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Learning Outcomes

This module is designed to help you learn about:

● What an interface is

● Reinforce: Polymorphism and dynamic binding
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Interface (1.1)

● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)

phi and distance r from the origin (0.0).
● As far as users of a Point object p is concerned, being able to

call p.getX() and p.getY() is what matters.● How p.getX() and p.getY() are internally computed,

depending on the dynamic type of p, do not matter to users.

3 of 12

Interface (1.2)
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We consider the same point represented differently as:

● r = 2a,  = 30
○

[ polar system ]

● x = 2a ⋅ cos30
○ = a ⋅√3, y = 2a ⋅ sin30

○ = a [ cartesian system ]
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Interface (2)

public interface Point {
public double getX();
public double getY();

}

● An interface Point defines how users may access a point:

either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have

no implementations, but headers only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!
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Interface (3)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.

● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.

● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!
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Interface (4)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.

● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.

● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6
) allowed! [360

○ = 2⇡]
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Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?

● Lines 8 and 10 illustrate dynamic binding, how?
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Interface (6)

● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.

● Recommended to use an interface as the static type of:○ A variable
e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant

classes of the interface ⇒ Exploit dynamic binding !
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Abstract Classes vs. Interfaces:

When to Use Which?

● Use interfaces when:○ There is a common set of functionalities that can be implemented

via a variety of strategies.

e.g., Interface Point declares headers of getX() and getY().○ Each descendant class represents a different implementation

strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different

strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,

and some (not all) implementations cannot be shared .

e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares header of getArea, to be implemented by Rectangle and

Triangle.
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Beyond this lecture. . .

Study the ExampleInterfaces source code:○ Draw the inheritance hierarchy based on the class declarations○ Use the debugger to step into the various method calls (e.g.,

getArea() of Polygon, getX() of Point) to see which version of

the method gets executed (i.e., dynamic binding ).
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