
Recursion (Part 1)

EECS2011 X:

Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Background Study: Basic Recursion
● It is assumed that, in EECS2030, you learned about the basics of

recursion in Java:○ What makes a method recursive?○ How to trace recursion using a call stack?○ How to define and use recursive helper methods on arrays?● If needed, review the above assumed basics from the relevant parts

of EECS2030 (https://www.eecs.yorku.ca/˜jackie/
teaching/lectures/index.html#EECS2030_F21):○ Parts A – C, Lecture 8, Week 12

Tips.○ Skim the slides: watch lecture videos if needing explanations.○ Recursion lab from EECS2030-F22: here [Solution: here]○ Ask questions related to the assumed basics of recursion!● Assuming that you know the basics of recursion, we will:○ Look at a basic example of recursion on arrays together.○ Have you complete an assignment on the more advanced

recursion problems.
2 of 11

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/slides/08-Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5_solution.zip

Learning Outcomes of this Lecture

This module is designed to help you:

● Quickly review the recursion basics.

● Know about the resources on recursion basics.

3 of 11

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:○ Base Cases: Small problem instances immediately solvable.○ Recursive Cases:● Large problem instances not immediately solvable.● Solve by reusing solution(s) to strictly smaller problem instances.● Similar idea learnt in high school: [mathematical induction]● Recursion can be easily expressed programmatically in Java:

m (i) {
if(i == . . .) { /* base case: do something directly */ }
else {

m (j);/* recursive call with strictly smaller value */

}
}

○ In the body of a method m, there might be a call or calls to m itself .○ Each such self-call is said to be a recursive call .○ Inside the execution of m(i), a recursive call m(j) must be that j < i.
4 of 11

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)

and pushed onto the stack.

● When the body of a method makes a (helper) method call, that

(helper) method is activated (and becomes active) and

pushed onto the stack.

⇒ The stack contains activation records of all active methods.○ Top of stack denotes the current point of execution .○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

5 of 11

Tracing Method Calls via a Stack
● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth
number in a Fibonacci sequence (denoted as Fn):

Fn =
�����������

1 if n = 1

1 if n = 2

Fn−1 + Fn−2 if n > 2

● Your tasks are then to review how to○ implement the above mathematical, recursive function in Java○ trace, via a stack, the recursive execution at runtime

by studying this video (≈ 20 minutes):

6 of 11

https://www.youtube.com/watch?v=YPWryhqMcxk&list=PL5dxAmCmjv_7yZlpvPm5n5lHYnyFeSFdK&index=4

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.● Naively , explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /* base case */ }
else if(a.length == 1) { /* base case */ }
else {
int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[i - 1] = a[i]; }
m(sub) } }

● For efficiency , we pass the reference of the same array and

specify the range of indices to be considered:

void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]7 of 11

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.

System.out.println(allPositive({})); /* true */

System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */

System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array �→ Return true immediately.

The base case is true ∵ we can not find a counter-example

(i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array �→○ 1st element positive, and○ the rest of the array is all positive .

Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive

number in a, and false if there are no positive numbers in a.

Hint: What to return in the base case of an empty array? [false]∵ No witness (i.e., a positive number) from an empty array
8 of 11

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);
}

boolean allPositiveHelper (int[] a, int from, int to) {
if (from > to) { /* base case 1: empty range */

return true;
}
else if(from == to) { /* base case 2: range of one element */

return a[from] > 0;
}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);
}

}

9 of 11

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a

non-descending order.

System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array �→ Return true immediately.

The base case is true ∵ we can not find a counter-example

(i.e., a pair of adjacent numbers that are not sorted in a

non-descending order) from an empty array.

Recursive Case: Non-Empty array �→○ 1st and 2nd elements are sorted in a non-descending order, and○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending order .

10 of 11

Index (1)
Background Study: Basic Recursion

Learning Outcomes of this Lecture

Recursion: Principle

Tracing Method Calls via a Stack

Tracing Method Calls via a Stack

Making Recursive Calls on an Array

Recursion: All Positive (1)

Recursion: All Positive (2)

Recursion: Is an Array Sorted? (1)

11 of 11

Asymptotic Analysis of Algorithms

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You’re Assumed to Know

● You will be required to implement Java classes and methods, and to
test their correctness using JUnit.
Review them if necessary:

https://www.eecs.yorku.ca/˜jackie/teaching/

lectures/index.html#EECS2030_F21

○ Implementing classes and methods in Java [Weeks 1 – 2]○ Testing methods in Java [Week 4]
● Also, make sure you know how to trace programs using a debugger :

https://www.eecs.yorku.ca/˜jackie/teaching/

tutorials/index.html#java_from_scratch_w21

○ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

2 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21

Learning Outcomes

This module is designed to help you learn about:
● Notions of Algorithms and Data Structures

● Measurement of the “goodness” of an algorithm
● Measurement of the efficiency of an algorithm
● Experimental measurement vs. Theoretical measurement
● Understand the purpose of asymptotic analysis.
● Understand what it means to say two algorithms are:○ equally efficient, asymptotically○ one is more efficient than the other, asymptotically

● Given an algorithm, determine its asymptotic upper bound .

3 of 41

Algorithm and Data Structure

● A data structure is:○ A systematic way to store and organize data in order to facilitate
access and modifications○ Never suitable for all purposes: it is important to know its strengths
and limitations● A well-specified computational problem precisely describes

the desired input/output relationship.○ Input: A sequence of n numbers �a1, a2, . . . , an�○ Output: A permutation (reordering) �a′1, a′2, . . . , a′n� of the input
sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n○ An instance of the problem: �3, 1, 2, 5, 4�● An algorithm is:○ A solution to a well-specified computational problem○ A sequence of computational steps that takes value(s) as input
and produces value(s) as output● Steps in an algorithm manipulate well-chosen data structure(s).

4 of 41

Measuring “Goodness” of an Algorithm

1. Correctness :○ Does the algorithm produce the expected output?○ Use JUnit to ensure this.
2. Efficiency:○ Time Complexity : processor time required to complete○ Space Complexity : memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

5 of 41

Measuring Efficiency of an Algorithm

● Time is more of a concern than is storage.
● Solutions that are meant to be run on a computer should run as

fast as possible.
● Particularly, we are interested in how running time depends on

two input factors:
1. size

e.g., sorting an array of 10 elements vs. 1m elements
2. structure

e.g., sorting an already-sorted array vs. a hardly-sorted array
● How do you determine the running time of an algorithm?

1. Measure time via experiments

2. Characterize time as a mathematical function of the input size

6 of 41

Measure Running Time via Experiments

● Once the algorithm is implemented (e.g., in Java):○ Execute program on test inputs of various sizes & structures.○ For each test, record the elapsed time of the execution.

long startTime = System.currentTimeMillis();

/* run the algorithm */

long endTime = System.currenctTimeMillis();

long elapsed = endTime - startTime;

○ Visualize the result of each test.
● To make sound statistical claims about the algorithm’s

running time, the set of input tests must be “reasonably”
complete.

7 of 41

Example Experiment

● Computational Problem:○ Input: A character c and an integer n○ Output: A string consisting of n repetitions of character c
e.g., Given input ‘*’ and 15, output ***************.

● Algorithm 1 using String Concatenations:
public static String repeat1(char c, int n) {

String answer = "";

for (int i = 0; i < n; i ++) { answer += c; }

return answer; }

● Algorithm 2 using append from StringBuilder:
public static String repeat2(char c, int n) {

StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; i ++) { sb.append(c); }

return sb.toString(); }

8 of 41

Example Experiment: Detailed Statistics

n repeat1 (in ms) repeat2 (in ms)
50,000 2,884 1

100,000 7,437 1
200,000 39,158 2
400,000 170,173 3
800,000 690,836 7

1,600,000 2,847,968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58

12,800,000 265,696,421 (≈ 3 days) 135

● As input size is doubled, rates of increase for both algorithms
are linear :
○ Running time of repeat1 increases by ≈ 5 times.○ Running time of repeat2 increases by ≈ 2 times.

9 of 41

Example Experiment: Visualization

n

repeat1

repeat2

104 105 106 107

108

107

106

105

104

103

102

101

100

R
u
n
n
in

g
T

im
e

(m
s)

109

10 of 41

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (e.g., in Java) in
order study its runtime behaviour experimentally.○ What if our purpose is to choose among alternative data

structures or algorithms to implement?○ Can there be a higher-level analysis to determine that one
algorithm or data structure is more “superior” than others?

2. Comparison of multiple algorithms is only meaningful when
experiments are conducted under the same working
environment of:○ Hardware: CPU, running processes○ Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.○ What if worst-case inputs were not included in the experiments?○ What if “important” inputs were not included in the experiments?

11 of 41

Moving Beyond Experimental Analysis

● A better approach to analyzing the efficiency (e.g., running

time) of algorithms should be one that:
○ Allows us to calculate the relative efficiency (rather than absolute

elapsed time) of algorithms in a way that is independent of the
hardware and software environment.○ Can be applied using a high-level description of the algorithm
(without fully implementing it).

[e.g., Pseudo Code, Java Code (with “tolerances”)]○ Considers all possible inputs (esp. the worst-case scenario).
● We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations

2. Approximating running time as a function of input size

3. Focusing on the worst-case input (requiring most running time)

12 of 41

Counting Primitive Operations

A primitive operation corresponds to a low-level instruction
with a constant execution time .○ (Variable) Assignment [e.g., x = 5;]○ Indexing into an array [e.g., a[i]]○ Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]○ Accessing an attribute of an object [e.g., acc.balance]○ Returning from a method [e.g., return result;]

Q: Is a method call a primitive operation?
A: Not in general. It may be a call to:○ a “cheap” method (e.g., printing Hello World), or○ an “expensive” method (e.g., sorting an array of integers)

13 of 41

Example: Counting Primitive Operations (1)

1 int findMax (int[] a, int n) {

2 currentMax = a[0];

3 for (int i = 1; i < n;) {

4 if (a[i] > currentMax) {

5 currentMax = a[i]; }

6 i ++ }

7 return currentMax; }

of times i < n in Line 3 is executed? [n]
of times the loop body (Line 4 to Line 6) is executed? [n − 1]● Line 2: 2 [1 indexing + 1 assignment]● Line 3: n + 1 [1 assignment + n comparisons]● Line 4: (n − 1) ⋅ 2 [1 indexing + 1 comparison]● Line 5: (n − 1) ⋅ 2 [1 indexing + 1 assignment]● Line 6: (n − 1) ⋅ 2 [1 addition + 1 assignment]● Line 7: 1 [1 return]● Total # of Primitive Operations: 7n - 2

14 of 41

Example: Counting Primitive Operations (2)

Count the number of primitive operations for
1 boolean foundEmptyString = false;
2 int i = 0;

3 while (!foundEmptyString && i < names.length) {

4 if (names[i].length() == 0) {

5 /* set flag for early exit */

6 foundEmptyString = true;
7 }

8 i = i + 1;

9 }

● # times the stay condition of the while loop is checked?
[between 1 and names.length + 1]

[worst case: names.length + 1 times]● # times the body code of while loop is executed?
[between 0 and names.length]

[worst case: names.length times]
15 of 41

From Absolute RT to Relative RT

● Each primitive operation (PO) takes approximately the same,
constant amount of time to execute. [say t]

The absolute value of t depends on the execution environment .
● The number of primitive operations required by an algorithm

should be proportional to its actual running time on a
specific working environment.
e.g., findMax (int[] a, int n) has 7n - 2 POs

RT = (7n - 2) ⋅ t
Say two algorithms with RT (7n - 2) ⋅ t and RT (10n + 3) ⋅ t.
⇒ It suffices to compare their relative running time:

7n - 2 vs. 10n + 3.
● To determine the time efficiency of an algorithm, we only

focus on their number of POs.
16 of 41

Example: Approx. # of Primitive Operations

● Given # of primitive operations counted precisely as 7n − 2,
we view it as

7 ⋅ n1 − 2 ⋅ n0

● We say○ n is the highest power○ 7 and 2 are the multiplicative constants○ 2 is the lower term● When approximating a function (considering that input size may
be very large):○ Only the highest power matters.○ multiplicative constants and lower terms can be dropped.⇒ 7n − 2 is approximately n
Exercise: Consider 7n + 2n ⋅ log n + 3n2:○ highest power? [n2]○ multiplicative constants? [7, 2, 3]○ lower terms? [7n + 2n ⋅ log n]

17 of 41

Approximating Running Time

as a Function of Input Size

Given the high-level description of an algorithm, we
associate it with a function f , such that f (n) returns the
number of primitive operations that are performed on an
input of size n.○ f (n) = 5 [constant]○ f (n) = log2n [logarithmic]○ f (n) = 4 ⋅ n [linear]○ f (n) = n2 [quadratic]○ f (n) = n3 [cubic]○ f (n) = 2n [exponential]

18 of 41

Focusing on the Worst-Case Input

R
u

n
n

in
g

T
im

e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

● Average-case analysis calculates the expected running time
based on the probability distribution of input values.● worst-case analysis or best-case analysis?

19 of 41

What is Asymptotic Analysis?

Asymptotic analysis
● Is a method of describing behaviour in the limit :○ How the running time of the algorithm under analysis changes as

the input size changes without bound○ e.g., Contrast: RT1(n) = n vs. RT2(n) = n2

● Allows us to compare the relative performance of alternative
algorithms:○ For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time can be disregarded.○ e.g., RT1(n) = 3n2 + 7n + 18 and RT1(n) = 100n2 + 3n − 100 are
considered equally efficient, asymptotically .○ e.g., RT1(n) = n3 + 7n + 18 is considered less efficient than
RT1(n) = 100n2 + 100n + 2000, asymptotically .

20 of 41

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the
running time of an algorithm:
● Asymptotic upper bound [O]
● Asymptotic lower bound [⌦]
● Asymptotic tight bound [⇥]

21 of 41

Asymptotic Upper Bound: Definition

● Let f(n) and g(n) be functions mapping positive integers (input
size) to positive real numbers (running time).○ f(n) characterizes the running time of some algorithm.○ O(g(n)) :

● denotes a collection of functions● consists of all functions that can be upper bounded by g(n), starting
at some point, using some constant factor● f(n) ∈ O(g(n)) if there are:○ A real constant c > 0○ An integer constant n0 ≥ 1

such that:
f(n) ≤ c ⋅ g(n) for n ≥ n0

● For each member function f(n) in O(g(n)) , we say that:○ f (n) ∈ O(g(n)) [f(n) is a member of “big-O of g(n)”]○ f (n) is O(g(n)) [f(n) is “big-O of g(n)”]○ f (n) is order of g(n)
22 of 41

Asymptotic Upper Bound: Visualization

Input Size

R
u
n
n
in

g
 T

im
e

cg(n)

f(n)

n0

From n0, f(n) is upper bounded by c ⋅ g(n), so f(n) is O(g(n)) .

23 of 41

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

8n + 5 ≤ c ⋅ n
Can we choose c = 9? What should the corresponding n0 be?

n 8n + 5 9n
1 13 9
2 21 18
3 29 27
4 37 36
5 45 45
6 53 54

. . .

Therefore, we prove it by choosing c = 9 and n0 = 5.
We may also prove it by choosing c = 13 and n0 = 1. Why?

24 of 41

Asymptotic Upper Bound: Example (2)

Prove: The function f (n) = 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

5n4 + 3n3 + 2n2 + 4n + 1 ≤ c ⋅ n4

f (1) = 5 + 3 + 2 + 4 + 1 = 15
Choose c = 15 and n0 = 1!

25 of 41

Asymptotic Upper Bound: Proposition (1)

If f (n) is a polynomial of degree d , i.e.,

f (n) = a0 ⋅ n0 + a1 ⋅ n1 + ⋅ ⋅ ⋅ + ad ⋅ nd

and a0,a1, . . . ,ad are integers, then f (n) is O(nd) .○ We prove by choosing

c = �a0� + �a1� + ⋅ ⋅ ⋅ + �ad �
n0 = 1

○ We know that for n ≥ 1: n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nd

○ Upper-bound effect: n0 = 1? [f (1) ≤ (�a0� + �a1� + ⋅ ⋅ ⋅ + �ad �) ⋅ 1d]

a0 ⋅ 10 + a1 ⋅ 11 + ⋅ ⋅ ⋅ + ad ⋅ 1d ≤ �a0� ⋅ 1d + �a1� ⋅ 1d + ⋅ ⋅ ⋅ + �ad � ⋅ 1d

○ Upper-bound effect holds? [f (n) ≤ (�a0� + �a1� + ⋅ ⋅ ⋅ + �ad �) ⋅ nd]

a0 ⋅ n0 + a1 ⋅ n1 + ⋅ ⋅ ⋅ + ad ⋅ nd ≤ �a0� ⋅ nd + �a1� ⋅ nd + ⋅ ⋅ ⋅ + �ad � ⋅ nd

26 of 41

Asymptotic Upper Bound: Proposition (2)

O(n0) ⊂ O(n1) ⊂ O(n2) ⊂ . . .
If a function f (n) is upper bounded by another function g(n) of
degree d , d ≥ 0, then f (n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).
e.g., Family of O(n) contains all f (n) that can be upper

bounded by g(n) = n:
n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]

e.g., Family of O(n2) contains all f (n) that can be upper

bounded by g(n) = n2:
n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]
n2, 2n2, 3n2, . . . [functions with degree 2]

27 of 41

Asymptotic Upper Bound: More Examples

● 5n2 + 3n ⋅ logn + 2n + 5 is O(n2) [c = 15, n0 = 1]
● 20n3 + 10n ⋅ logn + 5 is O(n3) [c = 35, n0 = 1]
● 3 ⋅ logn + 2 is O(logn) [c = 5, n0 = 2]○ Why can’t n0 be 1?○ Choosing n0 = 1 means⇒ f (1) is upper-bounded by c ⋅ log 1 :

● We have f (1) = 3 ⋅ log1 + 2, which is 2.
● We have c ⋅ log 1 , which is 0.

