
Interfaces

EECS2011 X:

Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:

● What an interface is

● Reinforce: Polymorphism and dynamic binding

2 of 12

Interface (1.1)

● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)

phi and distance r from the origin (0.0).
● As far as users of a Point object p is concerned, being able to

call p.getX() and p.getY() is what matters.● How p.getX() and p.getY() are internally computed,

depending on the dynamic type of p, do not matter to users.

3 of 12

Interface (1.2)

Recall: sin30
○ = 1

2
and cos30

○ = 1

2
⋅√3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

We consider the same point represented differently as:

● r = 2a, = 30
○

[polar system]

● x = 2a ⋅ cos30
○ = a ⋅√3, y = 2a ⋅ sin30

○ = a [cartesian system]
4 of 12

Interface (2)

public interface Point {
public double getX();
public double getY();

}

● An interface Point defines how users may access a point:

either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have

no implementations, but headers only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

5 of 12

Interface (3)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.

● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.

● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!

6 of 12

Interface (4)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.

● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.

● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6
) allowed! [360

○ = 2⇡]

7 of 12

Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?

● Lines 8 and 10 illustrate dynamic binding, how?

8 of 12

Interface (6)

● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.

● Recommended to use an interface as the static type of:○ A variable
e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant

classes of the interface ⇒ Exploit dynamic binding !

9 of 12

Abstract Classes vs. Interfaces:

When to Use Which?

● Use interfaces when:○ There is a common set of functionalities that can be implemented

via a variety of strategies.

e.g., Interface Point declares headers of getX() and getY().○ Each descendant class represents a different implementation

strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different

strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,

and some (not all) implementations cannot be shared .

e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares header of getArea, to be implemented by Rectangle and

Triangle.
10 of 12

Beyond this lecture. . .

Study the ExampleInterfaces source code:○ Draw the inheritance hierarchy based on the class declarations○ Use the debugger to step into the various method calls (e.g.,

getArea() of Polygon, getX() of Point) to see which version of

the method gets executed (i.e., dynamic binding).

11 of 12

Index (1)

Learning Outcomes

Interface (1.1)

Interface (1.2)

Interface (2)

Interface (3)

Interface (4)

Interface (5)

Interface (6)

Abstract Classes vs. Interfaces:

When to Use Which?

Beyond this lecture. . .

12 of 12

