Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System
Specification and Refinement
Winter 2023

CHEN-WEI WANG

LSSoNDE

Learning Outcomes

This module is designed to help you understand:
* What a Requirement Document (RD) is
e What a refinement is

e Writing formal specifications

o (Static) contexts: constants, axioms, theorems
o (Dynamic) machines: variables, invariants, events, guards, actions

e Proof Obligations (POs) associated with proving:
o refinements
o system properties

* Applying inference rules of the sequent calculus

LSSoNDE

Recall: Correct by Construction

¢ Directly reasoning about source code (written in a programming
language) is too complicated to be feasible.

¢ Instead, given a requirements document, prior to implementation,
we develop models through a series of refinement steps:
o Each model formalizes an external observer’s perception of the system.
o Models are “sorted” with increasing levels of accuracy w.r.t. the system.
o The first model, though the most abstract, can already be proved
satisfying some requirements.
o Starting from the second model, each model is analyzed and proved
correct relative to two criteria:
1. Some requirements (i.e., R-descriptions)
2. Proof Obligations (POs) related to the preceding model being
refined by the current model (via “extra” state variables and
events).

o The last model (which is correct by construction) should be
sufficiently close to be transformed into a working program (e.g., in C).

LSSoNDE

State Space of a Model

* A model’s state space is the set of all configurations:

o Each configuration assigns values to constants & variables, subject to:
e axiom (e.g., typing constraints, assumptions)
e invariant properties/theorems
o Say an initial model of a bank system with two constants and a variable:
ce N1 A LeN1Aaccounts e String + 7 /* typing constraint */
Vid e id € dom(accounts) = —c < accounts(id) < L /* desired property */
Q. What is the state space of this initial model?
A. All valid combinations of ¢, L, and accounts.
e Configuration 1: (¢ = 1,000, L = 500,000, b = @)
e Configuration 2: (¢ = 2,375, L =700,000, b = {("id1",500), ("id2",1,250)})
[Challenge: Combinatorial Explosion]
o Model Concreteness 1 = (State Space 1 A Verification Difficulty 1)
* A model’s complexity should be guided by those properties intended to be
verified against that model.
= Infeasible to prove all desired properties on a model.

= Feasible to distribute desired properties over a list of refinements.

Roadmap of this Module LASSONDE Requirements Document: E-Descriptions |.assonce

Each E-Description is an atomic specification of a constraint or

« We will walk through the development process of constructing an assumption of the system’s working environment.
models of a control system regulating cars on a bridge.

. . ENV1 The system is equipped with two traffic lights with two colors: green and red.
Such controllers exemplify a reactive system.
(with sensors and actuators)
° AlwayS Stay on tOp Of the following roadmap. ENV2 The traffic lights control the entrance to the bridge at both ends of it.
A Requirements Document (RD) of the bridge controller
A brief overview of the refinement strategy ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

An initial, the most abstract model

A subsequent model representing the 1st refinement
A subsequent model representing the 2nd refinement ENV4 The system is equipped with four sensors with two states: on or off.
A subsequent model representing the 3rd refinement

oarwN=

ENV5 The sensors are used to detect the presence of a car entering or leaving the bridge:
“on” means that a car is willing to enter the bridge or to leave it.

Requirements Document: Mainland, Island |.assonc: Requirements Document: R-Descriptions |.assonoe

Imagine you are asked to build a bridge (as an alternative to ferry) connecting
the downtown and Toronto Island.

Each R-Description is an atomic specification of an intended
functionality or a desired property of the working system.

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.
REQ2 The number of cars on bridge and island is limited.
REQ3 The bridge is one-way or the other, not both at the same time.

Page Source: https://soldbyshane.com/area/toronto-islands/

Requirements Document:
Visual Summary of Equipment Pieces

(@ 9]

Island Bridge Mainland

/E

LASSONDE

ooooooooooooooooo

Refinement Strategy

e Before diving into details of the models, we first clarify the adopted
design strategy of progressive refinements.
0. The initial model (mo) will address the intended functionality of
a limited number of cars on the island and bridge.

[REQ2]
1. A 1st refinement (m; which refines my) will address
the intended functionality of the bridge being one-way.
[REQ1, REQ3]
2. A 2nd refinement (m, which refines my) will address
the environment constraints imposed by traffic lights.
[ENV1, ENV2, ENV3]
3. A final, 3rd refinement (ms; which refines my) will address
the environment constraints imposed by sensors and
the architecture: controller, environment, communication channels.
[ENV4, ENV5]

e Recall Correct by Construction :

From each model to its refinement, only a manageable amount of details
are added, making it feasible to conduct analysis and proofs.
g reasie y P

LASSONDE

ooooooooooooooooo

Model my: Abstraction

¢ In this most abstract perception of the bridge controller, we do not
even consider the bridge, traffic lights, and sensors!
¢ Instead, we focus on this single requirement:

REQ2 The number of cars on bridge and island is limited.

e Analogies:
o Observe the system from the sky: island and bridge appear only as a

compound.

Island
and
bridge

o “Zoom in” on the system as refinements are introduced.

LASSONDE

ooooooooooooooooo

Model my: State Space

1. The static part is fixed and may be seen/imported.
A constant d denotes the maximum number of cars allowed to be on the
island-bridge compound at any time.
(whereas cars on the mainland is unbounded)

axioms:

constants: d axm01:deN

Remark. Axioms are assumed true and may be used to prove theorems.
2. The dynamic part changes as the system evolves.

A variable n denotes the actual number of cars, at a given moment, in the

island-bridge compound.

invariants:
inv01:neN
inv02:n<d

variables: n

Remark. /nvariants should be (subject to proofs):
e Established when the system is first initialized
o Preserved/Maintained after any enabled event’s actions take effect

LSSoNDE

Model m,: State Transitions via Events

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.
® At any given state (a valid configuration of constants/variables):
o An event is said to be enabled if its guard evaluates to frue.
o An event is said to be disabled if its guard evaluates to false.
o An enabled event makes a state transition if it occurs and its
actions take effect.
® 1stevent: A car exits mainland (and enters the island-bridge compound).

ML _out o
begin Correct Specification? Say d = 2.
n:=n+1 Witness: Event Trace (init, ML_out, ML_out, ML_out)
end

® 2nd event: A car enters mainland (and exits the island-bridge compound).

ML_in
begin Correct Specification? Say d = 2.
n:=n-1 Witness: Event Trace (init, ML_in)
end

Model my: Actions vs. Before-After PredicateSox.:

® When an enabled event e occurs there are two notions of state:
o Before-/Pre-State: Configuration just before €’s actions take effect
o After-/Post-State: Configuration just after €’s actions take effect
Remark. When an enabled event occurs, its action(s) cause a transition from the
pre-state to the post-state.
® As examples, consider actions of my’s two events:

Events ML_out ML_in
ni=n+1 n:=mn-—1

before—after predicates n'=n+1 n=n-1

o An event action “n:= n+ 1" is not a variable assignment; instead, it is a
specification: “n becomes n + 1 (when the state transition completes)’.

o The before-after predicate (BAP) “n’= n+ 1" expresses that
n’ (the post-state value of n) is one more than n (the pre-state value of n).

® When we express proof obligations (POs) associated with events, we use BAP.

LSSoNDE

Design of Events: Invariant Preservation

e Qur design of the two events

ML _out ML_in
begin begin
n:=n+1 ni=n-1
end end

only specifies how the variable n should be updated.
e Remember, invariants are conditions that should never be violated!

invariants:
inv01:neN
inv02:n<d

¢ By simulating the system as an ASM, we discover witnesses
(i.e., event traces) of the invariants not being preserved all the time.

Js e s € STATE SPACE = —invariants(s)

¢ We formulate such a commitment to preserving invariants as a proof
obligation (PO) rule (a.k.a. a verification condition (VC) rule).

LSSoNDE

Sequents: Syntax and Semantics

® We formulate each PO/VC rule as a (horizontal or vertical) sequent:
H
Hr G -
G

o The symbol + is called the turnstile.
o His a set of predicates forming the hypotheses/assumptions.
[assumed as true]
o @Gis a set of predicates forming the goal/conclusion.
[claimed to be provable from H]
® Informally:
o H + G is trueif G can be proved by assuming H.
[i.e., We say “H entails G” or “H yields G”]
o H + G isfalse if G cannot be proved by assuming H.

® Formally: H+ G < (H=G)
Q. What does it mean when H is empty (i.e., no hypotheses)?

Al -G ‘5’ true v G ‘ [Whynot’ F G ‘z’ false - G ‘?]

PO of Invariant Preservation: Sketch

e Here is a sketch of the PO/VC rule for invariant preservation :

Axioms

Invariants Satisfied at Pre-State
Guards of the Event INV
=

Invariants Satisfied at Post-State

¢ Informally, this is what the above PO/VC requires to prove :
Assuming all axioms, invariants, and the event’s guards hold at the pre-state,
after the state transition is made by the event,

all invariants hold at the posi-state.

PO of Invariant Preservation: Components |ussono:

ooooooooooooooooo

ML_out

begin
end

axioms: invariants:
axm0.1:deN inv01:neN ML_in
inv02:n<d begin
n:=n-1
end
c: list of constants (d)

A(c): list of axioms

[]

° (axm0_1)
® vand v list of variables in pre- and post-states

[]

o

v = (n), v = (n)
I(c, v): list of invariants (inv0_-1,inv0_2)
G(c, v): the event's list of guards

G((d),(n)) of ML_out = (true), G({d),(n)) of ML_in = (true)

® [£(c,v): effect of the event’s actions i.t.o. what variable values become
E((d),(n)) of ML_out = (n+1), E((d),(n)) of ML_out = (n-1)

® V' = E(c,v): before-after predicate formalizing E’s actions

BAP of ML_out: (n’) = (n+1), BAP of ML.in: (n’y = (n-1)

LASSONDE

ooooooooooooooooo

Rule of Invariant Preservation: Sequents

e Based on the components (¢, A(c), v, I(c,v), E(c, v)), we are able to
formally state the PO/VC Rule of Invariant Preservation:

A(c)

I(c,v)

G(c,v) INV where /; denotes a single invariant condition

-

li(c, E(c, v))

o Accordingly, how many sequents to be proved? [# events x # invariants]
o We have two sequents generated for event ML_out of model my:

deN deN

neN neN

n<d ML _out/inv0_1/INV | n<d ML _out/inv0_2/INV
- -

n+1eN n+1<d

Exercise. Write the POs of invariant preservation for event ML_in.