⇒ f (1) is not upper-bounded by c ⋅ log 1 [Contradiction!]
● 2n+2 is O(2n) [c = 4, n0 = 1]
● 2n + 100 ⋅ logn is O(n) [c = 102, n0 = 1]

28 of 41

Using Asymptotic Upper Bound Accurately

● Use the big-O notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f (n) = 4n3 + 3n2 + 5:○ Recall: O(n3) ⊂ O(n4) ⊂ O(n5) ⊂ . . .○ It is the most accurate to say that f (n) is O(n3).○ It is true, but not very useful, to say that f (n) is O(n4) and that

f (n) is O(n5).○ It is false to say that f (n) is O(n2), O(n), or O(1).
● Do not include constant factors and lower-order terms in the

big-O notation.
For example, say f (n) = 2n2 is O(n2), do not say f (n) is
O(4n2 + 6n + 9).

29 of 41

Classes of Functions

upper bound class cost

O(1) constant cheapest
O(log(n)) logarithmic

O(n) linear
O(n ⋅ log(n)) “n-log-n”

O(n2) quadratic
O(n3) cubic

O(nk), k ≥ 1 polynomial
O(an), a > 1 exponential most expensive

30 of 41

Rates of Growth: Comparison
f(

n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

31 of 41

Upper Bound of Algorithm: Example (1)

1 int maxOf (int x, int y) {

2 int max = x;

3 if (y > x) {

4 max = y;

5 }

6 return max;

7 }

● # of primitive operations: 4
2 assignments + 1 comparison + 1 return = 4

● Therefore, the running time is O(1) .
● That is, this is a constant-time algorithm.

32 of 41

Upper Bound of Algorithm: Example (2)

1 int findMax (int[] a, int n) {

2 currentMax = a[0];

3 for (int i = 1; i < n;) {

4 if (a[i] > currentMax) {

5 currentMax = a[i]; }

6 i ++ }

7 return currentMax; }

● From last lecture, we calculated that the # of primitive
operations is 7n − 2.

● Therefore, the running time is O(n) .
● That is, this is a linear-time algorithm.

33 of 41

Upper Bound of Algorithm: Example (3)

1 boolean containsDuplicate (int[] a, int n) {

2 for (int i = 0; i < n;) {

3 for (int j = 0; j < n;) {

4 if (i != j && a[i] == a[j]) {

5 return true; }

6 j ++; }

7 i ++; }

8 return false; }

● Worst case is when we reach Line 8.
● # of primitive operations ≈ c1 + n ⋅ n ⋅ c2, where c1 and c2 are

some constants.
● Therefore, the running time is O(n2) .
● That is, this is a quadratic algorithm.
34 of 41

Upper Bound of Algorithm: Example (4)

1 int sumMaxAndCrossProducts (int[] a, int n) {

2 int max = a[0];

3 for(int i = 1; i < n; i ++) {

4 if (a[i] > max) { max = a[i]; }

5 }

6 int sum = max;

7 for (int j = 0; j < n; j ++) {

8 for (int k = 0; k < n; k ++) {

9 sum += a[j] * a[k]; } }

10 return sum; }

● # of primitive operations ≈ (c1 ⋅ n + c2) + (c3 ⋅ n ⋅ n + c4), where
c1, c2, c3, and c4 are some constants.

● Therefore, the running time is O(n + n2) = O(n2) .
● That is, this is a quadratic algorithm.
35 of 41

Upper Bound of Algorithm: Example (5)

1 int triangularSum (int[] a, int n) {

2 int sum = 0;

3 for (int i = 0; i < n; i ++) {

4 for (int j = i ; j < n; j ++) {

5 sum += a[j]; } }

6 return sum; }

● # of primitive operations ≈ n + (n − 1) + ⋅ ⋅ ⋅ + 2 + 1 = n⋅(n+1)
2

● Therefore, the running time is O(n2+n
2) = O(n2) .

● That is, this is a quadratic algorithm.

36 of 41

Beyond this lecture . . .

● You will be required to implement Java classes and methods, and to
test their correctness using JUnit.
Review them if necessary:

https://www.eecs.yorku.ca/˜jackie/teaching/

lectures/index.html#EECS2030_F21

○ Implementing classes and methods in Java [Weeks 1 – 2]○ Testing methods in Java [Week 4]
● Also, make sure you know how to trace programs using a debugger :

https://www.eecs.yorku.ca/˜jackie/teaching/

tutorials/index.html#java_from_scratch_w21

○ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

37 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21

Index (1)

What You’re Assumed to Know

Learning Outcomes

Algorithm and Data Structure

Measuring “Goodness” of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization

Experimental Analysis: Challenges

Moving Beyond Experimental Analysis

38 of 41

Index (2)

Counting Primitive Operations

Example: Counting Primitive Operations (1)

Example: Counting Primitive Operations (2)

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations

Approximating Running Time

as a Function of Input Size

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

39 of 41

Index (3)

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Example (1)

Asymptotic Upper Bound: Example (2)

Asymptotic Upper Bound: Proposition (1)

Asymptotic Upper Bound: Proposition (2)

Asymptotic Upper Bound: More Examples

Using Asymptotic Upper Bound Accurately

Classes of Functions

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

40 of 41

Index (4)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

Beyond this lecture . . .

41 of 41

Basic Data Structures:
Arrays vs. Linked-Lists

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you learn about:
● basic data structures: Arrays vs. Linked Lists

● Two Sorting Algorithms: Selection Sort vs. Insertion Sort
● Linked Lists: Singly-Linked vs. Doubly-Linked
● Running Time: Array vs. Linked-List Operations
● Java Implementations: String Lists vs. Generic Lists

2 of 56

Basic Data Structure: Arrays
● An array is a sequence of indexed elements.● Size of an array is fixed at the time of its construction.○ e.g., int[] numbers = new int[10];○ Heads-Up. Two resizing strategies: increments vs. doubling.● Supported operations on an array:○ Accessing: e.g., int max = a[0];

Time Complexity: O(1) [constant-time op.]○ Updating: e.g., a[i] = a[i + 1];

Time Complexity: O(1) [constant-time op.]○ Inserting/Removing:

String[] insertAt(String[] a, int n, String e, int i)

String[] result = new String[n + 1];

for(int j = 0; j <= i - 1; j ++){ result[j] = a[j]; }

result[i] = e;

for(int j = i + 1; j <= n; j ++){ result[j] = a[j-1]; }

return result;

Time Complexity: O(n) [linear-time op.]
3 of 56

Array Case Study:
Comparing Two Sorting Strategies
● The Sorting Problem:

Input : An array a of n numbers �a1, a2, . . . , an� (e.g., �3,4,1,3,2�)
Output : A permutation/reordering �a′1, a

′
2, . . . , a

′
n� of the input

sequence s.t. elements are arranged in a non-descending order
(e.g., �1,2,3,3,4�): a

′
1 ≤ a

′
2 ≤ ⋅ ⋅ ⋅ ≤ a

′
n

Remark. Variants of the sorting problem may require different orderings:○ non-descending○ ascending/increasing○ non-ascending○ descending/decreasing
● Two alternative implementation strategies for solving this problem
● At the end, choose one based on their time complexities.

4 of 56

Sorting: Strategy 1 – Selection Sort
● Maintain a (initially empty) sorted portion of array a.● From left to right in array a, select and insert the minimum

element to the end of this sorted portion, so it remains sorted.
1 void selectionSort(int[] a, int n)

2 for (int i = 0; i <= (n - 2); i ++)

3 int minIndex = i;

4 for (int j = i; j <= (n - 1); j ++)

5 if (a[j] < a[minIndex]) { minIndex = j; }

6 int temp = a[i];

7 a[i] = a[minIndex];

8 a[minIndex] = temp;

● How many times does the body of for-loop (L4) run? [(n - 1)]
● Running time? [O(n2)]

n���
find {a[0], ..., a[n-1]}

+ (n − 1)���������������������
find {a[1], ..., a[n-1]}

+ ⋅ ⋅ ⋅ + 2���
find {a[n - 2], a[a[n - 1]]}● So selection sort is a quadratic-time algorithm.

5 of 56

Sorting: Strategy 2 – Insertion Sort
● Maintain a (initially empty) sorted portion of array a.● From left to right in array a, insert one element at a time into

the “correct” spot in this sorted portion, so it remains sorted.
1 void insertionSort(int[] a, int n)

2 for (int i = 1; i < n; i ++)

3 int current = a[i];

4 int j = i;

5 while (j > 0 && a[j - 1] > current)

6 a[j] = a[j - 1];

7 j --;

8 a[j] = current;

● while-loop (L5) exits when? [j <= 0 or a[j - 1] <= current]

● Running time? [O(n
2
)]

O(1���
insert into {a[0]}

+ 2���
insert into {a[0], a[1]}

+ ⋅ ⋅ ⋅+ (n − 1)���������������������
insert into {a[0], ..., a[n-2]}

)

● So insertion sort is a quadratic-time algorithm.
6 of 56

Sorting: Alternative Implementations?

● In the Java implementations of selection sort and insertion

sort , we maintain the “sorted portion” from the left end.○ For selection sort , we select the minimum element from the
“unsorted portion” and insert it to the end of the “sorted

portion” .○ For insertion sort , we choose the left-most element from the
“unsorted portion” and insert it at the “correct spot” in the
“sorted portion” .

● Exercise: Modify the Java implementations, so that the
“sorted portion” is:○ arranged in a non-ascending order (e.g., �5,4,3,2,1�); and○ maintained and grown from the right end instead.

7 of 56

Tracing Insertion & Selection Sorts in Java

● Given a fragment of Java code, you are expected to:
(1) Derive its asymptotic upper bound

(by approximating the number of POs)
(2) Trace its runtime execution

(by understanding how variables change)
● We did (1) in class.
● We discussed how, intuitively, the two sorting algorithms work.
● You are now expected to trace the Java code (both on paper

and in Eclipse) on your own.
● Optionally, you may follow through these videos:○ Tracing Insertion Sort on paper [LINK]○ Tracing Selection Sort on paper [LINK]○ Tracing in Eclipse [LINK]

8 of 56

https://www.youtube.com/watch?v=P4JbeA1EPsU&list=PL5dxAmCmjv_6HtGoWH6toYd4cZDHuRkqH&index=8&pp=sAQB
https://www.youtube.com/watch?v=Bx6pZXkrcJI&list=PL5dxAmCmjv_6HtGoWH6toYd4cZDHuRkqH&index=9&pp=sAQB
https://www.youtube.com/watch?v=tqaTxfzGXoQ&list=PL5dxAmCmjv_6HtGoWH6toYd4cZDHuRkqH&index=10&pp=sAQB

Comparing Insertion & Selection Sorts

● Asymptotically , running times of selection sort and insertion

sort are both O(n2) .
● We will later see that there exist better algorithms that can

perform better than quadratic: O(n ⋅ logn).

9 of 56

Basic Data Structure: Singly-Linked Lists
● We know that arrays perform:○ well in indexing○ badly in inserting and deleting● We now introduce an alternative data structure to arrays.● A linked list is a series of connected nodes, forming a linear sequence.

Remark. At runtime, node connections are through reference aliasing.● Each node in a singly-linked list (SLL) stores:○ reference to a data object ; and○ reference to the next node in the list.
Contrast. relative positioning of LL vs. absolute indexing of arrays

MSP

element next

● The last node in a singly-linked list is different from others. How so? Its
reference to the next node is simply null.

10 of 56

Singly-Linked List: How to Keep Track?
● Due to its “chained” structure, a SLL, when first being created, does not

need to be specified with a fixed length.● We can use a SLL to dynamically store and manipulate as many elements
as we desire without the need to resize by:○ e.g., creating a new node and setting the relevant references.○ e.g., inserting some node to the beginning/middle/end of a SLL○ e.g., deleting some node from the beginning/middle/end of a SLL● Contrary to arrays, we do not keep track of all nodes in a SLL directly by
indexing the nodes.● Instead, we only store a reference to the head (i.e., first node), and find
other parts of the list indirectly.

LAX MSP BOSATL

head tail

● Exercise: Given the head reference of a SLL, describe how we may:○ Count the number of nodes currently in the list. [Running Time?]○ Find the reference to its tail (i.e., last node) [Running Time?]
11 of 56

Singly-Linked List: Java Implementation
We first implement a SLL storing strings only.
public class Node {

private String element;

private Node next;

public Node(String e, Node n) { element = e; next = n; }

public String getElement() { return element; }

public void setElement(String e) { element = e; }

public Node getNext() { return next; }

public void setNext(Node n) { next = n; }

}

public class SinglyLinkedList {

private Node head;

public void setHead(Node n) { head = n; }

public int getSize() { . . . }

public Node getTail() { . . . }

public void addFirst(String e) { . . . }

public Node getNodeAt(int i) { . . . }

public void addAt(int i, String e) { . . . }

public void removeLast() { . . . }

}

12 of 56

Singly-Linked List:
Constructing a Chain of Nodes

element

Node<String>

“Alan”element

Node

“Mark”element

Node

“Tom”element

Node

null

alan mark tom

nextnextnext

Approach 1
Node tom = new Node("Tom", null);
Node mark = new Node("Mark", tom);

Node alan = new Node("Alan", mark);

Approach 2
Node alan = new Node("Alan", null);
Node mark = new Node("Mark", null);
Node tom = new Node("Tom", null);
alan.setNext(mark);

mark.setNext(tom);

13 of 56

Singly-Linked List: Setting a List’s Head

“Alan”element

NodeSinglyLinkedList

alanlist

next

“Mark”element

Node

mark

next

“Tom”element

Node

tom

next null
head

Approach 1
Node tom = new Node("Tom", null);
Node mark = new Node("Mark", tom);

Node alan = new Node("Alan", mark);

SinglyLinkedList list = new SinglyLinkedList();
list.setHead(alan);

Approach 2
Node alan = new Node("Alan", null);
Node mark = new Node("Mark", null);
Node tom = new Node("Tom", null);
alan.setNext(mark);

mark.setNext(tom);

SinglyLinkedList list = new SinglyLinkedList();
list.setHead(alan);

14 of 56

Singly-Linked List: Counting # of Nodes (1)

Problem: Return the number of nodes currently stored in a SLL.○ Hint. Only the last node has a null next reference.○ Assume we are in the context of class SinglyLinkedList.

1 int getSize() {

2 int size = 0;

3 Node current = head;

4 while (current != null) {

5 current = current.getNext();

6 size ++;

7 }

8 return size;

9 }

○ When does the while-loop (L4) exit? [current == null]○ RT of getSize: O(n) [linear-time op.]
○ Contrast: RT of a.length: O(1) [constant-time op.]

15 of 56

Singly-Linked List: Counting # of Nodes (2)

“Alan”element

NodeSinglyLinkedList

alanlist

next

“Mark”element

Node

mark

next

“Tom”element

Node

tom

next null
head

1 int getSize() {

2 int size = 0;

3 Node current = head;

4 while (current != null) { /* exit when current == null */

5 current = current.getNext();

6 size ++;

7 }

8 return size;

9 }

Let’s now consider list.getSize() :

current current != null End of Iteration size

alan true 1 1
mark true 2 2
tom true 3 3

null false – –
16 of 56

Singly-Linked List: Finding the Tail (1)

Problem: Retrieved the tail (i.e., last node) in a SLL.○ Hint. Only the last node has a null next reference.○ Assume we are in the context of class SinglyLinkedList.
1 Node getTail() {

2 Node current = head;

3 Node tail = null;
4 while (current != null) {

5 tail = current;

6 current = current.getNext();

7 }

8 return tail;

9 }

○ When does the while-loop (L4) exit? [current == null]○ RT of getTail: O(n) [linear-time op.]
○ Contrast: RT of a[a.length - 1]: O(1) [constant-time op.]

17 of 56

Singly-Linked List: Finding the Tail (2)

“Alan”element

NodeSinglyLinkedList

alanlist

next

“Mark”element

Node

mark

next

“Tom”element

Node

tom

next null
head

1 Node getTail() {

2 Node current = head;

3 Node tail = null;
4 while (current != null) { /* exit when current == null */

5 tail = current;

6 current = current.getNext();

7 }

8 return tail;

9 }

Let’s now consider list.getTail() :

current current != null End of Iteration tail

alan true 1 alan
mark true 2 mark
tom true 3 tom

null false – –
18 of 56

Singly-Linked List: Can We Do Better?

● In practice, we may frequently need to:○ Access the tail of a list. [e.g., customers joining a service queue]○ Inquire the size of a list. [e.g., the service queue full?]

Both operations cost O(n) to run (with only head available).
● We may improve the RT of these two operations.

Principle. Trade space for time.

○ Declare a new attribute tail pointing to the end of the list.○ Declare a new attribute size denoting the number of stored nodes.○ RT of these operations, accessing attribute values, are O(1) !

● Why not declare attributes to store references of all nodes

between head and tail (e.g., secondNode, thirdNode)?○ No – at the time of declarations, we simply do not know how
many nodes there will be at runtime.

