv2_5 : *ml_tl* = *red* ∨ *il_tl* = *red*

• We have effectively resulted in an improved *m*₂ more faithful w.r.t. **REQ3**:

REQ3

The bridge is one-way or the other, not both at the same time.

- Having added this new invariant *inv2_5*:
 - Original 6 × 4 generated sequents to be <u>updated</u>: inv2.5 a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now provable?
 - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are *ML_tl_green/inv2_5/INV* and *IL_tl_green/inv2_5/INV provable*?

		_
axm0.1 axm2.2 axm2.1 inv0.2 inv1.1 inv1.2 inv1.3 inv1.4 inv1.5 inv2.1 inv2.2 inv2.3 inv2.4 inv2.5 <i>Concrete</i> guards of <i>IL.out</i> <i>Concrete</i> invariant inv2.3 with <i>ML_out</i> 's effect in the post-state	$UR = \{green, red\}$ $\neq red$ $C = n$ $c = 0$ $COLOUR$ $COLOUR$ $COLOUR$ $green \Rightarrow a + b < d \land c = 0$ $red \land i.ti = red$ $red \land i.ti = red$ $green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$	IL_out/inv2_3/INV

100 of 124

LASSONDE

Proving ML_out/inv2_4/INV: Second Attempt

Fixing m₂: Adding Actions

• Recall that an *invariant* was added to m₂:

- Additional 6 × 1 sequents to be generated due to this new invariant:
 - e.g., *ML_tl_green*/inv2_5/INV
 e.g., *IL_tl_green*/inv2_5/INV
- [for *ML_tl_green* to preserve inv2_5] [for *IL_tl_green* to preserve inv2_5]
- For the above *sequents* to be *provable*, we need to revise the two events:

Exercise: Specify and prove *ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV*.

Proving IL_out/inv2_3/INV: Second Attempt

INV PO of *m*₂: ML_out/inv2_3/INV

LASSONDE

axm0.1 axm0.2 axm2.1 axm2.2	$\left\{ \begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \end{array} \right.$	
inv0_2 inv1_1 inv1_2	$\begin{cases} n \leq N \\ a \in \mathbb{N} \\ b \in \mathbb{N} \end{cases}$	
inv1_3 inv1_4 inv1_5	$\begin{cases} c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \end{cases}$	ML_out/inv2_3/INV
inv2.1 inv2.2 inv2.3	$\begin{cases} ml_{\perp}l \in COLOUH \\ il_{\perp}l \in COLOUH \\ ml_{\perp}l \in green \Rightarrow a + b < d \land c = 0 \\ il_{\perp}l = green \Rightarrow b > 0 + c = 0 \end{cases}$	
inv2.4 inv2.5 Concrete guards of ML_out	$\begin{cases} II_II = green \Rightarrow D > 0 \land A = 0 \\ \\ mI_tI = red \lor iI_tI = red \\ \\ mI_tI = green \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Concrete invariant inv2_3 with ML_out's effect in the post-state	$\begin{cases} ml_t = green \Rightarrow (a+1) + b < d \land c = 0 \end{cases}$	

Proving ML_out/inv2_3/INV: First Attempt

Fixing *m*₂: Splitting *ML_out* and *IL_out*

- Recall that *ML_out/inv2_3/INV* failed :: two cases not handled separately:
 - $a+b+1 \neq d$ [more later of a+b+1 = d [no more]

[more later cars may exit ML, *ml_tl* remains *green*] [no more later cars may exit ML, *ml_tl* turns *red*]

- Similarly, *IL_out/inv2_4/INV* would fail :: two cases not handled separately:
 - $b 1 \neq 0$ b - 1 = 0

LASSONDE

LASSONDE

[more later cars may exit IL, *il_tl* remains *green*] [no more later cars may exit IL, *il_tl* turns *red*]

• Accordingly, we split *ML_out* and *IL_out* into two with corresponding guards.