® Before claiming that a model is correct , outstanding sequents associated
with all POs must be proved/discharged.

LASSONDE

ooooooooooooooooo

Inference Rules: Syntax and Semantics
e An inference rule (IR) has the following form:

A Formally: A= C is an axiom.

— L
(o

Informally: To prove C, it is sufficient to prove A instead.

Informally: C is the case, assuming that A is the case.

o L is a name label for referencing the inference rule in proofs.
o Ais a set of sequents known as antecedents of rule L.
o Cis a single sequent known as consequent of rule L.

e Let’s consider inference rules (IRs) with two different flavours:

H1 - G
H1,H2 - G

MON P2
neN + n+1eN

o IRMON: To prove H1,H2 ~ G , it suffices to prove H1 +~ G instead.
o IRP2: neN + n+1eN isan axiom.
[proved automatically without further justifications]

Proof of Sequent: Steps and Structure LASSONDE Example Inference Rules (2) s

ooooooooooooooooo

ooooooooooooooooo

® To prove the following sequent (related to invariant preservation):
deN
neN
n<d ML _out/inv0_1/INV

n+1is less than or equal to m,

- INC | assuming that nis strictly less than m.
n+1eN n<mwr n+1<m

1. Apply a inference rule, which transforms some “outstanding” sequent
to one or more other sequents to be proved instead.

2. Keep applying inference rules until all iransformed sequents are
axioms that do not require any further justifications.

® Hereis a formal proof of ML_out/inv0_1/INV, by applying IRs MON and P2:

n-1is strictly less than m,

deN n<men-1<m DEC assuming that nis less than or equal to m.
neN neN

n<d MON - P2

[n+1eN

n+1eN

Example Inference Rules (1) LASSONDE Example Inference Rules (3) LASSONDE
o H1+ G To prove a goal under certain hypotheses,
—————— P1| 1stPeanoaxiom: 0is a natural number. ——————— MON| jsuffices to prove it under less hypotheses.
F0eN H1,H2 - G
Proof by Cases:
2nd Peano axiom: n+ 1 is a natural number, H P+ R HQ+ R To prove a goal under a disjunctive assumption,
P2 | assuming that nis a natural number. OR_L | it suffices to prove independently
neN - n+1¢N HPvQ+ R the same goal, twice, under each disjunct.
, | n-1isanatural number, H+w P To prove a disjunction,
P2’ | assuming that n is positive. ——————— OR.R1| jsuffices to prove the left disjunct.
O<nr n-1eN H+ PvQ
3rd Peano axiom: n is non-negative, H+ Q To prove a disjunction,
P3 | assuming that n is a natural number. ————— ORR2| it suffices to prove the right disjunct.
neN + 0<n H+ PvQ

\wy

—

ASSONDE

ooooooooooooooooo

Revisiting Design of Events: ML out
* Recall that we already proved PO | ML out/inv0_1/INV |

deN

neN neN

n<d MON |+ P2
- n+1eN
n+1eN

. ML _out/inv0_1/INV succeeds in being discharged.
e How about the other PO | ML_out/inv0_2/INV | for the same event?

deN
neN n<d
n<d MON |+ ?
- n+1<d
n+1<d

- ML _out/inv0_2/INV fails to be discharged.

Revisiting Design of Events: ML _in o
* How about the PO | ML.in/inv0_1/INV | for ML _in:

deN

neN neN

n<d MON |+ ?

- n-1eN

n-1eN

- ML_in/inv0_1/INV fails to be discharged.
e How about the other PO | ML_in/inv0_2/INV | for the same event?

deN

neN n<d n<d

n<d MON | ~ OR1 |+ DEC
- n-1<dvn-1=d n-1<d
n-1<d

- ML_in/inv0_2/INV succeeds in being discharged.

Fixing the Design of Events LASSONDE

ooooooooooooooooo

e Proofs of ML_out/inv0_2/INV and ML _in/inv0_1/INV fail due to the
two events being enabled when they should not .

e Having this feedback, we add proper guards to ML_out and ML _in:

ML _out ML_in
when when
n<d n>0
then then
n:=n+1 n:=n-1
end end

¢ Having changed both events, updated sequents will be generated for
the PO/VC rule of invariant preservation.

e All sequents ({ML_out, ML_in} x {inv0_1, inv0_2}) now provable?

Revisiting Fixed Design of Events: ML out |ussonce

ooooooooooooooooo

e How about the PO | ML out/inv0_1/INV | for ML out:

deN
Zi§ neN
- MON |~ P2
n<d
n+1eN
}_
n+1eN

- ML _out/inv0_1/INV still succeeds in being discharged!
e How about the other PO | ML _out/inv0_2/INV | for the same event?

deN

Zi§ n<d

n ; d MON . INC
n+1<d

—

n+1<d

- ML _out/inv0_2/INV now succeeds in being discharged!

Revisiting Fixed Design of Events: ML in |iassoce
* How about the PO | ML in/inv0_1/INV | for ML _in:

deN

e o]

ns0 MON |~ P2
n-1eN

-

n-1eN

. ML_in/inv0_1/INV now succeeds in being discharged!
e How about the other PO | ML _in/inv0_2/INV | for the same event?

deN

ZEIE n<d n<d

n;O MON | ~ OR1 |+~ DEC
- n-1<dvn-1=d n-1<d
n-1<d

- ML_in/inv0_2/INV still succeeds in being discharged!

|nitia|iZil‘Ig the Abstract SyStem mo :ASSONDE
* Discharging the four sequents proved that both invariant conditions are
preserved between occurrences/interleavings of events ML_out and ML_in.
e But how are the invariants established in the first place?
Analogy. Proving P via mathematical induction, two cases to prove:
o P(1), P(2),... [base cases ~ establishing inv.]
o P(n)=P(n+1) [inductive cases ~ preserving inv.]
® Therefore, we specify how the ASM ’s initial state looks like:

v~ The IB compound, once initialized, has no cars.

v~ Initialization always possible: guard is frue.
init . v" There is no pre-state for init.
begin _ ,
n:=0 .. The RHS of := must not involve variables.
end . The RHS of := may only involve constants.

v~ There is only the post-state for init.

.. Before-After Predicate: n' =0

PO of Invariant Establishment

v' An reactive system, once initialized, should never terminate.
init . « » ; ;
begin v~ Event init cannot “preserve” the invariants.
n:=0 .- State before its occurrence (pre-state) does not exist.
end

v~ Event init only required to establish invariants for the first time
o A new formal component is needed:
o K(c): effect of init’s actions i.t.o. what variable values become
e.g., K({(d)) of init = (0)
o V' = K(c): before-after predicate formalizing init's actions
e.g., BAP of init: (n’) = (0)
o Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms A(c)
H INV - INV
Invariants Satisfied at Post-State li(c,K(c))

Discharging PO of Invariant Establishment |.ssono:

® How many sequents to be proved?
® We have two sequents generated for event init of model my:

[# invariants]

deN deN
= init/inv0_1/INV | + init/inv0_2/INV
0eN 0<d
® Can we discharge the PO | init/inv0_1/INV |?
deN
. init/inv0_1/INV
- MON | - P1 succeeds in being discharged.
0DeN 0eN
® Can we discharge the PO | init/inv0_2/INV |?
deN
- . init/inv0_2/INV
succeeds in being discharged.
0<d

System Property: Deadlock Freedom LASSONDE

ooooooooooooooooo

e So far we have proved that our initial model my is s.t. all invariant
conditions are:

o Established when system is first initialized via init
o Preserved whenevner there is a state transition

(via an enabled event: ML_out or ML_in)
e However, whenever event occurrences are conditional (i.e., guards
stronger than true), there is a possibility of deadlock :
o A state where guards of all events evaluate to false
o When a deadlock happens, none of the events is enabled.
= The system is blocked and not reactive anymore!

e We express this non-blocking property as a new requirement:

REQ4 Once started, the system should work for ever.

PO of Deadlock Freedom (1) LASSONDE
¢ Recall some of the formal components we discussed:

o c: list of constants (d)

o A(c): list of axioms (axm0_1)

o vand v’ list of variables in pre- and post-states v=(n), Vv = (n)

o I(c,v): list of invariants (inv0_1,inv0_2)

o]

G(c, v): the event’s list of guards
G((d), (n)) of ML_out = (n < d), G({d), (n)) of ML_in = {n> 0)
e A systemis deadlock-free if at least one of its events is enabled:

Axioms A(c)
I:zvarmnts Satisfied at Pre-State DLF L(C7 V) DLF
Disjunction of the guards satisfied at Pre-State Gi(c,v)v---v Gplc,v)

To prove about deadlock freedom
o An event’s effect of state transition is not relevant.
o Instead, the evaluation of all events’ guards at the pre-state is relevant.

PO of Deadlock Freedom (2)

® Deadlock freedom is not necessarily a desired property.
= When it is (like myp), then the generated sequents must be discharged.
* Applying the PO of deadlock freedom to the initial model my:

deN
A(c) neN
L(C’V) DLE | n<d DLF
Gi(c,v) V-V Gm(c, V) ;<dvn>0

Our bridge controller being deadlock-free means that cars can always
enter (via ML_out) or leave (via ML_in) the island-bridge compound.

e Can we formally discharge this PO for our initial model my?

Example Inference Rules (4) LASSONDE
HYP A goal is proved if it can be assumed.
HP+~ P
Assuming false (1),
L FALSE L anything can be proved.
true (1) is proved,
TRUE.R regardless of the assumption.
PrrT
An expression being equal to itself is proved,
EQ regardless of the assumption.
P+ E=E

LASSONDE

ooooooooooooooooo

Example Inference Rules (5)

To prove a goal P(E) assuming H(E),

where both P and H depend on expression E,
it suffices to prove P(F) assuming H(F),

where both P and H depend on expresion F,
given that E'is equal to F.