19 of 56

Singly-Linked List: Inserting to the Front (1)

Problem: Insert a new string e to the front of the list.○ Hint. The list’s new head should store e and point to the old head.○ Assume we are in the context of class SinglyLinkedList.
1 void addFirst (String e) {

2 head = new Node(e, head);

3 if (size == 0) {

4 tail = head;

5 }

6 size ++;

7 }

○ Remember that RT of accessing head or tail is O(1)
○ RT of addFirst is O(1) [constant-time op.]
○ Contrast: Inserting into an array costs O(n) [linear-time op.]

20 of 56

Singly-Linked List: Inserting to the Front (2)

ATL BOSMSP

head

BOS

newest

MSP ATL

head

LAX

LAX MSP ATL BOS

headnewest

21 of 56

Exercise

See ExampleStringLinkedLists.zip.
Compare and contrast two alternative ways to constructing a
SLL: testSLL 01 vs. testSLL 02.

22 of 56

Exercise

● Complete the Java implementations, tests, and running time

analysis for:○ void removeFirst()○ void addLast(String e)

● Question: The removeLast() method may not be completed
in the same way as is void addLast(String e). Why?

23 of 56

Singly-Linked List: Accessing the Middle (1)
Problem: Return the node at index i in the list.○ Hint. 0 ≤ i < list.getSize()○ Assume we are in the context of class SinglyLinkedList.
1 Node getNodeAt (int i) {

2 if (i < 0 || i >= size) {

3 throw new IllegalArgumentException("Invalid Index");

4 }

5 else {

6 int index = 0;

7 Node current = head;

8 while (index < i) { /* exit when index == i */

9 index ++;

10 /* current is set to node at index i

11 * last iteration: index incremented from i - 1 to i

12 */

13 current = current.getNext();

14 }

15 return current;

16 }

17 }

24 of 56

Singly-Linked List: Accessing the Middle (2)

“Alan”element

NodeSinglyLinkedList

alanlist

next

“Mark”element

Node

mark

next

“Tom”element

Node

tom

next null
head

1 Node getNodeAt (int i) {

2 if (i < 0 || i >= size) { /* error */ }

3 else {

4 int index = 0;

5 Node current = head;

6 while (index < i) { /* exit when index == i */

7 index ++;

8 current = current.getNext();

9 }

10 return current;

11 }

12 }

Let’s now consider list.getNodeAt(2) :

current index index < 2 Beginning of Iteration
alan 0 true 1
mark 1 true 2
tom 2 false –

25 of 56

Singly-Linked List: Accessing the Middle (3)

● What is the worst case of the index i for getNodeAt(i)?○ Worst case: list.getNodeAt(list.size - 1)○ RT of getNodeAt is O(n) [linear-time op.]

● Contrast: Accessing an array element costs O(1) [constant-time op.]

26 of 56

Singly-Linked List: Inserting to the Middle (1)
Problem: Insert a new element at index i in the list.○ Hint 1. 0 ≤ i ≤ list.getSize()○ Hint 2. Use getNodeAt(?) as a helper method.
1 void addAt (int i, String e) {

2 if (i < 0 || i > size) {

3 throw new IllegalArgumentException("Invalid Index.");

4 }

5 else {

6 if (i == 0) {

7 addFirst(e);

8 }

9 else {

10 Node nodeBefore = getNodeAt(i - 1);

11 Node newNode = new Node(e, nodeBefore.getNext());

12 nodeBefore.setNext(newNode);

13 size ++;

14 }

15 }

16 }

Example. See testSLL addAt in ExampleStringLinkedLists.zip.
27 of 56

Singly-Linked List: Inserting to the Middle (2)
● A call to addAt(i, e) may end up executing:
○ Line 3 (throw exception) [O(1)]

○ Line 7 (addFirst) [O(1)]

○ Lines 10 (getNodeAt) [O(n)]

○ Lines 11 – 13 (setting references) [O(1)]
● What is the worst case of the index i for addAt(i, e)?

A. list.addAt(list.getSize(), e)

which requires list.getNodeAt(list.getSize() - 1)
● RT of addAt is O(n) [linear-time op.]

● Contrast: Inserting into an array costs O(n) [linear-time op.]
For arrays, when given the index to an element, the RT of
inserting an element is always O(n) !

28 of 56

Singly-Linked List: Removing from the End
Problem: Remove the last node (i.e., tail) of the list.

Hint. Using tail sufficient? Use getNodeAt(?) as a helper?○ Assume we are in the context of class SinglyLinkedList.

1 void removeLast () {

2 if (size == 0) {

3 throw new IllegalArgumentException("Empty List.");

4 }

5 else if (size == 1) {

6 removeFirst();

7 }

8 else {

9 Node secondLastNode = getNodeAt(size - 2);

10 secondLastNode.setNext(null);
11 tail = secondLastNode;

12 size --;

13 }

14 }

Running time? O(n)
29 of 56

Singly-Linked List: Exercises
Consider the following two linked-list operations, where a
reference node is given as an input parameter:
● void insertAfter(Node n, String e)

○ Steps?
● Create a new node nn.● Set nn’s next to n’s next.● Set n’s next to nn.○ Running time? [O(1)]

● void insertBefore(Node n, String e)

○ Steps?
● Iterate from the head, until current.next == n.● Create a new node nn.● Set nn’s next to current’s next (which is n).● Set current’s next to nn.○ Running time? [O(n)]

30 of 56

Exercise

● Complete the Java implementation, tests, and running time

analysis for void removeAt(int i).

31 of 56

Arrays vs. Singly-Linked Lists

hhhhhhhhhhhhhhhhhOPERATION

DATA STRUCTURE
ARRAY SINGLY-LINKED LIST

get size O(1)get first/last element
get element at index i O(1) O(n)remove last element

add/remove first element, add last element
O(n) O(1)

add/remove i
th element given reference to (i − 1)th element

not given O(n)

32 of 56

Background Study: Generics in Java

● It is assumed that, in EECS2030, you learned about the basics of
Java generics:○ General collection (e.g., Object[]) vs. Generic collection (e.g., E[])○ How using generics minimizes casts and instanceof checks○ How to implement and use generic classes● If needed, review the above assumed basics from the relevant parts
of EECS2030 (https://www.eecs.yorku.ca/˜jackie/
teaching/lectures/index.html#EECS2030_F21):○ Parts A1 – A3, Lecture 7, Week 10○ Parts B – C, Lecture 7, Week 11
Tips.○ Skim the slides: watch lecture videos if needing explanations.○ Ask questions related to the assumed basics of generics!

● Assuming that know the basics of Java generics, we will
implement and use generic SLL and DLL.

33 of 56

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/slides/07-Generics.pdf

Generic Classes: Singly-Linked List (1)
public class Node< E > {

private E element;

private Node< E > next;

public Node(E e, Node< E > n) { element = e; next = n; }

public E getElement() { return element; }

public void setElement(E e) { element = e; }

public Node< E > getNext() { return next; }

public void setNext(Node< E > n) { next = n; }

}

public class SinglyLinkedList< E > {

private Node< E > head;

private Node< E > tail;

private int size;

public void setHead(Node< E > n) { head = n; }

public void addFirst(E e) { . . . }

Node< E > getNodeAt (int i) { . . . }

void addAt (int i, E e) { . . . }

}

34 of 56

Generic Classes: Singly-Linked List (2)

“Alan”
element

Node<String>SinglyLinkedList<String>

alanlist

next “Mark”

element

Node<String>

mark

next “Tom”

element

Node<String>

tom

next null
head

Approach 1
Node<String> tom = new Node<String>("Tom", null);
Node<String> mark = new Node<>("Mark", tom);

Node<String> alan = new Node<>("Alan", mark);

SinglyLinkedList<String> list = new SinglyLinkedList<>();
list.setHead(alan);

Approach 2
Node<String> alan = new Node<String>("Alan", null);
Node<String> mark = new Node<>("Mark", null);
Node<String> tom = new Node<>("Tom", null);
alan.setNext(mark);

mark.setNext(tom);

SinglyLinkedList<String> list = new SinglyLinkedList<>();
list.setHead(alan);

35 of 56

Generic Classes: Singly-Linked List (3)
Assume we are in the context of class SinglyLinkedList.
void addFirst (E e) {

head = new Node< E >(e, head);

if (size == 0) { tail = head; }

size ++;

}

Node< E > getNodeAt (int i) {

if (i < 0 || i >= size) {

throw new IllegalArgumentException("Invalid Index"); }

else {

int index = 0;

Node< E > current = head;

while (index < i) {

index ++;

current = current.getNext();

}

return current;

}

}

36 of 56

Singly-Linked Lists: Handling Edge Cases
1 void addFirst (E e) {

2 head = new Node<E>(e, head);

3 if (size == 0) {
4 tail = head; } size ++; }

1 void removeFirst () {

2 if (size == 0) { /* error */ }

3 else if (size == 1) {
4 head = null; tail = null; size --; }

5 else {

6 Node<E> oldHead = head;

7 head = oldHead.getNext();

8 oldHead.setNext(null); size --;

9 } }

○ We have to explicitly deal with special cases where the current

list or resulting list is empty.○ We can actually resolve this issue via a small extension!
37 of 56

Basic Data Structure: Doubly-Linked Lists (1)

● We know that singly-linked lists perform:
○ WELL: [O(1)]
● inserting to the front/end [head /tail]● removing from the front [head]● inserting/deleting the middle [given ref. to previous node]○ POORLY: [O(n)]
● accessing the middle [getNodeAt(i)]● removing from the end [getNodeAt(list.getSize() - 2)]

● We may again improve the performance by
trading space for time

just like how attributes size and tail were introduced.

38 of 56

Basic Data Structure: Doubly-Linked Lists (2)

SFOJFK PVD

next next next

prev prev prevprev

header trailernext

● Each node in a doubly-linked list (DLL) stores:○ A reference to an element of the sequence○ A reference to the next node in the list○ A reference to the previous node in the list [SYMMETRY]● Each DLL stores:○ A reference to a dedicated header node in the list
○ A reference to a dedicated trailer node in the list

Remark. Unlike SLL, DLL does not store refs. to head and tail .● These two special nodes are called sentinels or guards:○ They do not store data, but store node references:● The header node stores the next reference only● The trailer node stores previous reference only○ They always exist, even in the case of empty lists.
39 of 56

Generic Doubly-Linked Lists in Java (1)

public class Node<E> {

private E element;

private Node<E> next;

public E getElement() { return element; }

public void setElement(E e) { element = e; }

public Node<E> getNext() { return next; }

public void setNext(Node<E> n) { next = n; }

private Node<E> prev;
public Node<E> getPrev() { return prev; }

public void setPrev(Node<E> p) { prev = p; }

public Node(E e, Node<E> p, Node<E> n) {

element = e;

prev = p;

next = n;

}

}

40 of 56

Generic Doubly-Linked Lists in Java (2)
1 public class DoublyLinkedList<E> {

2 private int size = 0;

3 public void addFirst(E e) { . . . }

4 public void removeLast() { . . . }

5 public void addAt(int i, E e) { . . . }

6 private Node<E> header;
7 private Node<E> trailer;
8 public DoublyLinkedList() {

9 header = new Node<>(null, null, null);
10 trailer = new Node<>(null, header, null);
11 header.setNext(trailer);

12 }

13 }

Lines 8 to 10 are equivalent to:

header = new Node<>(null, null, null);
trailer = new Node<>(null, null , null);
header.setNext(trailer);

trailer.setPrev(header) ;

41 of 56

Header, Trailer, and prev Reference

● The prev reference helps improve the performance of
removeLast().
∵ The second last node can be accessed in constant time .

[trailer.getPrev().getPrev()]
● The two sentinel /guard nodes (header and trailer) do not

help improve the performance.
○ Instead, they help simplify the logic of your code.○ Each insertion/deletion can be treated
● Uniformly : a node is always inserted/deleted in-between two nodes
● Without worrying about re-setting the head and tail of list

42 of 56

Doubly-Linked List: Insertions

JFKBWI SFO

trailerheader

BWI PVD SFOJFK

trailerheader

BWI PVD SFOJFK

trailerheader

43 of 56

Doubly-Linked List: Inserting to Front/End

1 void addBetween(E e, Node<E> pred, Node<E> succ) {

2 Node<E> newNode = new Node<>(e, pred, succ);

3 pred.setNext(newNode);

4 succ.setPrev(newNode);

5 size ++;

6 }

Running Time? O(1)
void addFirst(E e) {

addBetween(e, header, header.getNext())

}

Running Time? O(1)
void addLast(E e) {

addBetween(e, trailer.getPrev(), trailer)

}

Running Time? O(1)
44 of 56

Doubly-Linked List: Inserting to Middle
1 void addBetween(E e, Node<E> pred, Node<E> succ) {

2 Node<E> newNode = new Node<>(e, pred, succ);

3 pred.setNext(newNode);

4 succ.setPrev(newNode);

5 size ++;

6 }

Running Time? O(1)
addAt(int i, E e) {

if (i < 0 || i > size) {

throw new IllegalArgumentException("Invalid Index."); }

else {

Node<E> pred = getNodeAt(i - 1);

Node<E> succ = pred.getNext();

addBetween(e, pred, succ);

}

}

Running Time? Still O(n) !!!
45 of 56

Doubly-Linked List: Removals

BWI PVD SFOJFK

trailerheader

BWI PVD SFOJFK

trailerheader

JFKBWI SFO

trailerheader

46 of 56

Doubly-Linked List: Removing from Front/End
1 void remove (Node<E> node) {

2 Node<E> pred = node.getPrev();

3 Node<E> succ = node.getNext();

4 pred.setNext(succ); succ.setPrev(pred);

5 node.setNext(null); node.setPrev(null);
6 size --;

7 }

Running Time? O(1)
void removeFirst() {

if (size == 0) { throw new IllegalArgumentException("Empty"); }

else { remove (header.getNext()); }

}

Running Time? O(1)
void removeLast() {

if (size == 0) { throw new IllegalArgumentException("Empty"); }

else { remove (trailer.getPrev()); }

}

Running Time? Now O(1) !!!
47 of 56

Doubly-Linked List: Removing from Middle
1 void remove (Node<E> node) {

2 Node<E> pred = node.getPrev();

3 Node<E> succ = node.getNext();

4 pred.setNext(succ); succ.setPrev(pred);

5 node.setNext(null); node.setPrev(null);
6 size --;

7 }

Running Time? O(1)
removeAt (int i) {

if (i < 0 || i >= size) {

throw new IllegalArgumentException("Invalid Index."); }

else {

Node<E> node = getNodeAt(i);
remove (node);

}

}

Running Time? Still O(n) !!!
48 of 56

Reference Node:
To be Given or Not to be Given

Exercise 1: Compare the steps and running times of:○ Not given a reference node:
● addNodeAt(int i, E e) [O(n)]○ Given a reference node:
● addNodeBefore(Node<E> n, E e) [SLL: O(n); DLL: O(1)]● addNodeAfter(Node<E> n, E e) [O(1)]

Exercise 2: Compare the steps and running times of:○ Not given a reference node:
● removeNodeAt(int i) [O(n)]○ Given a reference node:
● removeNodeBefore(Node<E> n) [SLL: O(n); DLL: O(1)]● removeNodeAfter(Node<E> n) [O(1)]● removNode(Node<E> n) [SLL: O(n); DLL: O(1)]

49 of 56

Arrays vs. (Singly- and Doubly-Linked) Lists

hhhhhhhhhhhhhhhhhOPERATION

DATA STRUCTURE
ARRAY SINGLY-LINKED LIST DOUBLY-LINKED LIST

size O(1)first/last element
element at index i O(1) O(n) O(n)
remove last element

O(n) O(1)add/remove first element, add last element O(1)
add/remove i

th element given reference to (i − 1)th element
not given O(n)

50 of 56

Beyond this lecture . . .

● In Eclipse, implement and test the assigned methods in
SinglyLinkedList class and DoublyLinkedList class.

● Modify the insertion sort and selection sort implementations
using a SLL or DLL.

51 of 56

Index (1)

Learning Outcomes of this Lecture

Basic Data Structure: Arrays
Array Case Study:
Comparing Two Sorting Strategies

Sorting: Strategy 1 – Selection Sort

Sorting: Strategy 2 – Insertion Sort

Sorting: Alternative Implementations?

Tracing Insertion & Selection Sorts in Java

Comparing Insertion & Selection Sorts

Basic Data Structure: Singly-Linked Lists

Singly-Linked List: How to Keep Track?
52 of 56

Index (2)

Singly-Linked List: Java Implementation
Singly-Linked List:
Constructing a Chain of Nodes

Singly-Linked List: Setting a List’s Head

Singly-Linked List: Counting # of Nodes (1)

Singly-Linked List: Counting # of Nodes (2)

Singly-Linked List: Finding the Tail (1)

Singly-Linked List: Finding the Tail (2)

Singly-Linked List: Can We Do Better?

Singly-Linked List: Inserting to the Front (1)

Singly-Linked List: Inserting to the Front (2)
53 of 56

Index (3)
Exercise

Exercise

Singly-Linked List: Accessing the Middle (1)

Singly-Linked List: Accessing the Middle (2)

Singly-Linked List: Accessing the Middle (3)

Singly-Linked List: Inserting to the Middle (1)

Singly-Linked List: Inserting to the Middle (2)

Singly-Linked List: Removing from the End

Singly-Linked List: Exercises

Exercise

Arrays vs. Singly-Linked Lists
54 of 56

Index (4)
Background Study: Generics in Java

Generic Classes: Singly-Linked List (1)

Generic Classes: Singly-Linked List (2)

Generic Classes: Singly-Linked List (3)

Singly-Linked Lists: Handling Edge Cases

Basic Data Structure: Doubly-Linked Lists (1)

Basic Data Structure: Doubly-Linked Lists (2)

Generic Doubly-Linked Lists in Java (1)

Generic Doubly-Linked Lists in Java (2)

Header, Trailer, and prev Reference

Doubly-Linked List: Insertions
55 of 56

Index (5)
Doubly-Linked List: Inserting to Front/End

Doubly-Linked List: Inserting to Middle

Doubly-Linked List: Removals

Doubly-Linked List: Removing from Front/End

Doubly-Linked List: Removing from Middle
Reference Node:
To be Given or Not to be Given

Arrays vs. (Singly- and Doubly-Linked) Lists

Beyond this lecture . . .