Exercise: Given the latest m_2 , how many sequents to prove for *invariant preservation*? **Exercise**: Specify and prove *ML_out_i*/inv2_3/INV & *IL_out_i*/inv2_4/INV (where $i \in 1..2$). **Exercise**: Each split event (e.g., *ML_out_1*) refines its *abstract* counterpart (e.g., *ML_out*)? 107 of 124

Failed: ML_out/inv2_3/INV

 Our first attempt of proving <u>ML_out/inv2_3/INV</u> failed the <u>1st case</u> (resulted from applying IR AND_R):

 $a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$

- This unprovable sequent gave us a good hint:
 - Goal $(\underbrace{a+1}_{a'}) + \underbrace{b}_{b'} < d$ specifies the *capacity requirement*.
 - Hypothesis $c = 0 \land ml_t = green$ assumes that it's safe to exit the ML.

```
• Hypothesis |a + b < d| is not strong enough to entail (a + 1) + b < d.
           e.g., d = 3, b = 0, a = 0
                                                          [(a+1)+b < d \text{ evaluates to } true]
           e.g., d = 3, b = 1, a = 0
                                                           [(a+1)+b < d \text{ evaluates to } true]
           e.g., d = 3, b = 0, a = 1
                                                          [(a+1)+b < d \text{ evaluates to } true]
           e.g., d = 3, b = 0, a = 2
                                                         [(a+1)+b < d \text{ evaluates to } false]
           e.g., d = 3, b = 1, a = 1
                                                         [(a+1)+b < d \text{ evaluates to } false]
            e.g., d = 3, b = 2, a = 0
                                                         [(a+1)+b < d \text{ evaluates to } false]
     • Therefore, a + b < d (allowing one more car to exit ML) should be split:
            a+b+1\neq d
                                        [more later cars may exit ML, ml_tl remains green ]
            a + b + 1 = d
                                           [ no more later cars may exit ML, ml_tl turns red ]
106 of 124
```

m₂ Livelocks: New Events Diverging

LASSONDE

- Recall that a system may *livelock* if the <u>new</u> events diverge.
- Current m₂'s two <u>new</u> events ML_tl_green and IL_tl_green may diverge :

IL_tl_green	IL_tl_green
ml tl = red	il tl – red
	h>0
a+b <u< td=""><td>0>0</td></u<>	0>0
c = 0	a = 0
then	then
ml_tl := green	il_tl := green
il_tl := red	ml_tl := red
end	end

 ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

(init	,	ML_tl_green	,	ML_out_1	,	IL_in	,	IL_tl_green	,	ML_tl_green	,	IL_tl_green	,)
	d = 2		d = 2		d = 2		d = 2		d = 2		d = 2		d = 2	
	<i>a</i> ′ = 0		<i>a</i> ′ = 0		<i>a</i> ′ = 1		<i>a</i> ′ = 0		<i>a</i> ′ = 0		<i>a</i> ′ = 0		<i>a</i> ′ = 0	
	<i>b</i> ′ = 0		b' = 0		b' = 0		b' = 1		<i>b</i> ′ = 1		b' = 1		b' = 1	
	c'=0		<i>c</i> ′ = 0		c' = 0		<i>c</i> ′ = 0		<i>c</i> ′ = 0		<i>c</i> ′ = 0		c'=0	
т	I_tI = <mark>red</mark>		ml_tl' = green	r	nl_tl' = green	п	nl_tl' = greer	1	$ml_tl' = red$		$ml_tl' = green$		$ml_tl' = red$	
il	_tl = red		il_tl' = red		il_tl′ = <mark>red</mark>		il_tl' = <mark>red</mark>		il_tl' = green		il_tl' = red		il_tl' = green	

 \Rightarrow Two traffic lights keep changing colors so rapidly that <u>no</u> drivers can ever pass!

• Solution: Allow color changes between traffic lights in a disciplined way.