H(F),E=F +~ P(F)
H(E),E=F +~ P(E)

EQ_LR

To prove a goal P(F) assuming H(F),

where both P and H depend on expression F,
it suffices to prove P(E) assuming H(E),

where both P and H depend on expresion E,
given that E is equal to F.

H(E),E=F +~ P(E)
H(F),E=F +~ P(F)

EQ_RL

37 of 124]

LASSONDE

ooooooooooooooooo

Discharging PO of DLF: Exercise

38 of 124]

deN
A(c) neN
IF(C’V) DLF | n<d ??
Gi(c,V)v---v Gn(c, V) ; Juns0

< Vv >

Discharging PO of DLF: First Attempt

39 of 124]

ESONDE
deN
neN
n<d
.
n<dvn>0
n<d n<d
deN - ORR1| HYP
neN n<dvn=d n<dvn>0 n<d
n<dvn=d|MON|+~ ORL
- n<dvn>0 n=d
n<dvn>0 - EQ_LR,MON| - ORR2| + ?
n<dvn>0 d<dvd>0 d>0

Why Did the DLF PO Fail to Discharge?

LASSONDE

ooooooooooooooooo

® |n our first attempt, proof of the 2nd case failed:

® This unprovable sequent gave us a good hint:
o For the model under consideration (mo) to be deadlock-free,

it is required that d > 0.

e Givenaxm01:deN
= d =0 is allowed by my which causes a deadlock.
® Recall the init event and the two guarded events:

init
begin
n:=0
end

- d>0

[> 1 car allowed in the IB compound]
o But current specification of my not strong enough to entail this:
e —~(d>0)=d<0is possible for the current model

ML _out
when
n<d
then
n:=n+1
end

ML_in
when
n>0
then
n:=n-1
end

When d = 0, the disjunction of guards evaluates to false: 0 <0v 0 >0
= As soon as the system is initialized, it deadlocks immediately

as no car can either enter or leave the IR compound!!

LASSONDE

ooooooooooooooooo

Fixing the Context of Initial Model

¢ Having understood the failed proof, we add a proper axiom to my:

axioms:
axm02:d>0

¢ \We have effectively elaborated on REQ2:

The number of cars on bridge and island is limited

REQ2 but positive.

¢ Having changed the context, an updated sequent will be generated
for the PO/VC rule of deadlock freedom.

e |s this new sequent now provable?

Discharging PO of DLF: Second Attempt |.ssonoe

ooooooooooooooooo

deN

d>0

neN

n<d

.

n<dvn>0
d>0 d>0

deN f“’ ORR1 ':<d HYP

d>NO d>2 _d n<dvn>0 n<d

ne MON n<dvns= ORL

n<dvn=d - a0

- n<dvn>0 nd d>0 d>0

n<dvn>0 Ff EQ.LR,MON| ~ OR.R2| + HYP

d<dvd>0 d>0

n<dvn>0

Initial Model: Summary

LASSONDE
® The final version of our initial model my is provably correct w.r.t.:
o Establishment of Invariants
o Preservation of Invariants
o Deadlock Freedom
® Here is the final specification of my:
ML _out
when
n<d
then
constants: d ‘ variables: n n:=n+1
init end
begin
axioms: invariants: n:=0
axm0.1:deN inv01:neN end ML_in
axm02:d>0 inv02:n<d when
n>0
then
n:i=n-1
end
T3 7 . E
Model m;: “More Concrete” Abstraction LASSONDE

® First refinement has a more concrete perception of the bridge controller:
o We “zoom in” by observing the system from closer to the ground,
so that the island-bridge compound is split into:

one way

o theisland
o the (one-way) bridge

o Nonetheless, traffic lights and sensors remain abstracted away!
® Thatis, we focus on these two requirement:

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.

REQ3 The bridge is one-way or the other, not both at the same time.

* We are obliged to prove this added concreteness is consistent with my.

g\

Model m;: Refined State Space LASSONDE

. . , axioms:
1. The static part is the same as my’s: axm0.1:deN
axm02:d>0

2. The dynamic part of the concrete state consists of three variables:

e a: number of cars on the bridge,
heading to the island

e b: number of cars on the island

e c: number of cars on the bridge,
heading to the mainland

: . v~ invi_1,inv1_2, inv1_3 are
invariants: typing constraints.
invi1:aeN
R invi2:beN V' inv1.4 links/glues the
variables: a,b,c invi 3:ceN abstract and concrete states.
i . 2?7
invi4: g v~ inv1.5 specifies
invi5: ?? . .
that the bridge is one-way.

E
=

Model m;: State Transitions via Events

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.

* We first consider the “old” events already existing in mg.

® Concrete/Refined version of event ML _out:

ML _out © Meaning of ML_out is refined:
when a car exits mainland (getting on the bridge).
?2?
th e'n' o ML_out enabled only when:
a=a+1 o the bridge’s current traffic flows to the island
end

e number of cars on both the bridge and the island is limited
® Concrete/Refined version of event ML_in:

ML.in o Meaning of ML_in is refined:
Wh‘:: a car enters mainland (getting off the bridge).
the'n. © ML_in enabled only when:
en((:i:: o there is some car on the bridge heading to the mainland.

Model m;: Actions vs. Before-After PredicateSox.:

® Consider the concrete/refined version of actions of my’s two events:

Events

ad=aANb=>bA
d=c—1

Before-after
predicates

ad=a+1 AV=bA
(3’:(:

o An event’s actions are a specification: “c becomes c - 1 after the transition”.
o The before-after predicate (BAP) “c’= c— 1" expresses that
¢’ (the post-state value of c) is one less than c (the pre-state value of c).
o Given that the concrete state consists of three variables:
e An event’s actions only specify those changing from pre-state to posi-state.
eg.,c =c-1
e Other unmentioned variables have their posi-state values remgin%nchanged. :
[eg.,a =anb =b]

® When we express proof obligations (POs) associated with events, we use BAP.

States & Invariants: Abstract vs. Concrete

® mo refines my by introducing more variables:
Abstract State
(of mo being refined):
Concrete State
(of the refinement model my):

variables: n

variables: a,b,c

® Accordingly, invariants may involve different states:

Abstract Invariants in_lari;r:tS: .
i 1 . Invlo_1:ne
(involving the abstract state only): inv02: n<d
invariants:
X invi1:2¢N
o Concrete Invariants invi2:beN

(involving at least the concrete state): invi3:ceN
invid: a+b+c=n
invi5: a=0vc=0

Events: Abstract vs. Concrete

® When an event exists in both models my and my, there are two versions of it:
o The abstract version modifies the abstract state.

LSSoNDE

(abstract_)ML _out

when when
n<d n>0
then then
n:=n+1 n:=n-1
end end

(abstract_)ML_in

o The concrete version modifies the concrete state.

(concrete_)ML_out

(concrete_)ML_in

when
when
a+b<d
c>0
c=0
then
then
c:=c-1
a:=a+1
end
end

® A new event may only exist in my (the concrete model): we will deal with

this kind of events later, separately from “redefined/overridden” events.

PO of Refinement: Components (1)

LSSoNDE

ML _out
when
a+b<d
variables: a,b,c c=0
then
a=a+1
invariants: end
axioms: invi1:aeN
axm0.1:deN invl.2:peN ML
axm02:d>0 invi3:ceN -n
g invi4: a+b+c=n when
invi5: a=0vc=0 c>0
then
c:=c-1
end
® c: list of constants (d)
® A(c): list of axioms (axmO0_1)
® vand v': abstract variables in pre- & post-states v =(n), v/ = (n)
® wand w’: concrete variables in pre- & post-states w = (a,b,c),w = (a b, c')
® /(c,v): list of abstract invariants inv0_1, |nv0 2)
® J(c,v, w): list of concrete invariants (inv1_1,inv1_2,inv1_3,inv1_4,inv1.5)

50 of 124]

PO of Refinement: Components (2)

LSSoNDE

ML _out
when
a+b<d
variables: a,b,c c=0
then
invariants: end
axioms: invi1:aeN
axm01:deN invi2:beN o
: invi3:ceN i
axm02:d>0 A -
invi5: a=0vc=0 c>0
then
c:=c-1
end

® G(c,v): list of guards of the abstract event
G((d),(n)) of ML_out = (n<d), G(c,v)of ML_in = (n>0)

® H(c,w): list of guards of the concrete event
H((d),(a,b,c)) of ML_out = (a+ b<d,c=0), H(c,w) of ML.in = {(c >0)

PO of Refinement: Components (3)

LSSoNDE

ML _out
when
a+b<d
variables: a,b,c c=0
then
invariants: end
axioms: invi1:aeN
axm01:deN invi2:beN o
: invi3:ceN |
axmo2:d-0 invi4: a+b+c=n when
invi5: a=0vc=0 c>0
then
c:=c-1
end

® E(c,v): effect of the abstract event’s actions i.t.o. what variable values become
E((d),(n)) of ML_out = (n+1), E({d),(n)) of ML_out = (n—1)

® F(c,w): effect of the concrete event’s actions i.t.o. what variable values become
F(c,v)of ML_out = (a+1,b,c), F(c,w) of ML_out = {(a,b,c-1)

LASSONDE

ooooooooooooooooo

Sketching PO of Refinement

The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms

Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event

—

Guards of the Abstract Event

o A concrete transition always has an
abstract counterpart.
GRD
o A concrete event is enabled only if

abstract counterpart is enabled.

2. Invariant Preservation
o A concrete event performs a

Axioms transition on concrete states.
Abstract Invariants Satisfied at Pre-State

Concrete Invariants Satisfied at Pre-State o This concrete state transition must
INV
Guards of the Concrete Event . .
- be consistent with how
Concrete Invariants Satisfied at Post-State its abstract counterpart performs a
corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable
to events that might be enabled after the system is launched.

_The special, non-guarded init event will be discussed separately later.