56 of 56

Interfaces

EECS2011 X:

Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:

● What an interface is

● Reinforce: Polymorphism and dynamic binding

2 of 12

Interface (1.1)

● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)

phi and distance r from the origin (0.0).
● As far as users of a Point object p is concerned, being able to

call p.getX() and p.getY() is what matters.● How p.getX() and p.getY() are internally computed,

depending on the dynamic type of p, do not matter to users.

3 of 12

Interface (1.2)

Recall: sin30
○ = 1

2
and cos30

○ = 1

2
⋅√3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

We consider the same point represented differently as:

● r = 2a, = 30
○

[polar system]

● x = 2a ⋅ cos30
○ = a ⋅√3, y = 2a ⋅ sin30

○ = a [cartesian system]
4 of 12

Interface (2)

public interface Point {
public double getX();
public double getY();

}

● An interface Point defines how users may access a point:

either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have

no implementations, but headers only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

5 of 12

Interface (3)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.

● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.

● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!

6 of 12

Interface (4)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.

● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.

● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6
) allowed! [360

○ = 2⇡]

7 of 12

Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?

● Lines 8 and 10 illustrate dynamic binding, how?

8 of 12

Interface (6)

● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.

● Recommended to use an interface as the static type of:○ A variable
e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant

classes of the interface ⇒ Exploit dynamic binding !

9 of 12

Abstract Classes vs. Interfaces:

When to Use Which?

● Use interfaces when:○ There is a common set of functionalities that can be implemented

via a variety of strategies.

e.g., Interface Point declares headers of getX() and getY().○ Each descendant class represents a different implementation

strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different

strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,

and some (not all) implementations cannot be shared .

e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares header of getArea, to be implemented by Rectangle and

Triangle.
10 of 12

Beyond this lecture. . .

Study the ExampleInterfaces source code:○ Draw the inheritance hierarchy based on the class declarations○ Use the debugger to step into the various method calls (e.g.,

getArea() of Polygon, getX() of Point) to see which version of

the method gets executed (i.e., dynamic binding).

11 of 12

Index (1)

Learning Outcomes

Interface (1.1)

Interface (1.2)

Interface (2)

Interface (3)

Interface (4)

Interface (5)

Interface (6)

Abstract Classes vs. Interfaces:

When to Use Which?

Beyond this lecture. . .

12 of 12

Abstract Data Types (ADTs), Stacks, Queues

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you learn about:
● The notion of Abstract Data Types (ADTs)

● ADTs : Stack vs. Queue
● Implementing Stack and Queue in Java [interface, classes]
● Applications of Stacks vs. Queues
● Optional (but highly encouraged):○ Criterion of Modularity , Modular Design○ Circular Arrays○ Dynamic Arrays, Amortized Analysis

2 of 58

Abstract Data Types (ADTs)

● Given a problem, decompose its solution into modules .
● Each module implements an abstract data type (ADT) :○ filters out irrelevant details○ contains a list of declared data and well-specified operations

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier’s Obligations:○ Implement all operations○ Choose the “right” data structure [e.g., arrays vs. SLL vs. DLL]○ The internal details of an implemented ADT should be hidden.● Client’s Benefits:○ Correct output○ Efficient performance
3 of 58

Java API Approximates ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.● A reasonably intuitive overview of the ADT.
Java 8 List API

4 of 58

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Java API Approximates ADTs (2)

Methods described in a natural language can be ambiguous.
5 of 58

Building ADTs for Reusability

● ADTs are reusable software components that are common for
solving many real-world problems.

e.g., Stacks, Queues, Lists, Tables, Trees, Graphs● An ADT , once thoroughly tested, can be reused by:○ Clients of Applications○ Suppliers of other ADTs● As a supplier, you are obliged to:○ Implement standard ADTs [≈ lego building bricks]
Note. Recall the basic data structures: arrays vs. SLLs vs. DLLs○ Design algorithms using standard ADTs [≈ lego houses, ships]● For each standard ADT , you should know its interface :○ Stored data○ For each operation manipulating the stored data

● How are clients supposed to use the method? [preconditions]

● What are the services provided by suppliers? [postconditions]
● Time (and sometimes space) complexity

6 of 58

What is a Stack?

● A stack is a collection of objects.● Objects in a stack are inserted and removed according to the
last-in, first-out (LIFO) principle.
○ Cannot access arbitrary elements of a stack○ Can only access or remove the most-recently added element

7 of 58

The Stack ADT

● top

[precondition: stack is not empty]
[postcondition: return item last pushed to the stack]● size

[precondition: none]
[postcondition: return number of items pushed to the stack]● isEmpty

[precondition: none]
[postcondition: return whether there is no item in the stack]● push(item)

[precondition: stack is not full]
[postcondition: push the input item onto the top of the stack]● pop

[precondition: stack is not empty]
[postcondition: remove and return the top of stack]

8 of 58

Stack: Illustration

OPERATION RETURN VALUE STACK CONTENTS
– – �

isEmpty true �
push(5) – 5

push(3) – 3
5

push(1) – 1
3
5

size 3 1
3
5

top 1 1
3
5

pop 1 3
5

pop 3 5
pop 5 �

9 of 58

Generic Stack: Interface

public interface Stack< E > {
public int size();
public boolean isEmpty();
public E top();
public void push(E e);
public E pop();

}

The Stack ADT, declared as an interface, allows alternative

implementations to conform to its method headers.

10 of 58

Generic Stack: Architecture

ArrayStack�E� LinkedStack�E�

Stack�E�

implements implements

11 of 58

Implementing Stack: Array (1)

public class ArrayStack<E> implements Stack<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
private int t; /* index of top */

public ArrayStack() {
data = (E[]) new Object[MAX_CAPACITY];
t = -1;

}

public int size() { return (t + 1); }
public boolean isEmpty() { return (t == -1); }

public E top() {
if (isEmpty()) { /* Precondition Violated */ }
else { return data[t]; }

}
public void push(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { t ++; data[t] = e; }

}
public E pop() {
E result;
if (isEmpty()) { /* Precondition Violated */ }
else { result = data[t]; data[t] = null; t --; }
return result;

}
}

12 of 58

Implementing Stack: Array (2)

● Running Times of Array -Based Stack Operations?

ArrayStack Method Running Time

size O(1)
isEmpty O(1)

top O(1)
push O(1)
pop O(1)● Exercise This version of implementation treats the end of array as the top of

stack. Would the RTs of operations change if we treated the beginning of
array as the top of stack?● Q. What if the preset capacity turns out to be insufficient?
A. IllegalArgumentException occurs and it takes O(1) time to respond.

● At the end, we will explore the alternative of a dynamic array .

13 of 58

Implementing Stack: Singly-Linked List (1)

public class LinkedStack<E> implements Stack<E> {
private SinglyLinkedList<E> list;
. . .

}

Question:

Stack Method
Singly-Linked List Method

Strategy 1 Strategy 2
size list.size

isEmpty list.isEmpty
top list.first list.last

push list.addFirst list.addLast
pop list.removeFirst list.removeLast

Which implementation strategy should be chosen?
14 of 58

Implementing Stack: Singly-Linked List (2)

● If the front of list is treated as the top of stack , then:○ All stack operations remain O(1) [∵ removeFirst takes O(1)]
● If the end of list is treated as the top of stack , then:○ The pop operation takes O(n) [∵ removeLast takes O(n)]
● But in both cases, given that a linked, dynamic structure is

used, no resizing is necessary!

15 of 58

Generic Stack: Testing Implementations

@Test

public void testPolymorphicStacks() {
Stack<String> s = new ArrayStack<>();
s.push("Alan"); /* dynamic binding */

s.push("Mark"); /* dynamic binding */

s.push("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s.top());

s = new LinkedStack<>();
s.push("Alan"); /* dynamic binding */

s.push("Mark"); /* dynamic binding */

s.push("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s.top());

}

16 of 58

Polymorphism & Dynamic Binding

1 Stack<String> myStack;
2 myStack = new ArrayStack<String>();
3 myStack.push("Alan");
4 myStack = new LinkedStack<String>();
5 myStack.push("Alan");

● Polymorphism

An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

● Dynamic Binding

Effect of a method call depends on the “current shape” of the
target object.
Which lines? 3, 5

17 of 58

Stack Application: Reversing an Array

● Implementing a generic algorithm:
public static <E> void reverse(E[] a) {
Stack<E> buffer = new ArrayStack<E>();
for (int i = 0; i < a.length; i ++) {
buffer.push(a[i]);

}
for (int i = 0; i < a.length; i ++) {
a[i] = buffer.pop();

}
}

● Testing the generic algorithm:
@Test

public void testReverseViaStack() {
String[] names = {"Alan", "Mark", "Tom"};
String[] expectedReverseOfNames = {"Tom", "Mark", "Alan"};
StackUtilities.reverse(names);
assertArrayEquals(expectedReverseOfNames, names);

Integer[] numbers = {46, 23, 68};
Integer[] expectedReverseOfNumbers= {68, 23, 46};
StackUtilities.reverse(numbers);
assertArrayEquals(expectedReverseOfNumbers, numbers);

}

18 of 58

Stack Application: Matching Delimiters (1)

● Problem

Opening delimiters: (, [, {
Closing delimiters:),], }
e.g., Correct: ()(()){([()])}
e.g., Incorrect: ({[])}

● Sketch of Solution○ When a new opening delimiter is found, push it to the stack.○ Most-recently found delimiter should be matched first.○ When a new closing delimiter is found:
● If it matches the top of the stack, then pop off the stack.● Otherwise, an error is found!○ Finishing reading the input, an empty stack means a success!

19 of 58

Stack Application: Matching Delimiters (2)

● Implementing the algorithm:
public static boolean isMatched(String expression) {

final String opening = "([{";
final String closing = ")]}";
Stack<Character> openings = new LinkedStack<Character>();
int i = 0;
boolean foundError = false;
while (!foundError && i < expression.length()) {

char c = expression.charAt(i);
if(opening.indexOf(c) != -1) { openings.push(c); }
else if (closing.indexOf(c) != -1) {

if(openings.isEmpty()) { foundError = true; }
else {

if (opening.indexOf(openings.top()) == closing.indexOf(c)) { openings.pop(); }
else { foundError = true; } } }

i ++; }
return !foundError && openings.isEmpty(); }

● Testing the algorithm:
@Test

public void testMatchingDelimiters() {
assertTrue(StackUtilities.isMatched(""));
assertTrue(StackUtilities.isMatched("{[]}({})"));
assertFalse(StackUtilities.isMatched("{[])"));
assertFalse(StackUtilities.isMatched("{[]})"));
assertFalse(StackUtilities.isMatched("({[]}"));

}

20 of 58

Stack Application: Postfix Notations (1)

Problem: Given a postfix expression, calculate its value.
Infix Notation Postfix Notation

Operator in-between Operands Operator follows Operands
Parentheses force precedence Order of evaluation embedded

3 3
3 + 4 3 4 +

3 + 4 + 5 3 4 + 5 +
3 + (4 + 5) 3 4 5 + +
3 - 4 * 5 3 4 5 * -
(3 - 4) * 5 3 4 - 5 *

21 of 58

Stack Application: Postfix Notations (2)

Sketch of Solution○ When input is an operand (i.e., a number), push it to the stack.○ When input is an operator , obtain its two operands by popping

off the stack twice, evaluate, then push the result back to stack.○ When finishing reading the input, there should be only one

number left in the stack.○ Error if:
● Not enough items left in the stack for the operator [e.g., 523+*+]● When finished, two or more numbers left in stack [e.g., 53+6]

22 of 58

What is a Queue?

● A queue is a collection of objects.● Objects in a queue are inserted and removed according to the
first-in, first-out (FIFO) principle.
○ Each new element joins at the back /end of the queue.○ Cannot access arbitrary elements of a queue○ Can only access or remove the

least-recently inserted (or longest-waiting) element

Tickets

Call C
enter

Call Queue

23 of 58

The Queue ADT

● first ≈ top of stack
[precondition: queue is not empty]
[postcondition: return item first enqueued]● size

[precondition: none]
[postcondition: return number of items enqueued]● isEmpty

[precondition: none]
[postcondition: return whether there is no item in the queue]● enqueue(item) ≈ push of stack
[precondition: queue is not full]
[postcondition: enqueue item as the “last” of the queue]● dequeue ≈ pop of stack
[precondition: queue is not empty]
[postcondition: remove and return the first of the queue]

24 of 58

Queue: Illustration

Operation Return Value Queue Contents
– – �

isEmpty true �
enqueue(5) – (5)
enqueue(3) – (5, 3)
enqueue(1) – (5, 3, 1)

size 3 (5, 3, 1)
dequeue 5 (3, 1)
dequeue 3 1
dequeue 1 �

25 of 58

Generic Queue: Interface

public interface Queue< E > {
public int size();
public boolean isEmpty();
public E first();
public void enqueue(E e);
public E dequeue();

}

The Queue ADT, declared as an interface, allows alternative

implementations to conform to its method headers.

26 of 58

Generic Queue: Architecture

ArrayQueue�E� CircularArrayQueue�E� LinkedQueue�E�

Queue�E�

implements implements

27 of 58

Implementing Queue ADT: Array (1)

public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
private int r; /* rear index */

public ArrayQueue() {
data = (E[]) new Object[MAX_CAPACITY];
r = -1;

}
public int size() { return (r + 1); }
public boolean isEmpty() { return (r == -1); }
public E first() {
if (isEmpty()) { /* Precondition Violated */ }
else { return data[0]; }

}
public void enqueue(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { r ++; data[r] = e; }

}
public E dequeue() {
if (isEmpty()) { /* Precondition Violated */ }
else {
E result = data[0];
for (int i = 0; i < r; i ++) { data[i] = data[i + 1]; }
data[r] = null; r --;
return result;

}
}

}
28 of 58

Implementing Queue ADT: Array (2)

● Running Times of Array -Based Queue Operations?

ArrayQueue Method Running Time

size O(1)
isEmpty O(1)

first O(1)
enqueue O(1)
dequeue O(n)

● Exercise This version of implementation treats the beginning of array as the
first of queue. Would the RTs of operations change if we treated the end of
array as the first of queue?● Q. What if the preset capacity turns out to be insufficient?
A. IllegalArgumentException occurs and it takes O(1) time to respond.

● At the end, we will explore the alternative of a dynamic array .

29 of 58

Implementing Queue: Singly-Linked List (1)

public class LinkedQueue<E> implements Queue<E> {
private SinglyLinkedList<E> list;
. . .

}

Question:

Queue Method
Singly-Linked List Method

Strategy 1 Strategy 2
size list.size

isEmpty list.isEmpty
first list.first list.last

enqueue list.addLast list.addFirst
dequeue list.removeFirst list.removeLast

Which implementation strategy should be chosen?
30 of 58

Implementing Queue: Singly-Linked List (2)

● If the front of list is treated as the first of queue, then:○ All queue operations remain O(1) [∵ removeFirst takes O(1)]
● If the end of list is treated as the first of queue, then:○ The dequeue operation takes O(n) [∵ removeLast takes O(n)]
● But in both cases, given that a linked, dynamic structure is

used, no resizing is necessary!

31 of 58

Generic Queue: Testing Implementations

@Test

public void testPolymorphicQueues() {
Queue<String> q = new ArrayQueue<>();
q.enqueue("Alan"); /* dynamic binding */

q.enqueue("Mark"); /* dynamic binding */

q.enqueue("Tom"); /* dynamic binding */

assertTrue(q.size() == 3 && !q.isEmpty());
assertEquals("Alan", q.first());

q = new LinkedQueue<>();
q.enqueue("Alan"); /* dynamic binding */

q.enqueue("Mark"); /* dynamic binding */

q.enqueue("Tom"); /* dynamic binding */

assertTrue(q.size() == 3 && !q.isEmpty());
assertEquals("Alan", q.first());

}

32 of 58

Polymorphism & Dynamic Binding

1 Queue<String> myQueue;
2 myQueue = new CircularArrayQueue<String>();
3 myQueue.enqueue("Alan");
4 myQueue = new LinkedQueue<String>();
5 myQueue.enqueue("Alan");

● Polymorphism

An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

● Dynamic Binding

Effect of a method call depends on the “current shape” of the
target object.
Which lines? 3, 5

33 of 58

Exercise:

Implementing a Queue using Two Stacks

public class StackQueue<E> implements Queue<E> {
private Stack<E> inStack;
private Stack<E> outStack;
. . .

}

● For size , add up sizes of inStack and outStack.● For isEmpty , are inStack and outStack both empty?● For enqueue , push to inStack.
● For dequeue :○ pop from outStack

If outStack is empty, we need to first pop all items from inStack
and push them to outStack.

Exercise: Why does this work? [implement and test]
Exercise: Running Time? [see analysis on dynamic arrays]

34 of 58

Optional Materials

These topics are useful for your knowledge about

ADTs, stacks, and Queues.