Fixing *m*₂: Regulating Traffic Light Changes

We introduce two variables/flags for regulating traffic light changes:

- *ml_pass* is 1 <u>if</u>, since *ml_tl* was last turned *green*, <u>at least one</u> car exited the <u>ML</u> onto the bridge. Otherwise, *ml_pass* is 0.
- *il_pass* is 1 if, since *il_tl* was last turned green, at least one car exited the IL

PO Rule: Relative Deadlock Freedom of m₂

Fixing *m*₂: Measuring Traffic Light Changes

- Recall:
 - Interleaving of *new* events charactered as an integer expression: *variant*.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - In the latest m_2 , let's try **variants** : m_1 pass + i_1 pass
- Accordingly, for the *new* event *ML_tl_green*:

$d \in \mathbb{N}$	<i>d</i> > 0		
COLOUR = {green, red}	green ≠ red		
$n \in \mathbb{N}$	$n \leq d$		
$a \in \mathbb{N}$	b∈ℕ	$c \in \mathbb{N}$	
a+b+c=n	$a = 0 \lor c = 0$		
ml_tl ∈ COLOUR	il_tl ∈ COLOUR		
$ml_t = green \Rightarrow a + b < d \land c = 0$	$iI_t = green \Rightarrow b > 0 \land a = 0$		ML 4L
$ml_t = red \lor il_t = red$			NIL_U_green/ VAK
<i>ml_pass</i> ∈ {0, 1}	<i>il_pass</i> ∈ {0, 1}		
$ml_tl = red \Rightarrow ml_pass = 1$	$iI_t = red \Rightarrow iI_pass = 1$		
$ml_tl = red$	a + b < d	<i>c</i> = 0	
<i>il_pass</i> = 1			
F			
0 + il_pass < ml_pass + il_pass			

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/NAT.

Proving Refinement: DLF of *m*₂ LASSONDE d > 0 COLOUR = {green, red} green \neq red n $\in \mathbb{N}$ n≤d a∈N b∈N $\begin{array}{l} b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml.tl \in COLOUR \\ il.tl \in COLOUR \\ ml.tl = green \Rightarrow a + b < d \land c = 0 \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.nl = red \lor il.tl = red \\ ml cases < (0, 1). \end{array}$ *ml_pass* ∈ {0, 1} *il_pass* ∈ {0, 1} $ml \ tl = red \Rightarrow ml \ nass = 1$ $\begin{array}{l} m_{i} n = rea \Rightarrow m_{i} pass = 1\\ il_{i} tl = red \Rightarrow il_{i} pass = 1\\ a + b < d \land c = 0\\ \lor c > 0\\ \lor a > 0\\ \lor b > 0 \land a = 0 \end{array}$ $ml_t = red \land a + b < d \land c = 0 \land il_pass =$ $iI_tI = red \land b > 0 \land a = 0 \land mI_pass = 1$ ml_tl = green il_tl = green a > 0 c > 0 $d \in \mathbb{N}$ d > 0 $b \in \mathbb{N}$ $ml_t l = red$ $il_t l = red$ ml_tl = red il_tl = red $b < d \lor b > 0$ $b \in \mathbb{N}$ > 0 \vee b = OBI $ml_tl = red \Rightarrow ml_pass = 1$ ml_pass = $il_t l = red \Rightarrow il_pass = 1$ il_pass = 1 $b < d \lor b > 0$ $b < d \lor b > 0$ EQ_LR.MON b < d ^ ml_pass = 1 ^ il_pass = 1 b > 0 ^ ml_pass = 1 ^ il_pass = 1 b < d ^ ml_pass = 1 ^ il_pass = 1 v b > 0 ^ ml_pass = 1 ^ il_pass = 1 $b < d \lor b > 0$ 112 of 124

Second Refinement: Summary

[init]

LASSONDE

[old & new events]

[old events]

[new events]

- The final version of our **second refinement** m₂ is **provably correct** w.r.t.:
 - Establishment of *Concrete Invariants*
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - *Convergence* (a.k.a. livelock freedom, non-divergence)
 - Relative Deadlock Freedom
- Here is the final specification of *m*₂:

Index (1)

Learning Outcomes

Recall: Correct by Construction

State Space of a Model

Roadmap of this Module

Requirements Document: Mainland, Island

Requirements Document: E-Descriptions

Requirements Document: R-Descriptions

Requirements Document:

Visual Summary of Equipment Pieces

Refinement Strategy

Model m₀: Abstraction

114 of 124

Index (2)

Model *m*₀: State Space

- Model *m*₀: State Transitions via Events
- Model *m*₀: Actions vs. Before-After Predicates
- Design of Events: Invariant Preservation
- Sequents: Syntax and Semantics
- PO of Invariant Preservation: Sketch
- PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

115 of 124

- Example Inference Rules (2)
- Example Inference Rules (3)
- Revisiting Design of Events: ML_out
- Revisiting Design of Events: ML_in
- Fixing the Design of Events
- Revisiting Fixed Design of Events: ML_out
- **Revisiting Fixed Design of Events:** *ML_in*

Initializing the Abstract System m_0

PO of Invariant Establishment

Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

Index (4)

LASSONDE

PO of Deadlock Freedom ((1)	
--------------------------	-----	--

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model *m*₁: "More Concrete" Abstraction

117 of 124

118 of 124

Index (6)

PO Rule: Guard Strengthening of *ML_in*

Proving Refinement: ML_out/GRD

Proving Refinement: ML_in/GRD

Refinement Rule: Invariant Preservation

Visualizing Inv. Preservation in Refinement

INV PO of *m*₁: ML_out/inv1_4/INV

INV PO of m₁: ML_in/inv1_5/INV

Proving Refinement: ML_out/inv1_4/INV

Proving Refinement: ML_in/inv1_5/INV

Initializing the Refined System m₁

PO of *m*₁ **Concrete Invariant Establishment**

119 of 124

Index (5)

Model *m*₁: Refined State Space

Model *m*₁: State Transitions via Events

Model *m*₁: Actions vs. Before-After Predicates

States & Invariants: Abstract vs. Concrete

Events: Abstract vs. Concrete

PO of Refinement: Components (1)

PO of Refinement: Components (2)

PO of Refinement: Components (3)

Sketching PO of Refinement

Refinement Rule: Guard Strengthening

PO Rule: Guard Strengthening of ML_out

Index (7)

Discharging PO of *m*₁ Concrete Invariant Establishment

Model m1: New, Concrete Events

Model m₁: BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

Refinement Rule: Invariant Preservation

INV PO of m₁: IL_in/inv1_4/INV

INV PO of m₁: IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

Livelock Caused by New Events Diverging

Index (8)

PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m₁

Example Inference Rules (6)

Proving Refinement: DLF of *m*₁

Proving Refinement: DLF of *m*₁ (continued)

First Refinement: Summary

Model m₂: "More Concrete" Abstraction

121 of 124

Index (9)

Index (10)

INV PO of m_2 : ML_out/inv2_4/INV – Updated INV PO of m_2 : IL_out/inv2_3/INV – Updated Proving ML_out/inv2_4/INV: Second Attempt Proving IL_out/inv2_3/INV: Second Attempt Fixing m_2 : Adding Actions INV PO of m_2 : ML_out/inv2_3/INV Proving ML_out/inv2_3/INV: First Attempt Failed: ML_out/inv2_3/INV Fixing m_2 : Splitting ML_out and IL_out m_2 Livelocks: New Events Diverging Fixing m_2 : Regulating Traffic Light Changes

Model m₂: Refined, Concrete State Space

Model m₂: Refining Old, Abstract Events

Model m₂: New, Concrete Events

Invariant Preservation in Refinement m₂

INV PO of m₂: ML_out/inv2_4/INV

INV PO of m₂: IL_out/inv2_3/INV

Example Inference Rules (7)

Proving ML_out/inv2_4/INV: First Attempt

Proving IL_out/inv2_3/INV: First Attempt

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

Fixing m₂: Adding an Invariant

122 of 124

Fixing *m*₂: Measuring Traffic Light Changes

PO Rule: Relative Deadlock Freedom of *m*₂

Proving Refinement: DLF of m₂

Second Refinement: Summary

LASSONDE