LASSONDE

ooooooooooooooooo

Refinement Rule: Guard Strengthening

® Based on the components, we are able to formally state the PO/VC Rule of
Guard Strengthening for Refinement:

A(c)

I(c,v)

J(c, v, w)

H(c, w)

-

G,‘(C, V)

where G; denotes a single guard condition

GRD
— of the abstract event

o How many sequents to be proved? [# abstract guards]
o For ML_out, only one abstract guard, so one sequent is generated :

deN d>0

neN n<d

aeN beN ceN a+b+c=n a=0vc=0 ML_out/GRD
a+b<d c¢=0 EEEEE—
—

n<d

® Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of ML _out |ssonce

ooooooooooooooooo

axm01 { deN
axm02 { d>0
inv0.1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
invi3 { ceN ML _out/GRD
invida {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_out { arb<d
-
Abstract guards of ML _out {

PO Rule: Guard Strengthening of ML _in LASSONDE

ooooooooooooooooo

axm01 { deN
axm02 { d>0
inv0.1 { neN
inv02 { n<d
invi1 { aeN
invl 2 beN .
invi 3 % CeN ML _in/GRD
invid {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_in { c>0
+
Abstract guards of ML_in { n>0

Proving Refinement: ML out/GRD

deN
d>0
neN
n<d
aeN
beN
ceN

a+b<d
c=0

n<d

a+b+c=
a=0vc=

n
0

57 of 124]

c=0

n<d

a+b+c=n
a+b<d

n<d

a+b+0=n

EQ_LR, MON f* b<d

a+b=n
a+b<d

n<d
EQ_LR,MON| +~
n<d

ARI HYP

n<d

Proving Refinement: ML in/GRD

deN
d>0
neN
n<d
aeN
beN
ceN
a+b+c=n
a=0vc=0
c>0

n>0

58 of 124]

beN
a+b+c=n
a=0vc=0
c>0

n>0

beN

a+b+c=n belt bet c<n
s 0 - O+b+c=n b+c=n 650 n>0
C;O EQLR,MON| c>0 ARl| c>0 ARI)_‘ ARI| +~ HYP
- - n>0
- n>0
n>0 n>0
n>0
beN beN
ijgwc:n ingrU:n 050 n
R EQLR| | _ MON| - ARI| +~ FALSE_L
c>0 0>0
n>0 n>0
= =
n>0 n>0

Refinement Rule: Invariant Preservation

LSSoNDE

® Based on the components, we are able to formally state the PO/VC Rule of

Invariant Preservation for Refinement.
A(c)

I(c,v)

J(c,v,w)

H(c,w)

-
Ji(c,E(c,v),F(c,w))
o # sequents to be proved?
o Here are two (of the ten) sequents generated:

INV

where J; denotes a single concrete invariant

[# concrete, old evts x # concrete invariants |

eN
d deN
d>0
d>0
neN
neN
n<d
n<d
aeN
aeN
beN beN
ceN ML _out/inv1_4/INV ceN ML_in/inv]_5/INV
a+b+c=n
a+b+c=n
a=0vec=0
a=0vc=0
a+b<d
c>0
c=0
-
- 0 1)=0
(a+1)+b+c=(n+1) a=0v(e-1)

® Exercises. Specify and prove other eight POs of Invariant Preservation.

59 of 124]

Visualizing Inv. Preservation in Refinement

et e

001 oF B

Each concrete event (w to w') is simulated by an abstract event (v to v'):
® abstract & concrete pre-states related by concrete invariants J(c, v, w)
e absiract & concrete post-states related by concrete invariants J(c, v/, w")

1) Abstract event , 107y
G(c,y) v v'=E(c,v)
i J(c,v,w) Je,v' w') i
A A
Concrete event
H(c,w) w o w'= F(c,w)

INV PO of my: ML _out/inv1_4/INV LASSONDE

ooooooooooooooooo

axm0.1 { deN
axm02 { d>0
inv0_1 { neN
invo2 { n<d
invii1 { aeN
invl_2 { beN
Vi3 cc ML out/inv1 4/INV
invl 4 a+b+c=n
invi5 {a=0vc=0
Concrete guards of ML_out { it g <d
e
Concrete invariant invl 4
with ML_out’s effect in the post-state { (@a+1)+b+c=(n+1)

61 of 124]

INV PO of my: ML _in/inv1_5/INV LASSONDE

ooooooooooooooooo

axm0.1 { deN
axm02 { d>0
invo.1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
invi3 { ceN ML _in/inv1_5/INV
invid4 {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_in { c>0
-
Concrete invariant invl_5
with ML_in’s effect in the post-state { a=0v(c-1)=0

62 of 124]

Proving Refinement: ML out/inv1_4/INV

LASSONDE

ooooooooooooooooo

deN
d>0
neN
n<d
aeN
beN
ceN

a+b<d
c=0

-

a+b+c=n (@+1)+b+c=(Mn+1)
a=0vc=0

(a+1)+b+c=(n+1)

a+b+c=n
MON | ~ ARI

a+b+c=n

-

a+b+c+1=n+1

63 of 124]

EQ_LR,MON

T
m
o

n+1=n+1

Proving Refinement: ML in/inv1 _5/INV

64 of 124]

LASSONDE
NNNNNNNNNNNNNNNNNNN
deN
d>0 a=0 a=0
neN c>0 c>0
n<d N ORR1| °7" [HYP
acy a-oveso a=0v(c-1)-= a=o0
MON| ¢~ ORL
ceN -)
a+b+c=n a=0v(c-1)=0 C’O 0-0 1
a=0vc=0 f> EQ.LR,MON| - ARI| FALSE L
i,\O a-0v(c-1)- a=0v(0-1)=0 a=0v-1=0
a=0v(c-1)=0

Initializing the Refined System m;

LASSONDE

ooooooooooooooooo

® Discharging the twelve sequents proved that:
o concrete invariants preserved by ML_out & ML_in
o concrete guards of ML _out & ML_in entail their abstract counterparts

e What's left is the specification of how the ASM ’s initial state looks like:

v~ No cars on bridge (heading either way) and island
v~ Initialization always possible: guard is frue.
v~ There is no pre-state for init.
.. The RHS of := must not involve variables.
.. The RHS of := may only involve constants.
V" There is only the post-state for init.

.. Before-After Predicate: @ =0Ab ' =0Ac' =0

PO of m; Concrete Invariant Establishment

LASSONDE

ooooooooooooooooo

o Some (new) formal components are needed:
e K(c): effect of abstract init’s actions:

e.g., K((d)) of init = (0)

o V' = K(c): before-after predicate formalizing abstract init's actions

e.g., BAP of init: {(n’) = (0)

o L(c): effect of concrete init’s actions:

e.g., K({d)) of init = (0,0,0)

o w' = L(c): before-after predicate formalizing concrete init's actions

e.g., BAP of init: (a’,b’,c’) = (0,0,0)

o Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms
=

Concrete Invariants Satisfied at Post-State

A(c)
INV - INV
J/'(Ca K(C), L(C))

66 of 124]

I —
Discharging PO of my

LASSONDE

ooooooooooooooooo

Concrete Invariant Establishment

® How many sequents to be proved?

[# concrete invariants]

® Two (of the five) sequents generated for concrete init of my:

deN
d>0
-
0+0+

deN
d>0

—
0=0v0=0

init/invl_4/INV init/invl_S/INV

0=0

® Can we discharge the PO | init/inv1_4/INV |?

deN

0+0+0=0

-0 ARI, MON TRUE R

. init/inv1_4/INV
succeeds in being discharged.

® Can we discharge the PO | init/inv1_5/INV |?

deN

0=0v0=0
[67 of 124]

a-0 ARI, MON TRUE R

. init/inv1_5/INV
succeeds in being discharged.

Model m;: New, Concrete Events

LASSONDE

ooooooooooooooooo

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.
® Considered concrete/refined events already existing in my: ML_out & ML_in

* New event IL_in:

IL.in
when
?2?
then
?2?
end

o |L_in denotes a car entering the island (getting off the bridge).

o [L_in enabled only when:

e The bridge’s current traffic flows to the island.
Q. Limited number of cars on the bridge and the island?
A. Ensured when the earlier ML_out (of same car) occurred

o New event IL_out:

IL_out
when
??
then
??
end

68 of 124]

o [L_out denotes a car exiting the island (getting on the bridge).

o [IL_out enabled only when:

e There is some car on the island.
e The bridge’s current traffic flows to the mainland.

Refinement Rule: Invariant Preservation LASSONDE

ooooooooooooooooo

Model my: BA Predicates of Multiple Action

Consider actions of my 's two nhew events: ® The new events /L_in and IL_out do not exist in mg, but:
o They exist in my; and may impact upon the concrete state space.
IL.in 'L’v?,ﬁten o They preserve the concrete invariants, just as ML_out & ML_in do.
when b>0 ¢ Recall the PO/VC Rule of Invariant Preservation for Refinement:
a>0 2.0 Ac)
then then I(c,v) .)]
a=a-1 bieb-1 ,ijc' ‘:v‘)”) v Where J; denotes a single concrete invariant
b:=b+1 - o
end enz._ c+1 Ji(e,E(c, V), F(c,w))
o How many sequents to be proved? [# new evts x # concrete invariants |
o What is the BAP of ML_in's actions? o Here are two (of the ten) sequents generated:
deN deN
d>0 d>0
a=a-1ab=b+1ac'=c nen nen
a;N agN
. L . be o bel)
o What is the BAP of ML_in's actions? oen Linimamw | oy L nfn SNV
a+b+c=n a+b+c=n
a=anb=b-1ac'=c+1 2o 2ot
23—1)+(b+1)+c:n Ea—i):Ovc:O
® Exercises. Specify and prove other eight POs of Invariant Preservation.