You are encouraged to follow through these online lectures:
https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2011_W22

○ Design by Contract and Modularity

● Week 5: Lecture 3, Parts A2 - A3○ Circular Arrays and Double-Ended Queue

● Week 6: Lecture 3, Parts D3 – D5○ Dynamic Arrays and Amortized Analysis

● Week 6: Lecture 3, Parts E1 - E5

35 of 58

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2011_W22
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2011_W22

Terminology: Contract, Client, Supplier

● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.○ The client is required to follow certain instructions to obtain the

service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).○ The client does not care how the supplier implements it.● What are the benefits and obligations of the two parties?

benefits obligations

CLIENT obtain a service follow instructions
SUPPLIER assume instructions followed provide a service

● There is a contract between two parties, violated if:○ The instructions are not followed. [Client’s fault]○ Instructions followed, but service not satisfactory. [Supplier’s fault]
36 of 58

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */

/* stuff not explosive. */

} }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();
Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);
} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]○ Supplier: type of context object (or call target) m [Microwave]

37 of 58

Client, Supplier, Contract in OOP (2)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */

/* stuff not explosive. */}}

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();
Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);
} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.● If any of these fails, there is a contract violation.● m.on or m.locked is false ⇒ MicrowaveUser’s fault.● obj is an explosive ⇒ MicrowaveUser’s fault.

A fault from the client is identified ⇒ Method call will not start.● Method executed but obj not properly heated ⇒ Microwave’s fault
38 of 58

Modularity (1): Childhood Activity

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.org and https://www.wish.com

39 of 58

https://commons.wikimedia.org
https://www.wish.com

Modularity (2): Daily Construction

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Source: https://usermanual.wiki/
40 of 58

https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUs).

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cn and https://en.wikipedia.org
41 of 58

www.embeddedlinux.org.cn
https://en.wikipedia.org

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

TIME

H

H-(EPS/2)

QH=1(TRUE)

NC(No change)

L

L+(EPS/2)

H-EPS

L+EPS

QH=0(FASLE)

QL=0(FALSE)

QL=1(TRUE)

NC(No change)

X

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3
42 of 58

https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.
sorted­collections

SORTED_MAP_ADT [K, V]*

feature ­­ model
 model: FUN[K, V]

 sorted_keys: ARRAY [K]

feature ­­ commands
 extend (key: K; val: V)

 require ¬has (key)

 remove (key: K)

 require has (key)

feature ­­ queries
 item(key:K): V

 has (key: K): BOOLEAN

invariant
 ∀i ∈ [1, model.count):
 sorted_keys[i] < sorted_keys[i+1]

 sorted_keys.count = model.count

 ∀k ∈ model.domain : k ∈ sorted_keys

+

SORTED_MODEL_MAP [K, V]

+

SORTED_MAP_

CURSOR [K, V]

*

SORTED_MAP_

DESIGN [K, V]

+

SORTED_RBT_

MAP [K, V]

+

SORTED_LINEAR_

MAP [K, V]

+

SORTED_BST_

MAP [K, V]

SORTED_ADT [K, V]*

feature ­­ model
 model: SEQ [KV_PAIR[K,V]]

feature ­­ commands
 extend (a_item: TUPLE [key: K; value: V])

 require ¬has (a_item.key)

 remove (a_key: K)

 require has (a_key)

feature ­­ queries
 item alias "[]" (a_key: K): V
 require has (a_key)

 as_array: ARRAY[KV_PAIR[K,V]]

invariant
 ∀i ∈ [1, model.count):
 model[i].key < model[i+1].key

 ∀i ∈ [1, model.count]:
 as_array[i] ~ model[i]

+

SORTED_

LINEAR [K, V]

+

SORTED_

TREE [K, V]

+

SORTED_

BST [K, V]

+

SORTED_

RBT [K, V]

new_cursor+

implementation

implementation

implementation

implementation

sorted­maps

student­design

ITERATION_CURSOR [G]*

item*: G

forth*

after*: BOOLEAN

new_cursor*
*

ITERABLE [G]

43 of 58

Design Principle: Modularity

● Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems

via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.

2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.● The UNIX principle: Each command does one thing and does it well.● In objected-oriented design (OOD), each class serves as a module.

3. Conquer original problem by assembling sub-solutions.● In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.● A modular design satisfies the criterion of modularity and is:○ Maintainable: fix issues by changing the relevant modules only.○ Extensible: introduce new functionalities by adding new modules.○ Reusable: a module may be used in different compositions● Opposite of modularity: A superman module doing everything.

44 of 58

Implementing Queue ADT: Circular Array (1)

● Maintain two indices: f for front ; r for next available slot .● Maximum size: N − 1 [N = data.length]● Empty Queue: when r = f

. . .
f, r

.
f, r● Full Queue: when ((r + 1) % N) = f

○ When r > f : . . .
f r

○ When r < f :
r f● Size of Queue:○ If r = f : 0

○ If r > f : r - f
.

f r

○ If r < f : r + (N - f)
.

r f
45 of 58

Implementing Queue ADT: Circular Array (2)

Running Times of CircularArray -Based Queue Operations?

CircularArrayQueue Method Running Time

size O(1)
isEmpty O(1)

first O(1)
enqueue O(1)
dequeue O(1)

Exercise: Create a Java class CircularArrayQueue that
implements the Queue interface using a circular array .

46 of 58

Limitations of Queue

● Say we use a queue to implement a waiting list .○ What if we dequeue the front customer, but find that we need to
put them back to the front (e.g., seat is still not available, the
table assigned is not satisfactory, etc.)?○ What if the customer at the end of the queue decides not to wait
and leave, how do we remove them from the end of the queue?

● Solution: A new ADT extending the Queue by supporting:○ insertion to the front○ deletion from the end

47 of 58

The Double-Ended Queue ADT

● Double-Ended Queue (or Deque) is a queue-like data
structure that supports insertion and deletion at both the
front and the end of the queue.
public interface Deque<E> {
/* Queue operations */
public int size();
public boolean isEmpty();
public E first();
public void addLast(E e); /* enqueue */

public E removeFirst(); /* dequeue */

/* Extended operations */
public void addFirst(E e);
public E removeLast();

}

● Exercise: Implement Deque using a circular array .
● Exercise: Implement Deque using a SLL and/or DLL.

48 of 58

Array Implementations: Stack and Queue

● When implementing stack and queue via arrays, we imposed a
maximum capacity:
public class ArrayStack<E> implements Stack<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void push(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . . }

}
. . .

}

public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void enqueue(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . .

}
. . .

}

● This made the push and enqueue operations both cost O(1).
49 of 58

Dynamic Array: Constant Increments

Implement stack using a dynamic array resizing itself by a constant increment:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int C;
4 private int capacity;
5 private E[] data;
6 public ArrayStack() {
7 I = 1000; /* arbitrary initial size */

8 C = 500; /* arbitrary fixed increment */

9 capacity = I;
10 data = (E[]) new Object[capacity];
11 t = -1;
12 }
13 public void push(E e) {
14 if (size() == capacity) {
15 /* resizing by a fixed constant */

16 E[] temp = (E[]) new Object[capacity + C];
17 for(int i = 0; i < capacity; i ++) {
18 temp[i] = data[i];
19 }
20 data = temp;
21 capacity = capacity + C
22 }
23 t++;
24 data[t] = e;
25 }
26 }

● This alternative strategy
resizes the array,
whenever needed,
by a constant amount.● L17 – L19 make push cost
O(n), in the worst case.● However, given that resizing

only happens rarely, how about
the average running time?

● We will refer L14 – L22 as the
resizing part and L23 – L24

as the update part.

50 of 58

Dynamic Array: Doubling

Implement stack using a dynamic array resizing itself by doubling:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int capacity;
4 private E[] data;
5 public ArrayStack() {
6 I = 1000; /* arbitrary initial size */

7 capacity = I;
8 data = (E[]) new Object[capacity];
9 t = -1;

10 }
11 public void push(E e) {
12 if (size() == capacity) {
13 /* resizing by doubling */

14 E[] temp = (E[]) new Object[capacity * 2];
15 for(int i = 0; i < capacity; i ++) {
16 temp[i] = data[i];
17 }
18 data = temp;
19 capacity = capacity * 2
20 }
21 t++;
22 data[t] = e;
23 }
24 }

● This alternative strategy
resizes the array,
whenever needed,
by doubling its current size.● L15 – L17 make push cost
O(n), in the worst case.● However, given that resizing

only happens rarely, how about
the average running time?

● We will refer L12 – L20 as the
resizing part and L21 – L22 as
the update part.

51 of 58

Avg. RT: Const. Increment vs. Doubling

● Without loss of generality, assume: There are n push operations, and the
last push triggers the last resizing routine.

Constant Increments Doubling
RT of exec. update part for n pushes O(n)

RT of executing 1st resizing I

RT of executing 2nd resizing I +C 2 ⋅ I
RT of executing 3rd resizing I + 2 ⋅C 4 ⋅ I
RT of executing 4th resizing I + 3 ⋅C 8 ⋅ I
RT of executing k

th resizing I + (k − 1) ⋅C 2k−1 ⋅ I
RT of executing last resizing n

of resizing needed (solve k for RT = n) O(n) O(log2n)
Total RT for n pushes O(n2) O(n)

Amortized/Average RT over n pushes O(n) O(1)

● Over n push operations, the amortized / average running time of the
doubling strategy is more efficient.

52 of 58

Beyond this lecture . . .

● Attempt the exercises throughout the lecture.
● Implement the Postfix Calculator using a stack.

53 of 58

Index (1)

Learning Outcomes of this Lecture

Abstract Data Types (ADTs)

Java API Approximates ADTs (1)

Java API Approximates ADTs (2)

Building ADTs for Reusability

What is a Stack?

The Stack ADT

Stack: Illustration

Generic Stack: Interface

Generic Stack: Architecture

Implementing Stack: Array (1)

54 of 58

Index (2)

Implementing Stack: Array (2)

Implementing Stack: Singly-Linked List (1)

Implementing Stack: Singly-Linked List (2)

Generic Stack: Testing Implementations

Polymorphism & Dynamic Binding

Stack Application: Reversing an Array

Stack Application: Matching Delimiters (1)

Stack Application: Matching Delimiters (2)

Stack Application: Postfix Notations (1)

Stack Application: Postfix Notations (2)

What is a Queue?

55 of 58

Index (3)

The Queue ADT

Queue: Illustration

Generic Queue: Interface

Generic Queue: Architecture

Implementing Queue ADT: Array (1)

Implementing Queue ADT: Array (2)

Implementing Queue: Singly-Linked List (1)

Implementing Queue: Singly-Linked List (2)

Generic Queue: Testing Implementations

Polymorphism & Dynamic Binding

56 of 58

Index (4)

Exercise:

Implementing a Queue using Two Stacks

Optional Materials

Terminology: Contract, Client, Supplier

Client, Supplier, Contract in OOP (1)

Client, Supplier, Contract in OOP (2)

Modularity (1): Childhood Activity

Modularity (2): Daily Construction

Modularity (3): Computer Architecture

Modularity (4): System Development

Modularity (5): Software Design

57 of 58

Index (5)

Design Principle: Modularity

Implementing Queue ADT: Circular Array (1)

Implementing Queue ADT: Circular Array (2)

Limitations of Queue

The Double-Ended Queue ADT

Array Implementations: Stack and Queue

Dynamic Array: Constant Increments

Dynamic Array: Doubling

Avg. RT: Const. Increment vs. Doubling

Beyond this lecture . . .

58 of 58

Recursion (Part 2)

EECS2011 X:

Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Background Study: Basic Recursion

● It is assumed that, in EECS2030, you learned about the basics of

recursion in Java:○ What makes a method recursive?○ How to trace recursion using a call stack?○ How to define and use recursive helper methods on arrays?● If needed, review the above assumed basics from the relevant parts

of EECS2030 (https://www.eecs.yorku.ca/˜jackie/

teaching/lectures/index.html#EECS2030_F21):○ Parts A – C, Lecture 8, Week 12

Tips.○ Skim the slides: watch lecture videos if needing explanations.○ Recursion lab from EECS2030-F19: here [Solution: here]○ Ask questions related to the assumed basics of recursion!

● Assuming that you know the basics of recursion in Java, we

will proceed with more advanced examples.

2 of 36

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/slides/08-Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/codes/EECS2030_F19_Lab5.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/codes/EECS2030_F19_Lab5_Solution.zip

Extra Challenging Recursion Problems

1. groupSum○ Problem Specification: here Solution: here○ Solution Walkthrough: here○ Notes: here [pp. 7–10] & here

2. parenBit○ Problem Specification: here Solution: here○ Solution Walkthrough: here○ Notes: here [pp. 4–5]

3. climb○ Problem Specification: here Solution: here○ Solution Walkthrough: here & here○ Notes: here [pp. 7–8] & here [p. 4]

4. climbStrategies○ Problem Specification: here Solution: here○ Solution Walkthrough: here○ Notes: here [pp. 5 – 6]

3 of 36

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/notes/EECS2011-W22-Problem-Recursion-groupSum-Spec.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/codes/EECS2011_W22_Q&A_01_19.zip
https://www.youtube.com/watch?v=rZup1y67Ytc&list=PL5dxAmCmjv_6EOKnlgJJ4OEKC7ZqJ0Hsv&index=3&t=2587s
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/blackboards/Blackboard%20-%20EECS2011%20-%20W22%20-%20Q&A%20-%2020220119.pdf#page=7
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/diagrams/recursion-tracing-groupSum.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/notes/EECS2011-W22-Problem-Recursion-parenBit-Spec.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/codes/EECS2011_W22_Q&A_01_20.zip
https://www.youtube.com/watch?v=k-ijBQgmBtY&list=PL5dxAmCmjv_6EOKnlgJJ4OEKC7ZqJ0Hsv&index=4&t=2874s
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/blackboards/Blackboard%20-%20EECS2011%20-%20W22%20-%20Q&A%20-%2020220120.pdf#page=4
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/notes/EECS2011-W22-Problem-Recursion-climb-Spec.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/codes/EECS2011_W22_Q&A_01_26.zip
https://www.youtube.com/watch?v=edF8fEXMrVs&list=PL5dxAmCmjv_6EOKnlgJJ4OEKC7ZqJ0Hsv&index=5&t=2151s
https://www.youtube.com/watch?v=4XUXxQZA8XY&list=PL5dxAmCmjv_6EOKnlgJJ4OEKC7ZqJ0Hsv&index=6&t=2369s
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/blackboards/Blackboard%20-%20EECS2011%20-%20W22%20-%20Q&A%20-%2020220126.pdf#page=7
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/blackboards/Blackboard%20-%20EECS2011%20-%20W22%20-%20Q&A%20-%2020220127.pdf#page=4
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/notes/EECS2011-W22-Problem-Recursion-climbStrategies-Spec.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/codes/EECS2011_W22_Q&A_01_27.zip
https://www.youtube.com/watch?v=4XUXxQZA8XY&list=PL5dxAmCmjv_6EOKnlgJJ4OEKC7ZqJ0Hsv&index=6&t=3140s
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS2011/blackboards/Blackboard%20-%20EECS2011%20-%20W22%20-%20Q&A%20-%2020220127.pdf#page=5

Learning Outcomes of this Lecture

This module is designed to help you:

● Know about the resources on recursion basics.

● Learn about the more intermediate recursive algorithms:○ Binary Search○ Merge Sort○ Quick Sort○ Tower of Hanoi

● Explore extra, challenging recursive problems.

4 of 36

Recursion: Binary Search (1)

● Searching Problem

Given a numerical key k and an array a of n numbers:

Precondition: Input array a sorted in a non-descending order

i.e., a[0] ≤ a[1] ≤. . . ≤ a[n − 1]
Postcondition: Return whether or not k exists in the input array a.● Q. RT of a search on an unsorted array?

A. O(n) (despite being iterative or recursive)● A Recursive Solution

Base Case: Empty array �→ false.

Recursive Case: Array of size ≥ 1 �→○ Compare the middle element of array a against key k .● All elements to the left of middle are ≤ k● All elements to the right of middle are ≥ k○ If the middle element is equal to key k �→ true○ If the middle element is not equal to key k :

● If k < middle, recursively search key k on the left half.

● If k > middle, recursively search key k on the right half.
5 of 36

Recursion: Binary Search (2)

boolean binarySearch(int[] sorted, int key) {

return binarySearchH(sorted, 0, sorted.length - 1, key);

}

boolean binarySearchH(int[] sorted, int from, int to, int key) {

if (from > to) { /* base case 1: empty range */

return false; }

else if(from == to) { /* base case 2: range of one element */

return sorted[from] == key; }

else {

int middle = (from + to) / 2;

int middleValue = sorted[middle];

if(key < middleValue) {

return binarySearchH(sorted, from, middle - 1, key);

}

else if (key > middleValue) {

return binarySearchH(sorted, middle + 1, to, key);

}

else { return true; }

}

}

6 of 36

Running Time: Binary Search (1)

We define T(n) as the running time function of a binary search ,

where n is the size of the input array.

���������
T (0) = 1

T (1) = 1

T (n) = T (n

2
) + 1 where n ≥ 2

To solve this recurrence relation, we study the pattern of T(n) and

observe how it reaches the base case(s).

7 of 36

Running Time: Binary Search (2)

Without loss of generality , assume n = 2
i
for some i ≥ 0.

T (n) = T (n

2
) + 1

= (T (n
4
) + 1

������������������������������������
T(n

2
)

) + 1���
1 time

= ((T (n
8
) + 1

������������������������������������
T(n

4
)

) + 1) + 1����������
2 times

= . . .

= (((1���
T(n

2log n
)=T(1)

) + 1) . . .) + 1���
log n times ∴ T(n) is O(log n)

8 of 36

Recursion: Merge Sort

● Sorting Problem

Given a list of n numbers �a1,a2, . . . , an�:
Precondition: NONE

Postcondition: A permutation of the input list �a′
1
, a
′
2
, . . . , a

′
n�

sorted in a non-descending order (i.e., a
′
1
≤ a
′
2
≤. . . ≤ a

′
n)

● A Recursive Algorithm

Base Case 1: Empty list �→ Automatically sorted.

Base Case 2: List of size 1 �→ Automatically sorted.

Recursive Case: List of size ≥ 2 �→
1. Split the list into two (unsorted) halves: L and R.

2. Recursively sort L and R, resulting in: sortedL and sortedR.

3. Return the merge of sortedL and sortedR.

9 of 36

Recursion: Merge Sort in Java (1)

/* Assumption: L and R are both already sorted. */
private List<Integer> merge(List<Integer> L, List<Integer> R) {

List<Integer> merge = new ArrayList<>();

if(L.isEmpty()||R.isEmpty()) { merge.addAll(L); merge.addAll(R); }

else {

int i = 0;

int j = 0;

while(i < L.size() && j < R.size()) {

if(L.get(i) <= R.get(j)) { merge.add(L.get(i)); i ++; }

else { merge.add(R.get(j)); j ++; }

}

/* If i >= L.size(), then this for loop is skipped. */

for(int k = i; k < L.size(); k ++) { merge.add(L.get(k)); }

/* If j >= R.size(), then this for loop is skipped. */

for(int k = j; k < R.size(); k ++) { merge.add(R.get(k)); }

}

return merge;

}

RT(merge)? [O(L.size() + R.size())]

10 of 36

Recursion: Merge Sort in Java (2)

public List<Integer> sort(List<Integer> list) {

List<Integer> sortedList;

if(list.size() == 0) { sortedList = new ArrayList<>(); }

else if(list.size() == 1) {

sortedList = new ArrayList<>();

sortedList.add(list.get(0));

}

else {

int middle = list.size() / 2;

List<Integer> left = list.subList(0, middle);

List<Integer> right = list.subList(middle, list.size());

List<Integer> sortedLeft = sort(left);
List<Integer> sortedRight = sort(right);
sortedList = merge (sortedLeft, sortedRight);

}

return sortedList;

}

11 of 36

Recursion: Merge Sort Example (1)
(1) Start with input list of size 8 (2) Split and recur on L of size 4

9645632485 17 31 50 31 96 50

85 24 63 45

17

(3) Split and recur on L of size 2 (4) Split and recur on L of size 1, return

50

4563

85

17 31 96

24

4563

17

24

85

31 96 50

12 of 36

Recursion: Merge Sort Example (2)

(5) Recur on R of size 1 and return (6) Merge sorted L and R of sizes 1

45

50

85

63

24

17 31 96

24

63

50963117

85

45

(7) Return merged list of size 2 (8) Recur on R of size 2

24 85 63

50963117

45

63 45

17 31 96 50

24 85

13 of 36

Recursion: Merge Sort Example (3)
(9) Split and recur on L of size 1, return (10) Recur on R of size 1, return

45

63

17 31 96 50

24 85

63

45

17 31 96 50

24 85

(11) Merge sorted L and R of sizes 1, return (12) Merge sorted L and R of sizes 2

45 63

17 31 96 50

24 85

17 31 96 50

24 6345 85

14 of 36

Recursion: Merge Sort Example (4)

(13) Recur on R of size 4 (14) Return a sorted list of size 4

24

17 31 96 50

856345

17 31 50 96

85634524

(15) Merge sorted L and R of sizes 4 (16) Return a sorted list of size 8

63 85 96501724 3145 45312417 50 63 85 96

15 of 36

Recursion: Merge Sort Example (5)

Let’s visualize the two critical phases of merge sort :

(1) After Splitting Unsorted Lists (2) After Merging Sorted Lists

45

85

5031

24 17 3163 45 96 50

45632485 17 31 96 50

17 31 96 5085 24 63 45

85 63 17 9624 31 50

24

96

85 17 3145 63 50 96

17 31 50 9624 45 63 85

45312417 50 63 85 96

85 63 1724 45

16 of 36

Recursion: Merge Sort Running Time (1)

Height Time per level

Total time: O(n logn)

O(n)

O(n)

O(logn)
O(n)

n

n/2

n/4n/4n/4n/4

n/2

17 of 36

Recursion: Merge Sort Running Time (2)

● Base Case 1: Empty list �→ Automatically sorted. [O(1)]

● Base Case 2: List of size 1 �→ Automatically sorted. [O(1)]

● Recursive Case: List of size ≥ 2 �→
1. Split the list into two (unsorted) halves: L and R; [O(1)]

2. Recursively sort L and R, resulting in: sortedL and sortedR

Q. # times to split until L and R have size 0 or 1?

A. [O(log n)]

3. Return the merge of sortedL and sortedR. [O(n)]

●
Running Time of Merge Sort

= (RT each RC) × (# RCs)= (RT merging sortedL and sortedR) × (# splits until bases)= O(n ⋅ log n)

18 of 36

Recursion: Merge Sort Running Time (3)

We define T(n) as the running time function of a merge sort ,

where n is the size of the input array.

���������
T (0) = 1

T (1) = 1

T (n) = 2 ⋅ T (n

2
) + n where n ≥ 2

To solve this recurrence relation, we study the pattern of T(n) and

observe how it reaches the base case(s).

19 of 36

Recursion: Merge Sort Running Time (4)

Without loss of generality , assume n = 2
i
for some i ≥ 0.

T (n) = 2 × T (n

2
) + n

= 2 × (2����������
2 terms

×T (n

4
) + n

2
) + n

���������������
2 terms

= 2 × (2 × (2��
3 terms

×T (n

8
) + n

4
) + n

2
) + n

���
3 terms= . . .

= 2 × (2 × (2 × ⋅ ⋅ ⋅ × (2��
log n terms

×T (n

2log n
) + n

2(log n)−1
) + ⋅ ⋅ ⋅ + n

4
) + n

2
) + n

��
log n terms

= 2 ⋅ n
2
+ 2

2 ⋅ n
4
+ ⋅ ⋅ ⋅ + 2

(log n)−1 ⋅ n

2(log n)−1
+ n���

2log n ⋅ n

2log n���
log n terms

= n + n + ⋅ ⋅ ⋅ + n + n���
log n terms

∴ T(n) is O(n ⋅ log n)

20 of 36

Recursion: Quick Sort

● Sorting Problem

Given a list of n numbers �a1,a2, . . . , an�:
Precondition: NONE

Postcondition: A permutation of the input list �a′
1
, a
′
2
, . . . , a

′
n�

sorted in a non-descending order (i.e., a
′
1
≤ a
′
2
≤. . . ≤ a

′
n)

● A Recursive Algorithm

Base Case 1: Empty list �→ Automatically sorted.

Base Case 2: List of size 1 �→ Automatically sorted.

Recursive Case: List of size ≥ 2 �→
1. Choose a pivot element. [ideally the median]

2. Split the list into two (unsorted) halves: L and R, s.t.:

All elements in L are less than or equal to (≤) the pivot .

All elements in R are greater than (>) the pivot .

3. Recursively sort L and R: sortedL and sortedR;

4. Return the concatenation of: sortedL + pivot + sortedR.

21 of 36

Recursion: Quick Sort in Java (1)

List<Integer> allLessThanOrEqualTo(int pivotIndex, List<Integer> list) {

List<Integer> sublist = new ArrayList<>();

int pivotValue = list.get(pivotIndex);

for(int i = 0; i < list.size(); i ++) {

int v = list.get(i);

if(i != pivotIndex && v <= pivotValue) { sublist.add(v); }

}

return sublist;

}

List<Integer> allLargerThan(int pivotIndex, List<Integer> list) {

List<Integer> sublist = new ArrayList<>();

int pivotValue = list.get(pivotIndex);

for(int i = 0; i < list.size(); i ++) {

int v = list.get(i);

if(i != pivotIndex && v > pivotValue) { sublist.add(v); }

}

return sublist;

}

RT(allLessThanOrEqualTo)? [O(n)]

RT(allLargerThan)? [O(n)]
22 of 36

Recursion: Quick Sort in Java (2)

public List<Integer> sort(List<Integer> list) {

List<Integer> sortedList;

if(list.size() == 0) { sortedList = new ArrayList<>(); }

else if(list.size() == 1) {

sortedList = new ArrayList<>(); sortedList.add(list.get(0)); }

else {

int pivotIndex = list.size() - 1;

int pivotValue = list.get(pivotIndex);

List<Integer> left = allLessThanOrEqualTo (pivotIndex, list);

List<Integer> right = allLargerThan (pivotIndex, list);

List<Integer> sortedLeft = sort(left);
List<Integer> sortedRight = sort(right);
sortedList = new ArrayList<>();

sortedList.addAll(sortedLeft);
sortedList.add(pivotValue);
sortedList.addAll(sortedRight);

}

return sortedList;

}

23 of 36

Recursion: Quick Sort Example (1)
(1) Choose pivot 50 from list of size 8 (2) Split w.r.t. the chosen pivot 50

632485 17 31 96 5045 24 31 85 63 965045 17

(3) Recur on L of size 4, choose pivot 31 (4) Split w.r.t. the chosen pivot 31

85 63 9650

45 1724 31

63 9650

453124 17

85

24 of 36

Recursion: Quick Sort Example (2)
(5) Recur on L of size 2, choose pivot 17 (6) Split w.r.t. the chosen pivot 17

63 9650

45

24 17

31

85 63 9650

4531

17 24

85

(7) Recur on L of size 0 (8) Return empty list

63 9650

4531

2417

85 63 9650

4531

17 24

85

25 of 36

Recursion: Quick Sort Example (3)

(9) Recur on R of size 1 (10) Return singleton list �24�
63 9650

4531

17

24

85 63 9650

4531

17 24

85

(11) Concatenate ��, �17�, and �24� (12) Return concatenated list of size 2

63 9650

4531

17 24

85 85 63 9650

453117 24

26 of 36

Recursion: Quick Sort Example (4)
(13) Recur on R of size 1 (14) Return singleton list �45�

85 63 9650

17 24 31

45

85 63 9650

453117 24

(15) Concatenate �17,24�, �31�, and �45� (16) Return concatenated list of size 4

85 63 9650

24 3117 45

63 965024 3117 45 85

27 of 36

Recursion: Quick Sort Example (5)

(15) Recur on R of size 3 (16) Return sorted list of size 3

85634517 3124 50 96 5024 3117 45 63 85 96

(17) Concatenate �17,24,31,45�, �50�, and �63,85,96�, then return

28 of 36

Recursion: Quick Sort Example (6)

Let’s visualize the two critical phases of quick sort :

(1) After Splitting Unsorted Lists (2) After Concatenating Sorted Lists

45

45

632485 17 31 96 50

85 63 9624 45 17 31

24 85 6317

24 85

24

31 63 85 96

45312417 50 63 85 96

17 24 45

17 63 85

24 85

45

29 of 36

Recursion: Quick Sort Running Time (1)

2. Recur

1. Split using pivot x

3. Concatenate

2. Recur

G(> x)L(< x)

E(= x)

30 of 36

Recursion: Quick Sort Running Time (2)

● Base Case 1: Empty list �→ Automatically sorted. [O(1)]

● Base Case 2: List of size 1 �→ Automatically sorted. [O(1)]● Recursive Case: List of size ≥ 2 �→
1. Choose a pivot element (e.g., rightmost element) [O(1)]

2. Split the list into two (unsorted) halves: L and R, s.t.:

All elements in L are less than or equal to (≤) the pivot . [O(n)]

All elements in R are greater than (>) the pivot . [O(n)]

3. Recursively sort L and R: sortedL and sortedR;

Q. # times to split until L and R have size 0 or 1?

A. O(log n) [if pivots chosen are close to median values]

4. Return the concatenation of: sortedL + pivot + sortedR. [O(1)]

●
Running Time of Quick Sort= (RT each RC) × (# RCs)= (RT splitting into L and R) × (# splits until bases)= O(n ⋅ log n)

31 of 36

Recursion: Quick Sort Running Time (3)

● We define T(n) as the running time function of a quick sort , where n is

the size of the input array.● Worst Case○ If the pivot is s.t. the two sub-arrays are “unbalanced” in sizes:

e.g., rightmost element in a reverse-sorted array

(“unbalanced” splits/partitions: 0 vs. n − 1 elements)���������
T (0) = 1

T (1) = 1

T (n) = T (n − 1) + n where n ≥ 2

○ As efficient as Selection/Insertion Sorts: O(n
2
) [EXERCISE]● Best Case

If the pivot is s.t. it is close to the median value:���������
T (0) = 1

T (1) = 1

T (n) = 2 ⋅ T (n

2
) + n where n ≥ 2

○ As efficient as Merge Sort: O(n ⋅ log n)○ Even with partitions such as
n

10
vs.

9⋅n
10

elements, RT remains O(n ⋅ log n).

32 of 36

Beyond this lecture . . .

● Notes on Recursion:

https://www.eecs.yorku.ca/˜jackie/teaching/

lectures/2021/F/EECS2030/notes/EECS2030_F21_

Notes_Recursion.pdf

● The best approach to learning about recursion is via a

functional programming language:

Haskell Tutorial: https://www.haskell.org/tutorial/

33 of 36

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
https://www.haskell.org/tutorial/

Index (1)

Background Study: Basic Recursion

Extra Challenging Recursion Problems

Learning Outcomes of this Lecture

Recursion: Binary Search (1)

Recursion: Binary Search (2)

Running Time: Binary Search (1)

Running Time: Binary Search (2)

Recursion: Merge Sort

Recursion: Merge Sort in Java (1)

Recursion: Merge Sort in Java (2)

Recursion: Merge Sort Example (1)

34 of 36

Index (2)

Recursion: Merge Sort Example (2)

Recursion: Merge Sort Example (3)

Recursion: Merge Sort Example (4)

Recursion: Merge Sort Example (5)

Recursion: Merge Sort Running Time (1)

Recursion: Merge Sort Running Time (2)

Recursion: Merge Sort Running Time (3)

Recursion: Merge Sort Running Time (4)

Recursion: Quick Sort

Recursion: Quick Sort in Java (1)

Recursion: Quick Sort in Java (2)

35 of 36

Index (3)

Recursion: Quick Sort Example (1)

Recursion: Quick Sort Example (2)

Recursion: Quick Sort Example (3)

Recursion: Quick Sort Example (4)

Recursion: Quick Sort Example (5)

Recursion: Quick Sort Example (6)

Recursion: Quick Sort Running Time (1)

Recursion: Quick Sort Running Time (2)

Recursion: Quick Sort Running Time (3)

Beyond this lecture . . .

36 of 36

General Trees and Binary Trees

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
● Terminologies: General Trees vs. Binary Trees
● Implementation of a Generic Tree
● Mathematical Properties of Binary Trees
● Tree Traversals

2 of 47

General Trees

● A linear data structure is a sequence, where stored objects
can be related via notions of “predecessor” and “successor”.○ e.g., arrays○ e.g., Singly-Linked Lists (SLLs)○ e.g., Doubly-Linked Lists (DLLs)

● The Tree ADT is a non-linear collection of nodes/positions.○ Each node stores some data object.○ Nodes in a tree are organized into levels: some nodes are
“above” others, and some are “below” others.○ Think of a tree forming a hierarchy among the stored nodes.

● Terminology of the Tree ADT borrows that of family trees:○ e.g., root○ e.g., parents, siblings, children○ e.g., ancestors, descendants

3 of 47

General Trees: Terminology (1)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ top element of the tree [root of tree]
e.g., root of the above family tree: David○ the node immediately above node n [parent of n]
e.g., parent of Vanessa: Elsa○ all nodes immediately below node n [children of n]
e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: �

4 of 47

General Trees: Terminology (2)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ Union of n, n’s parent , n’s grand parent , . . . , root [n’s ancestors]
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David○ Union of n, n’s children, n’s grand children, . . . [n’s descendants]
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree○ By the above definitions, a node is both its ancestor and descendant .

5 of 47

General Trees: Terminology (3)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ all nodes with the same parent as n’s [siblings of node n]
e.g., siblings of Vanessa: Shirley and Peter○ the tree formed by descendants of n [subtree rooted at n]○ nodes with no children [external nodes (leaves)]
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter○ nodes with at least one child [internal nodes]
e.g., non-leaves of the above tree: David, Chris, Elsa

6 of 47

General Trees: Terminology (4)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ a pair of parent and child nodes [an edge of tree]
e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges○ a sequence of nodes where any two consecutive nodes form an edge

[a path of tree]
e.g., � David, Chris, Elsa, Peter � is a path
e.g., Elsa’s ancestor path: � Elsa, Chris, David �

7 of 47

General Trees: Terminology (5)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ number of edges from the root to node n [depth of n]
alternatively: number of n’s ancestors of n minus one
e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3○ maximum depth among all nodes [height of tree]
e.g., Shirley, Vanessa, and Peter have the maximum depth

8 of 47

General Trees: Example Node Depths

8

Tree ADT (cont.)