Visualizing Inv. Preservation in Refinement |.assonoe INV PO of my: IL_in/inv1_4/INV LASSONDE
® Recall how a concrete event is simulated by its abstract counterpart:
. 1) Abstract event , 107)
G(e,y) v v'=E(c,v)
‘ ‘ axm0.1 { deN
| | axm02 { d>0
A: J(evw) Jey' w') x inv0_1 { neN
Concrete event | inv0.2 { n<d
| ‘ invi1 { aeN
H(cw) w w'=F(c,w) invl 2 { beN o
e For each new event: invi3 { ceN IL_in/inv1_4/INV
o Strictly speaking, it does not have an abstract counterpart. :::: ’g % zf g:gig
L , , " B - -
o ltis simulated by a special abstract event (transforming v to v’): Guards of IL.in | a>0
-
g | 7 Spis ey even: non-guarded and coesnoting ViR (RN CIURY,
egin e Q. BAP of the skip event? - post
end A n=n

INV PO of my: IL in/inv1 5/INV

Concrete invariant invl_5
with IL_in’s effect in the post-state

axm0.1 { deN
axm02 { d>0
invo.1 { neN
inv02 { n<d
invi1 { aeN
invi2 { beN
invi3 { ceN
invid {a+b+c=n
invi5 { a=0vc=0

Guards of IL_in { a>0

IL_in/inv1_5/INV

[73of124]

Proving Refinement: IL in/inv1 _4/INV

deN
d>0
neN
n<d

aeN
beN
ceN
a+b+c=n
a=0vec=0
a>0

=
(a-1)+(b+1)+c=n

a+b+c=n
MON | +
(a-1)+(b+1)+c=n

ARI

a+b+c=n
-
a+b+c=n

HYP

[74of 124 llllllllllllllllllllllllllllllllllll

Proving Refinement: IL in/inv1 5/INV LASSONDE
deN
d>0
neN a:g 0>0 1
n<d & EQ.LR.MON| - ARI| FALSE L
aeN a=0vec=0 (0-1)=0vc=0 -1=0vc=0
bZN on a>0/ onL (a-1)=0vc=0
ceN
a+b+c=n (a-1)=0vc=0 c=0 c=0
a-=0vc=0 a0 orR2| 2> |nyp
a0 (a-1)=0vc=0 c=0

(a-1)=0vc=0

[75of 124]

Livelock Caused by New Events Diverging isggm

® An alternative my (with inv1_4, inv1_5, and guards of new events removed):

axioms:

axm02:d>0
ML_out MLin
when
when
a+b<d
c>0
c=0 then
then
ci=c-1
a=a+1
end
end

invi2:beZ

invariants:

invi3:ceZ
ILin IL_out
begin begin
a=a-1 b:=b-1
b:=b+1 ci=c+1
end end

® Say this alternative my is implemented as is:
IL_in and IL_out always enabled and may occur indefinitely, preventing other “old”
events (ML_out and ML_in) from ever happening:
(init, IL_in, IL_out, IL_in, IL_out, . ..)
Q: What are the corresponding absiract transitions?
A: (init, skip, skip, skip, skip, . . .

[76of 124]

)

Concrete invariants are
under-specified: only
Exercises : Show that
Invariant Preservation is
provable, but Guard
Strengthening is not.

1~ excuting [112 erier)

® We say that these two new events diverge , creating a livelock :
o Different from a deadlock -.- always an event occurring (/L_in or IL_out).
o But their indefinite occurrences contribute nothing useful.

PO of Convergence of New Events

The PO/VC rule for non-divergence/livelock freedom consists of two parts:
o Interleaving of new events characterized as an integer expr.: variant.
o Avariant V(c, w) may refer to constants and/or concrete variables.

o Inthe original my, let’s try ’ variants: 2-a+b
1. Variant Stays Non-Negative

A(c) o Variant V(c, w) measures

I(c,v) how many more times the new events can occur.

J(c,v,w) NAT © Ifa new eventis enabled, then V(c,w) > 0.

H(c,w) D

= o When V(c, w) reaches 0, some “old” events

V(c,w)eN

must happen s.t. V(c, w) goes back above 0.

2. A New Event Occurrence Decreases Variant

A(c)

I(c,v)

J(c,v,w) o If a new event is enabled and

VAR

H(c,w) occurs, the value of V(c, w) |.

—

V(c,F(c,w)) < V(c,w)

77 of 124

PO of Convergence of New Events: NAT

LASSONDE

ooooooooooooooooo

® Recall: PO related to Variant Stays Non-Negative:

[# new events]

A(c)
I(c,v)
JE,v,w) | ar How many sequents to be proved?
H(c,w) D
-
V(c,w)eN
® For the new event IL_in:
deN d>0
neN n<d
aeN beN ceN
a+b+c=n a=0vc=0 IL_in/NAT
a>0
=
2-a+beN

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

PO of Convergence of New Events: VAR

LASSONDE

ooooooooooooooooo

e Recall: PO related to A New Event Occurrence Decreases Variant

A(c)

I(c,v)

J(c,v,w)

.

V(c,F(c,w)) < V(c,w)

® For the new event IL_in:
deN d>0
neN n<d
aeN beN ceN
a+b+c=n a=0vc=0
a>0
-

2-(a-1)+(b+1)<2-a+b

How many sequents to be proved?

[# new events]

IL_in/VAR

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

Convergence of New Events: Exercise

LASSONDE

ooooooooooooooooo

Given the original m4, what if the following variant expression

is used:

]variants ta+ b\

Are the formulated sequents still provable?

80 of 124]

PO of Refinement: Deadlock Freedom LASSONDE Example Inference Rules (6) LASSONDE
e Recall: To prove a disjunctive goal,
P . H,-P+ Q it suffices to prove one of the disjuncts,
o We proved that the initial model mq is deadlock free (see DLF). — ~ ORR with the the negation of the the other disjunct
o We prpved, according t.o guard strengthening,_ that if a concrete Hr PvQ serving as aLn additional hypothesis.
event is enabled, then its abstract counterpart is enabled.
¢ PO of relative deadlock freedom for a refinement model:
o To prove a goal with a conjunctive hypothesis,
A(c H,P,Q+ R it suffices to prove the same goal,
I(¢c,v) If an abstract state does not deadlock —— ANDL with the thz two coniuncts g
J(c,v,w) (i.e., Gi(c,v) v---v Gn(c,Vv)), then H.PAQ+ R rving as tw rate hvooth
G(c.v)v~~-vG (C V) DLF \ s 5)) se g as two separate nypoineses.
F‘ ’ mi% its concrete counterpart does not deadlock
Hy (e, w) v -V Hy(c, w) (i.e., Hi(c,w) v ---v Hn(c, w)).
e Another way to think of the above PO: Hr P HrQ Toif);ﬁ:f?ciffoawvlaeaL'—Lfﬂéﬁ-cﬂﬁ oal,
. . : “ » AND R conjunct
The refinement does not introduce, in the concrete, any “new He PrQ as a separate goal.
deadlock scenarios not existing in the abstract state.

PO Rule: Relative Deadlock Freedom m; |Gssonoe Proving Refinement: DLF of m LASSONDE
axm0_1 deN
axm0_2 d>0 Fem
invo.1 { neN P
invo.2 { n<d ned
invi1 { aeN b
invi2 { beN aibreon
invi3 ; ceN pedvn>o
invl 4 a+b+c=n DLF | avbeanceo
invi5 { a=0vc=0 vao
Disjunction of abstract guards n<d } guards of ML,(?U'I‘ In Mo MON
v n>0} guards of ML.inin my 750 0 .
= hen bl o a0 a0 a>0
a+b<dac=0} guards of ML outin m o oRR | Eatn, |- ORR. [ben EaLr, |7 T e
v ¢>0)} guards of ML inin m atbedno=o | A avbeanc-o |0 |y e 0 T bednono | MY 01b<dr0-0 b<dr0-0
Disjunction of concrete guards T 1 v v c50 v as0 v baonaco 5>070=0 v b>010=0
v a>0 ; guards of /L_inin my . onaso a0 v b>0ra=0
v b>0ra=0 } guards of /L outin m =

Proving Refinement: DLF of my (continued)

d>0
AR,
da>0 750 750 [HYP
b=o0 b=0 ORR1 0<d
- ORR1|~ A AND R
b<dr0=0 - MON - >0
N - b<dAn0=0 0<dA0=0 i
v b>0A0=0 EQ
d>0 =
b=0vb>0 0=0
= ORL
b<da0=0 d>0
v b>0A0=0 b>0 HYP
da>0 750 =
b>0 b>0 b>0
- ORR2 : ANDR
b<dr0=0 >0
v b>0A0=0 b>010-0 b>0 g
-
0-0

85 of 124]

First Refinement: Summary LASSONDE
® The final version of our first refinement my is provably correct w.r.t.:
Establishment of Concrete Invariants [init]

o]

o Preservation of Concrete Invariants
o Strengthening of guards

o Convergence (a.k.a. livelock freedom, non-divergence)
Relative Deadlock Freedom

® Here is the final specification of my:

[old & new events]
[old events]
[new events]

o

ILin
ML_out when
variables: a.b,c when a>0
a+b<d then
c=0 a=a-1
invariants: init then bi=b+1
invi1:aeN begin a=a+1 end
invi2:beN end
) invi3:ceN a=0
axioms: . invid: at+b+c=n bfg IL_out
:::g’lzig invi5: a=0vc=0 enfi'i ML_in when
- when b>0
N c>0 a=0
variants: then then
2-axb cic-1 bi=b-1
end ci=c+1
end

86 of 124]

Model m,: “More Concrete” Abstraction

LSSoNDE

HooL OF B

® 2nd refinement has even more concrete perception of the bridge controller:
o We “zoom in” by observing the system from even closer to the ground,
so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML
il_tl: a traffic light for exiting the IL

abstract variables a, b, ¢ from my
still used (instead of being replaced)

b
ISLAND

MAINLAND

o Nonetheless, sensors remain abstracted away!
® That is, we focus on these three environment constraints:

ENV1 The system is equipped with two traffic lights with two colors: green and red.
ENV2 The traffic lights control the entrance to the bridge at both ends of it.
ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

® We are obliged to prove this added concreteness is consistent with mj.

87 of 124]

Model m.: Refined, Concrete State Space

1. The static part introduces the notion of traffic light colours:

‘ sets: COLOR H constants: red, green ‘

axioms:

axm2_1: COLOR = {green, red}
axm2_2: green + red

2. The dynamic part shows the superposition refinement scheme:

b
ISLAND

still in use

MAINLAND introduced

replaced b
o inv2_
invariants: R

variables: inv2.1: mi_tlc COLOUR o inv2.

a"/bt’/c inv2.2: il_tl e COLOUR
mi_i .
il_tl inv23: g o inv2.
inv24: ?2?

e Constrast

o Abstract variables a, b, ¢ from my are

inm_2.

e Two new, concrete variables are

ml_tland il tl

: In my, abstract variable n is
y concrete variables a, b, c.