Balanced Binary TreeBalanced Binary Tree – every node at depths 0, 1, , dmax-2 has two
of Height hof Height h children; nodes at depth (dmac-1) may have

two, one, or no children; nodes at depth h
have no children

A

B C

D E F

H I J

A

B C

D E F

G H

I J

balanced binary tree ill-balanced binary tree

d=0

d=1

d=2

d=3

d=0

d=1

d=2

d=3

d=4

G

9 of 47

General Tree: Definition

A tree T is a set of nodes satisfying parent-child properties:
1. If T is empty , then it does not contain any nodes.
2. If T is nonempty , then:

● T contains at least its root (a special node with no parent).● Each node n of T that is not the root has a unique parent node w .● Given two nodes n and w ,
if w is the parent of n, then symmetrically, n is one of w ’s children.

10 of 47

General Tree: Important Characteristics

There is a single, unique path from the root to any particular
node in the same tree.

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)
11 of 47

General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among
the children of each internal node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

12 of 47

General Trees: Unordered Trees
A tree is unordered if the order among the children of each
internal node does not matter.

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

13 of 47

Implementation: Generic Tree Nodes (1)
1 public class TreeNode<E> {
2 private E element; /* data object */

3 private TreeNode<E> parent; /* unique parent node */

4 private TreeNode<E>[] children; /* list of child nodes */

5
6 private final int MAX_NUM_CHILDREN = 10; /* fixed max */

7 private int noc; /* number of child nodes */

8
9 public TreeNode(E element) {

10 this.element = element;
11 this.parent = null;
12 this.children = (TreeNode<E>[])
13 Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
14 this.noc = 0;
15 }
16 . . .
17 }

Replacing L13 with the following results in a ClassCastException:
this.children = (TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];

14 of 47

Implementation: Generic Tree Nodes (2)

public class TreeNode<E> {
private E element; /* data object */

private TreeNode<E> parent; /* unique parent node */

private TreeNode<E>[] children; /* list of child nodes */

private final int MAX_NUM_CHILDREN = 10; /* fixed max */

private int noc; /* number of child nodes */

public E getElement() { . . . }
public TreeNode<E> getParent() { . . . }
public TreeNode<E>[] getChildren() { . . . }

public void setElement(E element) { . . . }
public void setParent(TreeNode<E> parent) { . . . }
public void addChild(TreeNode<E> child) { . . . }
public void removeChildAt(int i) { . . . }

}

Exercise: Implement void removeChildAt(int i).
15 of 47

Testing: Connected Tree Nodes
Constructing a tree is similar to constructing a SLL :
@Test

public void test_general_trees_construction() {
TreeNode<String> agnarr = new TreeNode<>("Agnarr");
TreeNode<String> elsa = new TreeNode<>("Elsa");
TreeNode<String> anna = new TreeNode<>("Anna");

agnarr.addChild(elsa);
agnarr.addChild(anna);
elsa.setParent(agnarr);
anna.setParent(agnarr);

assertNull(agnarr.getParent());
assertTrue(agnarr == elsa.getParent());
assertTrue(agnarr == anna.getParent());
assertTrue(agnarr.getChildren().length == 2);
assertTrue(agnarr.getChildren()[0] == elsa);
assertTrue(agnarr.getChildren()[1] == anna);

}

16 of 47

Problem: Computing a Node’s Depth

● Given a node n, its depth is defined as:○ If n is the root , then n’s depth is 0.○ Otherwise, n’s depth is the depth of n’s parent plus one.
● Assuming under a generic class TreeUtilities<E>:

1 public int depth(TreeNode<E> n) {
2 if(n.getParent() == null) {
3 return 0;
4 }
5 else {
6 return 1 + depth(n.getParent());
7 }
8 }

17 of 47

Testing: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_depths() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
assertEquals(0, u.depth(david));
assertEquals(1, u.depth(ernesto));
assertEquals(1, u.depth(chris));
assertEquals(2, u.depth(elsa));
assertEquals(2, u.depth(anna));
assertEquals(3, u.depth(shirley));
assertEquals(3, u.depth(vanessa));
assertEquals(3, u.depth(peter));

}

18 of 47

Unfolding: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

depth(vanessa)= { vanessa.getParent() == elsa }
1 + depth(elsa)= { elsa.getParent() == chris }
1 + 1 + depth(chris)= { chris.getParent() == david }
1 + 1 + 1 + depth(David)= { David is the root }
1 + 1 + 1 + 0= 3

19 of 47

Problem: Computing a Tree’s Height
● Given node n, the height of subtree rooted at n is defined as:○ If n is a leaf , then the height of subtree rooted at n is 0.○ Otherwise, the height of subtree rooted at n is one plus the

maximum height of all subtrees rooted at n’s children.
● Assuming under a generic class TreeUtilities<E>:

1 public int height(TreeNode<E> n) {
2 TreeNode<E>[] children = n.getChildren();
3 if(children.length == 0) { return 0; }
4 else {
5 int max = 0;
6 for(int i = 0; i < children.length; i ++) {
7 int h = 1 + height(children[i]);
8 max = h > max ? h : max;
9 }

10 return max;
11 }
12 }

20 of 47

Testing: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_heights() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
/* internal nodes */

assertEquals(3, u.height(david));
assertEquals(2, u.height(chris));
assertEquals(1, u.height(elsa));
/* external nodes */

assertEquals(0, u.height(ernesto));
assertEquals(0, u.height(anna));
assertEquals(0, u.height(shirley));
assertEquals(0, u.height(vanessa));
assertEquals(0, u.height(peter));

}

21 of 47

Unfolding: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

height(subtree rooted at chris)= { chris is not a leaf }

MAX � 1 + height(subtree rooted at elsa),
1 + height(subtree rooted at anna) �= { elsa is not a leaf, anna is a leaf }

MAX
�����

1 +MAX
���

1 + height(subtree rooted at shirley),
1 + height(subtree rooted at vanessa),
1 + height(subtree rooted at peter)

��� ,
1 + 0

�����
= { shirley, vanessa, and peter are all leaves }

MAX
�����

1 +MAX
���

1 + 0,
1 + 0,
1 + 0

��� ,
1 + 0

�����
= 222 of 47

Exercises on General Trees

● Implement and test the following recursive algorithm:

public TreeNode<E>[] ancestors(TreeNode<E> n)

which returns the list of ancestors of a given node n.
● Implement and test the following recursive algorithm:

public TreeNode<E>[] descendants(TreeNode<E> n)

which returns the list of descendants of a given node n.

23 of 47

Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (≤ 2) children.
2. Each child node is labeled as either a left child or a right child .
3. A left child precedes a right child .

A binary tree (BT) is either:
○ An empty tree; or○ A nonempty tree with a root node r which has:
● a left subtree rooted at its left child , if any

● a right subtree rooted at its right child , if any

24 of 47

BT Terminology: LST vs. RST
For an internal node (with at least one child):
● Subtree rooted at its left child , if any, is called left subtree.
● Subtree rooted at its right child , if any, is called right subtree.

e.g.,

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Node A has:○ a left subtree rooted at node B○ a right subtree rooted at node C
25 of 47

BT Terminology: Depths, Levels
The set of nodes with the same depth d are said to be at the
same level d .

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

26 of 47

Background: Sum of Geometric Sequence

● Given a geometric sequence of n terms, where the initial term
is a and the common factor is r , the sum of all its terms is:

n−1
⌃

k = 0
(a ⋅ r k) = a ⋅ r0 + a ⋅ r1 + a ⋅ r2 + ⋅ ⋅ ⋅ + a ⋅ r n−1 = a ⋅ � r n − 1

r − 1
�

[See here to see how the formula is derived.]
● For the purpose of binary trees, maximum numbers of nodes

at all levels form a geometric sequence :
○ a = 1 [the root at Level 0]○ r = 2 [≤ 2 children for each internal node]○ e.g., Max total # of nodes at levels 0 to 4 = 1 + 2 + 4 + 8 + 16 = 1 ⋅ (25−1

2−1) = 31

27 of 47

https://www.youtube.com/watch?v=ZOYDpmXVIf0&list=PL5dxAmCmjv_52WlWSybFF2RqSdb3mE-rh&index=6&pp=sAQB

BT Properties: Max # Nodes at Levels

Given a binary tree with height h:
● At each level:
○ Maximum number of nodes at Level 0: 20 = 1○ Maximum number of nodes at Level 1: 21 = 2○ Maximum number of nodes at Level 2: 22 = 4

. . .○ Maximum number of nodes at Level h: 2h

● Summing all levels:

Maximum total number of nodes:

20 + 21 + 22 + ⋅ ⋅ ⋅ + 2h��
h + 1 terms

= 1 ⋅ (2h + 1 − 1
2 − 1

) = 2h + 1 − 1

28 of 47

BT Terminology: Complete BTs
A binary tree with height h is considered as complete if:
● Nodes with depth ≤ h − 2 has two children.
● Nodes with depth h − 1 may have zero, one, or two child nodes.
● Children of nodes with depth h − 1 are filled from left to right.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? (2h −1)+1 = 2h

Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
29 of 47

BT Terminology: Full BTs
A binary tree with height h is considered as full if:

Each node with depth ≤ h − 1 has two child nodes.
That is, all leaves are with the same depth h.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? 2h+1 − 1
Q2: Maximum # of nodes of a complete BT? 2h+1 − 1

30 of 47

BT Properties: Bounding # of Nodes

Given a binary tree with height h, the number of nodes n is
bounded as:

h + 1 ≤ n ≤ 2h+1 − 1

● Shape of BT with minimum # of nodes?
A “one-path” tree (each internal node has exactly one child)

● Shape of BT with maximum # of nodes?
A tree completely filled at each level

31 of 47

BT Properties: Bounding Height of Tree

Given a binary tree with n nodes, the height h is bounded as:

log(n + 1) − 1 ≤ h ≤ n − 1

● Shape of BT with minimum height?
A tree completely filled at each level

n = 2h+1 − 1⇐⇒ n + 1 = 2h+1

⇐⇒ log(n + 1) = h + 1⇐⇒ log(n + 1) − 1 = h
● Shape of BT with maximum height?

A “one-path” tree (each internal node has exactly one child)

32 of 47

BT Properties: Bounding # of Ext. Nodes

Given a binary tree with height h, the number of external
nodes nE is bounded as:

1 ≤ nE ≤ 2h

● Shape of BT with minimum # of external nodes?
A tree with only one node (i.e., the root)

● Shape of BT with maximum # of external nodes?
A tree whose bottom level (with depth h) is completely filled

33 of 47

BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal
nodes nI is bounded as:

h ≤ nI ≤ 2h − 1

● Shape of BT with minimum # of internal nodes?○ Number of nodes in a “one-path” tree (h + 1) minus one○ That is, the “deepest” leaf node excluded
● Shape of BT with maximum # of internal nodes?○ A tree whose ≤ h − 1 levels are all completely filled○ That is: 20 + 21 + ⋅ ⋅ ⋅ + 2h−1��

n terms

= 2h − 1

34 of 47

BT Terminology: Proper BT
A binary tree is proper if each internal node has two children.

35 of 47

BT Properties: #s of Ext. and Int. Nodes
Given a binary tree that is:

○ nonempty and proper○ with nI internal nodes and nE external nodes

We can then expect that: nE = nI + 1
Proof by mathematical induction :

● Base Case:
A proper BT with only the root (an external node): nE = 1 and nI = 0.

● Inductive Case:
○ Assume a proper BT with n nodes (n > 1) with nI internal nodes and nE

external nodes such that nE = nI + 1.○ Only one way to create a larger BT (with n + 2 nodes) that is still proper
(with n′E external nodes and n′I internal nodes):

Convert an external node into an internal node.
n′E = (nE − 1) + 2 = nE + 1 ∧ n′I = nI + 1⇒ n′E = n′E + 1

36 of 47

Binary Trees: Application (1)
A decision tree is a proper binary tree used to to express the
decision-making process:○ Each internal node denotes a decision point: yes or no.○ Each external node denotes the consequence of a decision.

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the
money within the next 5 years?

Are you willing to accept risks in
exchange for higher expected returns?

Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,
bonds, and short-term instruments.

37 of 47

Binary Trees: Application (2)

An infix arithmetic expression can be represented using a
binary tree:
○ Each internal node denotes an operator (unary or binary).○ Each external node denotes an operand (i.e., a number).

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

○ To evaluate the expression that is represented by a binary tree,
certain traversal over the entire tree is required.

38 of 47

Tree Traversal Algorithms: Definition

● A traversal of a tree T systematically visits all T ’s nodes.
● Visiting each node may be associated with an action: e.g.,○ Print the node element.○ Determine if the node element satisfies certain property

(e.g., positive, matching a key).○ Accumulate the node element values for some global result.

39 of 47

Tree Traversal Algorithms: Common Types
Three common traversal orders:○ Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

○ Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

○ Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

40 of 47

Tree Traversal Algorithms: Preorder
Preorder: Visit parent, then visit child subtrees.
preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

41 of 47

Tree Traversal Algorithms: Postorder
Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

42 of 47

Tree Traversal Algorithms: Inorder
Inorder (for BT): Visit left subtree, then parent, then right subtree.
inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

43 of 47

Index (1)

Learning Outcomes of this Lecture

General Trees

General Trees: Terminology (1)

General Trees: Terminology (2)

General Trees: Terminology (3)

General Trees: Terminology (4)

General Trees: Terminology (5)

General Trees: Example Node Depths

General Tree: Definition

General Tree: Important Characteristics

General Trees: Ordered Trees
44 of 47

Index (2)
General Trees: Unordered Trees

Implementation: Generic Tree Nodes (1)

Implementation: Generic Tree Nodes (2)

Testing: Connected Tree Nodes

Problem: Computing a Node’s Depth

Testing: Computing a Node’s Depth

Unfolding: Computing a Node’s Depth

Problem: Computing a Tree’s Height

Testing: Computing a Tree’s Height

Unfolding: Computing a Tree’s Height

Exercises on General Trees
45 of 47

Index (3)
Binary Trees (BTs): Definitions

BT Terminology: LST vs. RST

BT Terminology: Depths, Levels

Background: Sum of Geometric Sequence

BT Properties: Max # Nodes at Levels

BT Terminology: Complete BTs

BT Terminology: Full BTs

BT Properties: Bounding # of Nodes

BT Properties: Bounding Height of Tree

BT Properties: Bounding # of Ext. Nodes

BT Properties: Bounding # of Int. Nodes
46 of 47

Index (4)
BT Terminology: Proper BT

BT Properties: #s of Ext. and Int. Nodes

Binary Trees: Application (1)

Binary Trees: Application (2)

Tree Traversal Algorithms: Definition

Tree Traversal Algorithms: Common Types

Tree Traversal Algorithms: Preorder

Tree Traversal Algorithms: Postorder

Tree Traversal Algorithms: Inorder

47 of 47

Binary Search Trees

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● Binary Search Trees (BSTs) = BTs + Search Property

● Implementing a Generic BST in Java
● BST Operations:○ Searching: Implementation, Visualization, RT○ Insertion: (Sketch of) Implementation, Visualization, RT○ Deletion: (Sketch of) Implementation, Visualization, RT

2 of 27

Binary Search Tree: Recursive Definition

A Binary Search Tree (BST) is a BT satisfying the search property :

Each internal node p stores an entry , a key-value pair (k ,v),
such that:○ For each node n in the LST of p: key(n) < key(p)○ For each node n in the RST of p: key(n) > key(p)

Node p stores
(key(p), value(p))

Each
node n of LST

is such that
key(n) < key(p)

Each
node n of RST

is such that
key(n) > key(p)

3 of 27

BST: Internal Nodes vs. External Nodes

● We store key-value pairs only in internal nodes.● Recall how we treat header and trailer in a DLL.● We treat external nodes as sentinels, in order to simplify the
coding logic of BST algorithms.