1 & inv2_2: typing constraints
3: being allowed to exit ML means

cars within limit and no opposite traffic

4: being allowed to exit IL means

some car in IL and no opposite traffic

Model m.: Refining Old, Abstract Events

LSSoNDE

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enable

d events change values of variables, subject to invariants.

® Concrete/Refined version of event ML _out:

ML_out
when
??
then
a:=a+1
end

o Recall the abstract guard of ML_outin my: (c=0) A (a+b<d)
= Unrealistic as drivers should not know about a, b, c!
o ML out is refined: a car exits the ML (to the bridge) only when:

o the traffic light mi_t/ allows

® Concrete/Refined version of event IL_out:

IL_out
when
??
then
b:=b-1
c:=c+1
end

o Recall the abstract guard of IL_out in my: (a=0) A (b>0)
= Unrealistic as drivers should not know about a, b, c!
o [L_outis refined: a car exits the IL (to the bridge) only when:

o the traffic light i/_t/ allows

Q1. How about the other two “old” events IL_in and ML_in?
A1. No need to refine as already guarded by ML_out and IL_out.

Q2

. What if the driver disobeys m/_tl or il_t/?

89 of 124]

Model m>: New, Concrete Events

[A2. ENV3]

LSSoNDE

The system acts a

s an ABSTRACT STATE MACHINE (ASM) : it evolves as

actions of enabled events change values of variables, subject to invariants.
Considered events already existing in my:

o ML_out & IL_out
o JL.in & ML_in

[REFINED]
[UNCHANGED]

New event ML_tl_green:

ML_tl_green
when
??
then
mi_tl := green
end

o ML_tl_green denotes the traffic light m/_t/ turning green.
o ML tl_green enabled only when:
o the traffic light not already green
e limited number of cars on the bridge and the island
o No opposite traffic

New event IL_tl_g

[= ML_out's abstract guard in my]
reen:

IL_tl_green
when
??
then
il_tl == green
end

o |L_tl_green denotes the traffic light i/_t/ turning green.
o |L_tl_green enabled only when:

o the traffic light not already green

e some cars on the island (i.e., island not empty)

o No opposite traffic

[= IL_out's abstract guard in my]

90 of 124]

Invariant Preservation in Refinement m-

sets: COLOR

axioms:
axm0_1:delN
axm0.2:d>0
axm2.1: COLOR = {green, red}
axm2.2: green = red

MLt green
when
mi_tl = red
a+b<d
variables: c=0
ab.c then
mi_tl mi_tl = green
it end
invariants: ILigreen
inv2.1: ml_tl e COLOUR When
inv2.2: il_tle COLOUR
! it = red
inv2.3: mltl-green—=a+b<dnac=0 b0
inv2.4: il_ti- green=b>0na=0 o
then
iltl = green
end

ML_out ILin

when when
mi_tl = green a>0

then then
aw=a+1 a=a-1

end b:=b+1

end
IL_out

when ML.in
il_tl = green when

then c>0
b:=b-1 then
ci=c+1 ci=c-1

end end

Recall the PO/VC Rule of Invariant Preservation for Refinement:

A(c)
I(c,v)
J(c,v,w)
H(c,w)
.

Ji(c,E(c,v),F(c,w))

INV

o How many sequents to be proved?

where J; denotes a single concrete invariant

[# concrete evts x # concrete invariants = 6 x 4 |

o We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV
Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.

:
=

INV PO of my,: ML out/inv2 4/INV

axmO0_1
axm0_2
axm2._1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv13
invi_4
invi_5
inv2_1
inv2.2
inv2_3
inv2 4
Concrete guards of ML_out

Concrete invariant inv2_4
with ML_out’s effect in the post-state

d>0

COLOUR = {green, red}
green # red

neN

n<d

a=0vc=0
mi_tle COLOUR
il_tl e COLOUR
ml_tl=green=a+b<dac=0
il_tl=green=b>0nra=0

{ mi_tl = green

e

{ iltl=green=b>0n(a+1)=0

ML _out/inv2_4/INV

|
INV PO of my: IL out/inv2 3/INV Lass

DE

STHOOL OF ENGINEERING.

axm0_1
axm0_2
axm2_1
axm2.2
inv0_1
inv0_2
invi
invi_2
inv1_3
invi_4
invi5
inv2_1
inv2_2
inv2_3
inv2.4
Concrete guards of IL_out

Concrete invariant inv2_3
with ML_out’s effect in the post-state

d>0

COLOUR = {green, red}
green = red

neN

IL_out/inv2_3/INV

m/ te COLOUR

il-tle COLOUR

mi_tl = green=a+b<dnrc=0
il_tl=green=b>0na=0
il_tl = green

{
{
{
{
{
{
{
{
{ ceN
{
{
{
{
{
{
{

{ mi_ti=green=a+(b-1)<dna(c+1)=0

93 of 124]

Example Inference Rules (7) LAss

DE

STHOOL OF ENGINEERING.

H,P.Q + R
HP.P=Q+~ R

IMP_L

If a hypothesis P matches the assumption of
another implicative hypothesis P = Q,

then the conclusion Q of the implicative hypothesis
can be used as a new hypothesis for the sequent.

H P+ Q

—F IMPR
H+ P=Q

H-Q+ P

——— NOTLL
H,—|P FQ

94 of 124]

To prove an implicative goal P = Q,
it suffices to prove its conclusion Q,
with its assumption P serving as a new hypotheses.

To prove a goal Q with a negative hypothesis - P,
it suffices to prove the negated hypothesis —(-P) =
with the negated original goal - Q
serving as a new hypothesis.

I —
Proving ML out/inv2 4/INV: First Attempt

LASSONDE
SThoor or DuoEEG
aen
d>0
COLOUR - {green. red)
green’+ red
neN
n<d
acN
beN
ceN
asbic=n
a-0ve=0
mi_tl« COLOUR
iLtl < COLOUR
mi_tl= greengaﬂnd/\c 0
iLtl-green—b>0ra=0
mi_tl - green
il-tl = green=b>0n(a+1)=0
MON
green < red
b>0
a-0
ml_tl = green |HYP
SEn e groen+ ed green ret(i) e red 4= green
iltl = green=b>0ra=0 ! m/l/—;/een a=0 b>0
mi_tl = green IMPR wpL| AND_L| ml_ti-=green |AND_R
-t = green
. ! it = green green = red
iLtl-green=b>01(a+1) =0 b>0n(as1)=0 - b>0 green = red green = red
b>0n(a+1)=0 a-0 ml_tl - green ml_il = green
miti = groen | QLR 1Ly~ green | AR il - green |22
ON
it - green - -
- (0+1)=0 1=0
(a+1)=0

95 of 124]

Proving IL out/inv2 3/INV: First Attempt

96 of 124]

LASSONDE
schoot o nowesng
d>0
COLOUR - {green. red)
green + red
nen
n<d
a
mi_tl COLOUR
il-tie COLOUR
mi_ii- green=a+b<dnc=0
it = green=b>0na=0
it = green
-
miti - green=a+ (b-1) <da(c+1) =0
MON
green = red
mi_ti= green=>a+b<dnc=0
it = green
mitl = green=a+(b-1)<dna(c+1)=0
IMP_R
green = red
a+b<d
c=0
il_tl = green
eaTied earTEd green = red mi_tl - green
f aib<d -
mi_tl= green=a+b<drc=0 a+bcdac=0 b1 ed
en il-tl = green c-0 a+(b-1)<
1l = gre mp_L| ™ ANDL| iltl - green ANDR
mi_tl - green mi_tl = green
! ! mi_tl = green green = red
~ o o - a+b<d green= red green = red
a+(b-1)<dn(e+1)=0 a+(b-1)<dn(e+1)=0 ar(b-1)<dn(c+1)=0 c=0 it - green it - green
QLR
il_tl = green mi_ti = green | ARI| ml_ti - green |22
MON
mi_ti = green - -
- ©+1)=0 1-0
(c+1)=0

Failed: ML out/inv2 4/INV, IL out/inv2 3/INV | o

ooooooooooooooooo

e Qur first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both
failed the 2nd case (resulted from applying IR AND_R):

’ green+red Ail_tl = green A mi_tl = green - 1=0 ‘

® This unprovable sequent gave us a good hint:

o Goal |1 =0 = false | suggests that the safety requirements
a=0 (forinv2_4) and c = 0 (for inv2_3) contradict with the current m..

o Hyp. ’ il_tl = green = mi_tl ‘ suggests a possible, dangerous state of mo,
where two cars heading different directions are on the one-way bridge:

(init , ML_tl_green ML _out IL_in , IL.tl_green IL_out s ML _out)
— N —_—— — - —_—— —_——
d=2 d=2 d=2 d=2 d=2 d=2 d=2
a=0 a=0 a=1 a=0 a=0 a=0 a=1
b =0 b =0 b =0 b =1 b =1 b’ =0 b =0
c¢'=0 =0 c¢'=0 c¢'=0 =0 c=1 c'=1

mit'"=red mitr=green mltl' = green mi_tl' = green my_t' = green mitl' =green mi_tl' = green
iltl" = red iltl' = red il_tl" = red il_tl" = red iltl’ = green il_tl" = green il_tl" = green

97 of 124]

LASSONDE

ooooooooooooooooo

Fixing m»: Adding an Invariant

® Having understood the failed proofs, we add a proper invariant to m.:

invariants:

inv2.5: mi_tl = red v il_tl = red

* We have effectively resulted in an improved m, more faithful w.r.t. REQS3:

REQ3 The bridge is one-way or the other, not both at the same time.

® Having added this new invariant inv2_5:
o QOriginal 6 x 4 generated sequents to be updated: inv2_5 a new hypothesis
e.g., Are ML_out/inv2_4/INV and IL_out/inv2_3/INV now provable?
o Additional 6 x 1 sequents to be generated due to this new invariant
e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?

INV PO of m,: ML_out/inv2 4/INV — Updated |:ssono

ooooooooooooooooo

axm0.1 { deN

axm0_2 d>0
axm2_1 COLOUR = {green, red}
axm2_2 green = red
inv0_1 neN
inv0_2 n<d
invi_1 aeN
invi2 { beN
inv1_3 ceN
ivi4 {arbro-n ML _out/inv2_4/INV
inv2_1 mi_tle COLOUR
inv2.2 { il_tte COLOUR

inv2_3
inv2_4
inv2.5
Concrete guards of ML_out

mi_tl=green=a+b<drc=0
il_tl=green=b>0nra=0
mi_tl = red v il_tl = red

mi_tl = green

Concrete invariant inv2_4
with ML_out’s effect in the post-state

{
{
{
{
{
{
invi_5 E a=0vc=0
{
{
{
{
{

iltl = green=b>0x(a+1)=0

99 of 124]

INV PO of m.: IL out/inv2 3/INV — Updated |sono

ooooooooooooooooo

axm0.1 { deN
axm0_2 d>0
axm2_1 COLOUR = {green, red}
axm2.2 { green+red
inv01 { neN
inv02 { n<d
invi aeN
invi_2
invi3
invi 4

{
{ beN
{ceN
invid {a+bre-n IL_out/inv2_3/INV
invi5 { a=0vc=0
inv2.1 { mi_tle COLOUR
inv22 { il_tle COLOUR
inv23 { mitl=green=a+b<dnc=0
inv24 { iltl=green=b>0nra=0
inv2.5 { mi_tl =red v il_tl = red
Concrete guards of IL_out { il_tl = green
-
{

Concrete invariant inv2_3

with ML_out’s effect in the post-state mitl=green=a+ (b-1)<dn(c+1)=0

100 of 124

ELg

Proving ML out/inv2 4/INV: Second Attempt|..

ASSONDE

PR

L |mve

iMPL| o |ANDR

b>0r(a+1)=0

EaLR
ed| MON

101 of 124

Proving IL out/inv2 3/INV: Second Attempt

X

anD.L| AND_R

QLR
oo | MON

LSSoNDE

Fixing m»: Adding Actions

® Recall that an invariant was added to ms:

invariants:
inv2.5: mi_tl = red v il_tl = red

® Additional 6 x 1 sequents to be generated due to this new invariant:
o e.g., ML_tl_green/inv2_5/INV [for ML_tl_green to preserve inv2.5]
o e.g., IL_tl_green/inv2_5/INV [for IL_tl_green to preserve inv2.5 |
® For the above sequents to be provable, we need to revise the two events:

ML_tl_green IL_tl_green
when when
mi_tl = red il_tl = red
a+b<d b>0
c=0 a=0
then then
mli_tl := green il_tl := green
il_tl:= red ml_tl:= red
end end

Exercise: Specify and prove ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV.

e

INV PO of m: ML out/inv2 3/INV

LSSoNDE

axm01 { deN

axm02 { d>0

axm2.1 { COLOUR = {green, red}

axm2.2 { green+red
inv01 { neN
inv02 { n<d
invi1 { aeN
invi2 { beN
inv1_3 ceN
invid parbec=n ML _out/inv2_3/INV
invi5 a=0vc=0
inv2_1 mi_tl e COLOUR
inv22 il_tle COLOUR
inv2.3 { mitl=green=a+b<dnrc=0
inv24 { iltl=green=b>0ra=0
inv2.5 { mi.tl=redvil_tl = red

Concrete guards of ML_out { mi_tl = green
-
Concrete invariant inv2_3
with ML_out’s effect in the post-state { mitl = green=(a+ 1) +b<drc=0

104 of 124

e
Proving ML _out/inv2 3/INV: First Attempt | ssonoe

deN

d>0

COLOUR - {green. red)
green = red
neN

n<d

aeN

beN

celN
a+b+c=n
a=0vc=0
mi_tl e COLOUR
iltl e COLOUR

iltl= green=b>0na=0
mi_ti = red v il_tl = red
mi_ti = green

mitl=green=a+b<dnc=0

.
ml.il = green= (a+1) +b<drc=0

MON

mili-green—=a+b<dAc=0
.

mi_tl = green=> (a+1) +b<d

a:b<d
c=0
mitl = green |22
_ — arb<d -
R I L e
R| g wmp_R| M- =9 AND_L| mi_ti = green AND_R
rc=0 - ab<d

(a+1)+b<dnrc=0 (a+1)+b<dac=0 (a+1)+b<dnc=0 -0
mi_tl = green |HYP
-
c=0

e

Failed: M

L_out/inv2_3/INV

® Quir first atte

mpt of proving ML_out/inv2_3/INV failed the 1st case (resulted

from applying IR AND_R):

a+b<darc=0ami_tl=green - (a+1)+b<d

® This unprovable sequent gave us a good hint:

o Goal (a+1)+ b <d specifies the capacity requirement.
A N——
a’ b’

o Hypothesis’ ¢ =0 ml_tl = green|assumes that it's safe to exit the ML.

o Hypothesis is not strong enough to entail (a+1) + b< d.

e.g.,d=8,b=0,a2=0 [(a+ 1)+ b< devaluates to true]
eg.,d=8,b=1,a=0 [(a+ 1)+ b<devaluates to true]
eg.,d=38,b=0a=1 [(a+ 1)+ b<devaluates to true]
eg.,d=38,b=0,a=2 [(a+ 1)+ b< devaluates to false]
eg.,d=8,b=1a=1 [(a+ 1)+ b < d evaluates to false]
eg.,d=8,b=2,a=0 [(a+ 1)+ b<devaluates to false]
o Therefore, a+ b < d (allowing one more car to exit ML) should be split:
a+b+1=d [more later cars may exit ML, mi_t/ remains green]
a+b+1=d [no more later cars may exit ML, ml_tl turns red]

106 of 124

e
Fixing m,: Splitting ML _out and /L out

001 oF B

® Recall that ML _out/inv2_3/INV failed -.- two cases not handled separately:

a+b+1=+d [more later cars may exit ML, ml_tl remains green]
a+b+1=d [no more later cars may exit ML, ml_t/ turns red]
e Similarly, IL_out/inv2_4/INV would fail -.- two cases not handled separately:
b-1+0 [more later cars may exit IL, il_tl remains green]
b-1=0 [no more later cars may exit IL, il_tl turns red]
® Accordingly, we split ML_out and IL_out into two with corresponding guards.
IL_out-2
ML out 1 ML _out 2 IL_out_1 when
when when .
when p iltl = green
mi_tl = green mi_tl = green iltl = green b1
a+b+1zd thjn*b”:d th:n:1 then
then b:=b-1
a=a+1 b:=b-1
a=a+1 c:=c+1
end mi_tl := red c:=c+1 it red
end end end

Exercise: Given the latest mp, how many sequents to prove for invariant preservation?
Exercise: Specify and prove ML _out_i/inv2_3/INV & IL_out i/inv2_4/INV (where j e 1..2).
Exercise: Each split event (e.g., ML_out_1) refines its abstract counterpart (e.g., ML_out)?

107 of 124

msy Livelocks: New Events Diverging LASSONDE
® Recall that a system may livelock if the new events diverge.
® Current my’s two new events ML_tl_green and IL_tl_green may diverge :

ML tl_green IL_tl_green
when when
mi_tl = red il_tl = red
a+b<d b>0
c=0 a=0
then then
mi_tl := green iltl := green
il_tl := red mi_tl := red
end end

® ML _tl_green and IL_tl_green both enabled and may occur indefinitely, preventing
other “old” events (e.g., ML_out) from ever happening:

(init , ML_tl_green ML _out 1 N IL_in , IL_tl.green , ML tl_.green , IL_tl_green ,...)
d=2 d=2 d=2 d=2 d=2 d=2 d=2
a=0 a4-0 a=1 a=0 a=0 a=0 a=0
b =0 b =0 b =0 b =1 b =1 b =1 b =1
c'=0 =0 c'=0 c'=0 ¢'=0 ¢ =0 =0
mitl=red mjit’=green ~mitlI'=green mlt'=green mit =red mitl' =green mi_tl = red
il-tl = red iltl’ = red il-tl" = red iltl" = red ilt" = green iltl" = red iltl" = green

= Two traffic lights keep changing colors so rapidly that no drivers can ever pass!

® Solution: Allow color changes between traffic lights in a disciplined way.

Fixing m,: Regulating Traffic Light Changes.

\wy

SSONDE

CHOOL OF ENGINEERING.

We introduce two variables/flags for regulating traffic light changes:
o ml_passis 1if, since mi_tl was last turned green, at least one car exited the ML

onto the bridge. Otherwise, ml_pass is 0.

o jlpassis 1if, since il_tl was last turned green, at least one car exited the IL

onto the bridge. Otherwise, il_pass is 0.

ILout_1
ML out_1 when
when il_tl = green
mi_tl = green b1
a+b+1z#d then
then b:=b-1
a:=a+1 c:=c+1
variables: ml_pass.il_pass ml_pass := 1 il_pass :=1
end end
invariants:
inv2.6 : m/_passe {0,1} ML _out 2 IL-out_2
inv2.7:il_passe{0,1} when when
inv2.8: mi_tl = red = ml_pass = 1 mi_tl = green il_tl = green
inv2.9:il_tl = red = il_pass = 1 a+b+1=d b=1
then then
a=a+1 b:=b-1
mi_tl := red ci=c+1
ml_pass :=1 il_tl := red
end il_pass :=1
end

109 of 124

ML_tl_green
when
mi_tl = red
a+b<d
c=0
il pass = 1
then
mi_tl := green
il_tl := red
ml_pass :=0
end

IL_tl_green
when
il_tl = red
b>0
a=0
ml_pass = 1
then
iltl := green
mi_tl := red
il_pass :=0
end

Fixing m.>: Measuring Traffic Light Changes |.issono:

HOOL OF ENGINEERING.

® Recall:

o Interleaving of new events charactered as an integer expression: variant.
o Avariant V(c, w) may refer to constants and/or concrete variables.

o Inthe latest my, let’s try ’ variants : m/_pass + il_pass ‘

e Accordingly, for the new event ML_tl_green:

deN da>0
COLOUR = {green, red} green = red
neN n<d
aeN beN
a+b+c=n a=0vec=0

mi_tl e COLOUR
ml_tl=green=a+b<dnrc=0
mi_tl = red v il_tl = red
ml_pass € {0,1}
mi_tl = red = ml_pass = 1
mi_tl = red
il_pass =1
.
0 + il_pass < ml_pass + il_pass

il_tl e COLOUR

il_pass € {0,1}

a+b<d

il-tl=green=b>0Ara=0

il_tl = red = il_pass = 1

ML _tl_green/VAR

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/NAT.

110 of 124

PO Rule: Relative Deadlock Freedom of ms»

:

CHOOL OF ENGINEERING.

SSONDE

axmo0._1
axm0_2
axm2.1
axm2.2
invo1
inv0_2
invi1
invi2
inv13
invi 4
invi5
inv21
inv22
inv2 3
inv2.4
inv2.5
inv2 6
inv27
inv2.8
inv2.9

Disjunction of abstract guards

Disjunction of concrete guards

deN

d>0
{ COLOUR = {green, red}
{ green+ red

neN
é ns<d
{aeN

{
? a=0vec=0
{ ml_tl« COLOUR
{ il_tle COLOUR
mi_tl=green=a+b<dnc=0
% il tl=green=b>0nra=0
{ mi_tl = red v il tl = red
{ mi_passe{0.1}
{ ilpass<{0,1}
mi_tl = red = ml_pass =1

% il_tl = red = il_pass = 1

a+b<dnrc=0} guards of ML outin m,
guards of ML_inin my
guards of /L_inin my
guards of /L_out in my
-

v c>0}
\ a>0
v b>0nra=0

mitl=redna+b<dnrc=0nil_pass=1 }

iltl=redab>0na=0Amipass=1 }

mitl=greenna+b+1=d }
mi_tl=greenna+b+1=d

il_t = greenn b+ 1 %

iltl=greennb=1}

a>0}

c>0}

< << << <<

guards of ML_tl_green in my
guards of /L_tl_green in my
guards of ML_out_1in m,
guards of ML_out 2 in my
guards of /L_out_1in m,
guards of /L_out 2 in m,
guards of ML_inin m,
guards of /L_inin my

111 of 124

DLF

Proving Refinement: DLF of m»

L

STHOOL OF ENGINEERING.

SSONDE

den

da>0

COLOUR - {green. red)

green + red

nelN

n<d

ach

beN

ceN

arbic=n

a=0vc=0

mi_tl COLOUR

iltle COLOUR

miti=green=a+b<dnc=0

iltl= green=b>0na=0

mitl = red v il_tl = red

mi_pass € {0,1}

il pass < {0.1)

mi_tl = red = ml_pass = 1

it = red = il_pass = 1
arb<dnc=0

v >0

v a0

v b>0ra=0

miti=redna+b<dnc=0nilpass=1
v ilti=rednb>0nra=0nrmipass=1
v mi_ti= green

112 of 124

v iltl = green

v a0

v c>0
deN deN s
d>0 d>0 b0
beN beN - :
mit = red mitl = red
iltl = red it = red b<dvb>0
mi_tl = red = ml_pass = 1 | mi_pass = 1
il_tl = red = il_pass = 1 il pass =1

b<dmlpass=1nilpass=1 b<damipass=1nilpass=1
v _b>0nmlpass=1nilpass=1 v _b>0nmlpass=1nilpass=1

Second Refinement: Summary LASSONDE
® The final version of our second refinement m, is provably correct w.r.t.:

o Establishment of Concrete Invariants [init]

o Preservation of Concrete Invariants [old & new events]

o Strengthening of guards [old events]

]

Convergence (a.k.a. livelock freedom, non-divergence)
o Relative Deadlock Freedom

[new events]

® Here is the final specification of m.:

variables: ML.tl_green
a when
b mitl - red
c
mit

ILout.1

when il_tl = green
b1

it

ml_pass
il.pass

arbi1=d then when
b N

sets: COLOR

wariants:

inv2.1: mitl < COLOUR

inv2.2: iltl« COLOUR

axioms: inv23: mitl=green=a+b<dnc=0
axm01:d e inv2.4: iLtl = green=b>0ra=0
axm02:d >0 inv2.5: mi_tl = red v iltl = red
axm2.1: COLOR = (green, red) inv2.6 : ml_pass ¢ {0,1)
axm2.2 : green = red inv2.7 :il_pass € (0,1}

inv2.8 : mi_tl = red = ml_pass = 1

inv2.9:iltl - red = il pass - 1

variants:
ml_pass + il_pass

a
a=a+1 b:=b-1 bi=b+
mi_ti:= red ci=c+t end
ml_pass = il_tl:= red

end il pass =1

Index (1) LassoNpE

|[Learning Outcomes|

[Recall: Correct by Construction|

|State Space of a Model|

[Roadmap of this Module|

|[Requirements Document: Mainland, Island|

[Requirements Document: E-Descriptions|

|[Requirements Document: R-Descriptions|
|[Requirements Document:

[Visual Summary of Equipment Pieces|
Refinement Strategy|

[Model my: Abstraction|

Index (2) LassoNDE

[Model m,: State Space|

[Model mq: State Transitions via Events|

[Model my: Actions vs. Before-After Predicates|

|Design of Events: Invariant Preservation|

[Sequents: Syntax and Semantics|

[PO of Invariant Preservation: Sketch|

[PO of Invariant Preservation: Components|

(Rule of Invariant Preservation: Sequents|

[Inference Rules: Syntax and Semantics|

[Proof of Sequent: Steps and Structure|

|[Example Inference Rules (1)|

Index (3) LassoNDE

|[Example Inference Rules (2)|

[Example Inference Rules (3)|

[Revisiting Design of Events: ML _out|

|Revisiting Design of Events: ML_in|

[Fixing the Design of Events|

[Revisiting Fixed Design of Events: ML _out|

|Revisiting Fixed Design of Events: ML_in

[Initializing the Abstract System my)|

PO of Invariant Establishment

[Discharging PO of Invariant Establishment]|

|[System Property: Deadlock Freedom|

Index (4) LassoNpE

[PO of Deadlock Freedom (1)|

PO of Deadlock Freedom (2)|

|[Example Inference Rules (4)|

[Example Inference Rules (5)|
IDischarging PO of DLF: Exercise|
[Discharging PO of DLF: First Attempt|
|Why Did the DLF PO Fail to Discharge?|
[Fixing the Context of Initial Model|
[Discharging PO of DLF: Second Attempt|
[Initial Model: Summary)|

[Model m;: “More Concrete” Abstraction|

Index (6) LASSONDE

[PO Rule: Guard Strengthening of ML_in|
|Proving Refinement: ML _out/GRD|
[Proving Refinement: ML_in/GRD|
Refinement Rule: Invariant Preservation

[Visualizing Inv. Preservation in Refinement|
[INV PO of mi: ML _out/inv1_4/INV]|

[INV PO of my: ML_in/inv1_5/INV]

[Proving Refinement: ML _out/invi_4/INV|
[Proving Refinement: ML_in/inv1_5/INV|

[Initializing the Refined System m;|

|[PO of m; Concrete Invariant Establishment|

119 of 124

117 of 124

Index (5) fASSONDE Index (7) LASSONDE

[Model m;: Refined State Space|

[Model m;: State Transitions via Events|
[Model m;: Actions vs. Before-After Predicates|
States & Invariants: Abstract vs. Concrete
|[Events: Abstract vs. Concretel

[PO of Refinement: Components (1))

[PO of Refinement: Components (2)|

[PO of Refinement: Components (3)|
|Sketching PO of Refinement|

[Refinement Rule: Guard Strengthening|
[PO Rule: Guard Strengthening of ML out|

118 of 124

Discharging PO of m; |
Concrete Invariant Establishment

[Model m;: New, Concrete Events|

[Model m;: BA Predicates of Multiple Actions|
[Visualizing Inv. Preservation in Refinement|
Refinement Rule: Invariant Preservation

[INV PO of m;: IL in/inv1_4/INV|

[INV PO of my: IL_in/inv1_5/INV|

|Proving Refinement: IL_in/inv1_4/INV/|

|[Proving Refinement: IL_in/inv1_5/INV/
ILivelock Caused by New Events Diverging

Index (8) LassoNpE

[PO of Convergence of New Events|

|PO of Convergence of New Events: NAT|

[PO of Convergence of New Events: VAR|

|Convergence of New Events: Exercise|
PO of Refinement: Deadlock Freedom

[PO Rule: Relative Deadlock Freedom of m;|

[Example Inference Rules (6)|

Proving Refinement: DLF of m|

[Proving Refinement: DLF of m; (continued)|

[First Refinement: Summary|

[Model m,: “More Concrete” Abstraction|

Index (9) Sssonee

[Model m,: Refined, Concrete State Space|

[Model m.: Refining Old, Abstract Events|

[Model m»: New, Concrete Events|

[Invariant Preservation in Refinement m,|
[INV PO of m,: ML _out/inv2_4/INV|

(INV PO of m»: IL_out/inv2_3/INV|

|[Example Inference Rules (7)|

[Proving ML out/inv2 4/INV: First Attempt|
|Proving IL out/inv2_3/INV: First Attempt]
|[Failed: ML out/inv2 4/INV, IL out/inv2_3/INV|
[Fixing m.>: Adding an Invariant|

Index (10) Lassonpe

[INV PO of m,: ML _out/inv2_4/INV — Updated|
[INV PO of m»: IL out/inv2_3/INV — Updated|
[Proving ML _out/inv2 4/INV: Second Attempt|
|Proving IL_out/inv2_3/INV: Second Attempt|
[Fixing m,: Adding Actions|

[INV PO of m>: ML _out/inv2_3/INV]

[Proving ML _out/inv2_3/INV: First Attempt
[Failed: ML _out/inv2_3/INV|

[Fixing m.: Splitting ML _out and /L _out|

[mo> Livelocks: New Events Diverging

[Fixing m.: Regulating Traffic Light Changes|

Index (11) [Assoms

[Fixing m,: Measuring Traffic Light Changes|

|[PO Rule: Relative Deadlock Freedom of my|

[Proving Refinement: DLF of my|

|[Second Refinement: Summary|