17 88

65

54

29

8

44

76

80

97

93

21

32

28 82

external node
internal node

4 of 27

BST: Sorting Property

● An in-order traversal of a BST will result in a sequence of
nodes whose keys are arranged in an ascending order .● Unless necessary, we may only show keys in BST nodes:

17 88

65

54

29

8

44

76

80

97

93

21

32

28 82

Justification:○ In-Order Traversal : Visit LST , then root , then RST .○ Search Property of BST : keys in LST /RST < / > root ’s key
5 of 27

Implementation: Generic BST Nodes

public class BSTNode<E> {
private int key; /* key */

private E value; /* value */

private BSTNode<E> parent; /* unique parent node */

private BSTNode<E> left; /* left child node */

private BSTNode<E> right; /* right child node */

public BSTNode() { . . . }
public BSTNode(int key, E value) { . . . }

public boolean isExternal() {
return this.getLeft() == null && this.getRight() == null;

}
public boolean isInternal() {
return !this.isExternal();

}
public int getKey() { . . . }
public void setKey(int key) { . . . }
public E getValue() { . . . }
public void setValue(E value) { . . . }
public BSTNode<E> getParent() { . . . }
public void setParent(BSTNode<E> parent) { . . . }
public BSTNode<E> getLeft() { . . . }
public void setLeft(BSTNode<E> left) { . . . }
public BSTNode<E> getRight() { . . . }
public void setRight(BSTNode<E> right) { . . . }

}

6 of 27

Implementation: BST Utilities – Traversal

import java.util.ArrayList;
public class BSTUtilities<E> {
public ArrayList<BSTNode<E>> inOrderTraversal(BSTNode<E> root) {
ArrayList<BSTNode<E>> result = null;
if(root.isInternal()) {
result = new ArrayList<>();

if(root.getLeft().isInternal) {
result.addAll(inOrderTraversal(root.getLeft()));

}

result.add(root);

if(root.getRight().isInternal) {
result.addAll(inOrderTraversal(root.getRight()));

}
}
return result;

}
}

7 of 27

Testing: Connected BST Nodes

Constructing a BST is similar to constructing a General Tree :
@Test

public void test_binary_search_trees_construction() {
BSTNode<String> n28 = new BSTNode<>(28, "alan");
BSTNode<String> n21 = new BSTNode<>(21, "mark");
BSTNode<String> n35 = new BSTNode<>(35, "tom");
BSTNode<String> extN1 = new BSTNode<>();
BSTNode<String> extN2 = new BSTNode<>();
BSTNode<String> extN3 = new BSTNode<>();
BSTNode<String> extN4 = new BSTNode<>();
n28.setLeft(n21); n21.setParent(n28);
n28.setRight(n35); n35.setParent(n28);
n21.setLeft(extN1); extN1.setParent(n21);
n21.setRight(extN2); extN2.setParent(n21);
n35.setLeft(extN3); extN3.setParent(n35);
n35.setRight(extN4); extN4.setParent(n35);
BSTUtilities<String> u = new BSTUtilities<>();
ArrayList<BSTNode<String>> inOrderList = u.inOrderTraversal(n28);
assertTrue(inOrderList.size() == 3);
assertEquals(21, inOrderList.get(0).getKey());
assertEquals("mark", inOrderList.get(0).getValue());
assertEquals(28, inOrderList.get(1).getKey());
assertEquals("alan", inOrderList.get(1).getValue());
assertEquals(35, inOrderList.get(2).getKey());
assertEquals("tom", inOrderList.get(2).getValue());

}

8 of 27

Implementing BST Operation: Searching

Given a BST rooted at node p, to locate a particular node

whose key matches k , we may view it as a decision tree.

public BSTNode<E> search(BSTNode<E> p, int k) {
BSTNode<E> result = null;
if(p.isExternal()) {
result = p; /* unsuccessful search */

}
else if(p.getKey() == k) {
result = p; /* successful search */

}
else if(k < p.getKey()) {
result = search(p.getLeft(), k); /* recur on LST */

}
else if(k > p.getKey()) {
result = search(p.getRight(), k); /* recur on RST */

}
return result;

}

9 of 27

Visualizing BST Operation: Searching (1)

A successful search for key 65:

28

21 29

82

88

65

54

44

32

17

8

93

97

76

80

The internal node storing key 65 is returned.
10 of 27

Visualizing BST Operation: Searching (2)

● An unsuccessful search for key 68:

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

The external, left child node of the internal node

storing key 76 is returned.
● Exercise : Provide keys for different external nodes to be returned.
11 of 27

Testing BST Operation: Searching

@Test

public void test_binary_search_trees_search() {
BSTNode<String> n28 = new BSTNode<>(28, "alan");
BSTNode<String> n21 = new BSTNode<>(21, "mark");
BSTNode<String> n35 = new BSTNode<>(35, "tom");
BSTNode<String> extN1 = new BSTNode<>();
BSTNode<String> extN2 = new BSTNode<>();
BSTNode<String> extN3 = new BSTNode<>();
BSTNode<String> extN4 = new BSTNode<>();
n28.setLeft(n21); n21.setParent(n28);
n28.setRight(n35); n35.setParent(n28);
n21.setLeft(extN1); extN1.setParent(n21);
n21.setRight(extN2); extN2.setParent(n21);
n35.setLeft(extN3); extN3.setParent(n35);
n35.setRight(extN4); extN4.setParent(n35);

BSTUtilities<String> u = new BSTUtilities<>();
/* search existing keys */

assertTrue(n28 == u.search(n28, 28));
assertTrue(n21 == u.search(n28, 21));
assertTrue(n35 == u.search(n28, 35));
/* search non-existing keys */

assertTrue(extN1 == u.search(n28, 17)); /* *17* < 21 */

assertTrue(extN2 == u.search(n28, 23)); /* 21 < *23* < 28 */

assertTrue(extN3 == u.search(n28, 33)); /* 28 < *33* < 35 */

assertTrue(extN4 == u.search(n28, 38)); /* 35 < *38* */

}

12 of 27

RT of BST Operation: Searching (1)

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

13 of 27

RT of BST Operation: Searching (2)

● Recursive calls of search are made on a path which○ Starts from the root○ Goes down one level at a time
RT of deciding from each node to go to LST or RST? [O(1)]○ Stops when the key is found or when a leaf is reached
Maximum number of nodes visited by the search? [h + 1]∴ RT of search on a BST is O(h)● Recall: Given a BT with n nodes, the height h is bounded as:

log(n + 1) − 1 ≤ h ≤ n − 1○ Best RT of a binary search is O(log(n)) [balanced BST]○ Worst RT of a binary search is O(n) [ill-balanced BST]● Binary search on non-linear vs. linear structures:
Search on a BST Binary Search on a Sorted Array

START Root of BST Middle of Array
PROGRESS LST or RST Left Half or Right Half of Array
BEST RT O(log(n))

O(log(n))WORST RT O(n)

14 of 27

Sketch of BST Operation: Insertion

To insert an entry (with key k & value v) into a BST rooted at node n:

○ Let node p be the return value from search(n, k).○ If p is an internal node⇒ Key k exists in the BST.⇒ Set p’s value to v .○ If p is an external node⇒ Key k deos not exist in the BST.⇒ Set p’s key and value to k and v .

Running time? [O(h)]

15 of 27

Visualizing BST Operation: Insertion (1)

Before inserting an entry with key 68 into the following BST:

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

16 of 27

Visualizing BST Operation: Insertion (2)

After inserting an entry with key 68 into the following BST:

21

8068

82

88

65

54

44

32

17

8

93

97

76

28

29

17 of 27

Exercise on BST Operation: Insertion

Exercise : In BSTUtilities class, implement and test the
void insert(BSTNode<E> p, int k, E v) method.

18 of 27

Sketch of BST Operation: Deletion

To delete an entry (with key k) from a BST rooted at node n:
Let node p be the return value from search(n, k).○ Case 1: Node p is external .

k is not an existing key⇒ Nothing to remove○ Case 2: Both of node p’s child nodes are external .
No “orphan” subtrees to be handled⇒ Remove p [Still BST?]○ Case 3: One of the node p’s children, say r , is internal .

● r ’s sibling is external ⇒ Replace node p by node r [Still BST?]○ Case 4: Both of node p’s children are internal .
● Let r be the right-most internal node p’s LST .⇒ r contains the largest key s.t. key(r) < key(p).

Exercise: Can r contain the smallest key s.t. key(r) > key(p)?● Overwrite node p’s entry by node r ’s entry. [Still BST?]● r being the right-most internal node may have:◇ Two external child nodes ⇒ Remove r as in Case 2.◇ An external, RC & an internal LC ⇒ Remove r as in Case 3.

Running time? [O(h)]
19 of 27

Visualizing BST Operation: Deletion (1.1)

(Case 3) Before deleting the node storing key 32:

21

p

76

82

88

65

54

44

32

17

8

93

97

8068

r

28

29

20 of 27

Visualizing BST Operation: Deletion (1.2)

(Case 3) After deleting the node storing key 32:

28

29

68

r

82

88

65

54

44

17

93

97

76

80

8

21

21 of 27

Visualizing BST Operation: Deletion (2.1)

(Case 4) Before deleting the node storing key 88:

p

21 29

8

82

88

65

54

44

93

97

76

8068

r

17

28

22 of 27

Visualizing BST Operation: Deletion (2.2)

(Case 4) After deleting the node storing key 88:

97
r

93

17

29

8068

76

658

p

82

28

21 54

44

23 of 27

Exercise on BST Operation: Deletion

Exercise : In BSTUtilities class, implement and test the
void delete(BSTNode<E> p, int k) method.

24 of 27

Index (1)

Learning Outcomes of this Lecture

Binary Search Tree: Recursive Definition

BST: Internal Nodes vs. External Nodes

BST: Sorting Property

Implementation: Generic BST Nodes

Implementation: BST Utilities – Traversal

Testing: Connected BST Nodes

Implementing BST Operation: Searching

Visualizing BST Operation: Searching (1)

Visualizing BST Operation: Searching (2)

Testing BST Operation: Searching

25 of 27

Index (2)

RT of BST Operation: Searching (1)

RT of BST Operation: Searching (2)

Sketch of BST Operation: Insertion

Visualizing BST Operation: Insertion (1)

Visualizing BST Operation: Insertion (2)

Exercise on BST Operation: Insertion

Sketch of BST Operation: Deletion

Visualizing BST Operation: Deletion (1.1)

Visualizing BST Operation: Deletion (1.2)

Visualizing BST Operation: Deletion (2.1)

Visualizing BST Operation: Deletion (2.2)

26 of 27

Index (3)

Exercise on BST Operation: Deletion

27 of 27

Priority Queues, Heaps, and Heap Sort

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● When the Worst-Case RT of a BST Search Occurs
● Height-Balance Property
● The Priority Queue (PQ) ADT

● Time Complexities of List-Based PQ
● The Heap Data Structure (Properties & Operations)
● Heap Sort
● Time Complexities of Heap-Based PQ
● Heap Construction Methods: Top-Down vs. Bottom-Up
● Array-Based Representation of a Heap

2 of 33

Balanced Binary Search Trees: Motivation

● After insertions into a BST, the worst-case RT of a search
occurs when the height h is at its maximum: O(n) :
○ e.g., Entries were inserted in an decreasing order of their keys

�100,75,68,60,50,1�
⇒ One-path, left-slanted BST○ e.g., Entries were inserted in an increasing order of their keys

�1,50,60,68,75,100�
⇒ One-path, right-slanted BST○ e.g., Last entry’s key is in-between keys of the previous two entries

�1,100,50,75,60,68�
⇒ One-path, side-alternating BST

● To avoid the worst-case RT (∵ a ill-balanced tree), we need to
take actions as soon as the tree becomes unbalanced .

3 of 33

Balanced Binary Search Trees: Definition
● Given a node p, the height of the subtree rooted at p is:

height(p) = �������
0 if p is external
1 +MAX ({ height(c) � parent (c) = p }) if p is internal

● A balanced BST T satisfies the height-balance property :
For every internal node n, heights of n’s child nodes differ ≤ 1.

2

AVL Trees

Binary Search Trees Binary Search Trees – better than “linear” dictionaries; however, the
worst–case performance of find, insert, remove
operations still linear (O(n))

HeightHeight--Balance PropertyBalance Property – for every internal node v of T, the heights
of the children of v can differ at most by 1;
if v has only one (internal node) child, its
height must be 1

44

5617

325 48

51

4

3

2 1

2

11 77

1

AVL Tree AVL Tree – any binary search tree T that satisfies the height-balance
property is said to be an AVL Tree

If an AVL tree has n nodes,
what is the cost of

find, insert, remove ??

Q: Is the above tree a balanced BST ? ✓
Q: Will the tree remain balanced after inserting 55? ×
Q: Will the tree remain balanced after inserting 63? ✓

4 of 33

What is a Priority Queue?
● A Priority Queue (PQ) stores a collection of entries.

(6, e1) (3, e2) (9, e3) (3, e4) (1, e5) (2, e6)

Entry with Highest Priority

insert

remove

○ Each entry is a pair: an
element and its key .

○ The key of each entry
denotes its element ’s
“priority”.

○ Keys in a
Priority Queue (PQ) are
not used for uniquely
identifying an entry.

● In a PQ, the next entry to remove has the “highest” priority.○ e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher
priority to replace any cancelled seats.○ e.g., A network router, faced with insufficient bandwidth, may only handle real-time
tasks (e.g., streaming) with highest priorities.

5 of 33

The Priority Queue (PQ) ADT
● min

[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]● size
[precondition: none]
[postcondition: return number of entries inserted to PQ]● isEmpty
[precondition: none]
[postcondition: return whether there is no entry in PQ]● insert(k, v)
[precondition: PQ is not full]
[postcondition: insert the input entry into PQ]● removeMin
[precondition: PQ is not empty]
[postcondition: remove and return a min entry in PQ]

6 of 33

Two List-Based Implementations of a PQ

Consider two strategies for implementing a PQ , where we maintain:
1. A list always sorted in a non-descending order [≈ INSERTIONSORT]
2. An unsorted list [≈ SELECTIONSORT]

PQ Method List Method
SORTED LIST UNSORTED LIST

size list.size O(1)
isEmpty list.isEmpty O(1)

min list.first O(1) search min O(n)
insert insert to “right” spot O(n) insert to front O(1)

removeMin list.removeFirst O(1) search min and remove O(n)

7 of 33

Heaps

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

2. Satisfies a relational property of stored keys

3. Satisfies a structural property of tree organization

8 of 33

Heap Property 1: Relational

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Keys in a heap satisfy the Heap-Order Property :○ Every node n (other than the root) is s.t. key(n) ≥ key(parent(n))⇒ Keys in a root-to-leaf path are sorted in a non-descending order.
e.g., Keys in entry path �(4,C), (5,A), (9,F), (14,E)� are sorted.⇒ The minimal key is stored in the root .

e.g., Root (4,C) stores the minimal key 4.○ Keys of nodes from different subtrees are not constrained at all.
e.g., For node (5,A), key of its LST ’s root (15) is not minimal for its RST .

9 of 33

Heap Property 2: Structural

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

A heap with height h satisfies the Complete BT Property :○ Nodes with depth ≤ h − 2 has two child nodes.○ Nodes with depth h - 1 may have zero, one, or two child nodes.○ Nodes with depth h are filled from left to right.
Q. When the # of nodes is n, what is h? �log2n�
Q. # of nodes from Level 0 through Level h − 1? 2h − 1
Q. # of nodes at Level h? n − (2h − 1)
Q. Minimum # of nodes of a complete BT? 2h

Q. Maximum # of nodes of a complete BT? 2h+1 − 1
10 of 33

Heaps: More Examples
● The smallest heap is just an empty binary tree.
● The smallest non-empty heap is a one-node heap.

e.g.,
4

● Two-node and Three-node Heaps:
4

6

4

6 8

4

8 6

● These are not two-node heaps:

6

4

4

6

relational property violated structural property violated
11 of 33

Heap Operations

● There are three main operations for a heap :
1. Extract the Entry with Minimal Key:

Return the stored entry of the root . [O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected. [O(h) or O(log n)]
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected. [O(h) or O(log n)]
● After performing each operation,

both relational and structural properties must be maintained.

12 of 33

Updating a Heap: Insertion
To insert a new entry (k ,v) into a heap with height h:
1. Insert (k , v), possibly temporarily breaking the relational property .

1.1 Create a new entry e = (k , v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

2.1 Let c = n.
2.2 While HOP is not restored and c is not the root:

2.2.1 Let p be c’s parent.
2.2.2 If key(p) ≤ key(c), then HOP is restored.

Else, swap nodes c and p. [“upwards” along n’s ancestor path]

Running Time?○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).○ Step 2.2 may be executed up to O(h) (or O(log n)) times.
[O(log n)]

13 of 33

Updating a Heap: Insertion Example (1.1)
(0) A heap with height 3. (1) Insert a new entry (2,T)

as the right-most node at Level 3.
Perform up-heap bubbling from here.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(2) HOP violated ∵ 2 < 20 ∴ Swap. (3) After swap, entry (2,T) prompted up.

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

14 of 33

Updating a Heap: Insertion Example (1.2)

(4) HOP violated ∵ 2 < 6 ∴ Swap. (5) After swap, entry (2,T) prompted up.

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(6) HOP violated ∵ 2 < 4 ∴ Swap. (7) Entry (2,T) becomes root ∴ Done.

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

15 of 33

Updating a Heap: Deletion
To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.

1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.

After steps 1.1 – 1.3, the structural property is maintained.
2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:

2.2.1 IF p has no right child, let c be p’s left child .
Else, let c be p’s child with a smaller key value.

2.2.2 If key(p) ≤ key(c), then HOP is restored.
Else, swap nodes p and c. [“downwards” along a root-to-leaf path]

Running Time?○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).○ Step 2.2 may be executed up to O(h) (or O(log n)) times.
[O(log n)]

16 of 33

Updating a Heap: Deletion Example (1.1)
(0) Start with a heap with height 3. (1) Replace root with (13,W) and delete

right-most node from Level 3.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)
(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(2) (13,W) becomes the root. Perform (3) Child with smaller key is (5,A).
down-heap bubbling from here. HOP violated ∵ 13 > 5 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)

17 of 33

Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13,W) (5) Child with smaller key is (9,F).
demoted down. HOP violated ∵ 13 > 9 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(6) After swap, entry (13,W) (7) Child with smaller key is (12,H).
demoted down. HOP violated ∵ 13 > 12 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

18 of 33

Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13,W) becomes an external node ∴ Done.

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

19 of 33

Heap-Based Implementation of a PQ

PQ Method Heap Operation RT
min root O(1)

insert insert then up-heap bubbling O(log n)
removeMin delete then down-heap bubbling O(log n)

20 of 33

Top-Down Heap Construction:
List of Entries is Not Known in Advance

Problem: Build a heap out of N entires, supplied one at a time.
● Initialize an empty heap h. [O(1)]
● As each new entry e = (k ,v) is supplied, insert e into h.○ Each insertion triggers an up-heap bubbling step,

which takes O(log n) time. [n = 0,1,2, . . . ,N - 1]○ There are N insertions.

∴ Running time is O(N ⋅ log N)

21 of 33

Bottom-Up Heap Construction:
List of Entries is Known in Advance
Problem: Build a heap out of N entires, supplied all at once.● Assume: The resulting heap will be completely filled at all levels.
⇒ N = 2h+1 − 1 for some height h ≥ 1 [h = (log (N + 1)) − 1]● Perform the following steps called Bottom-Up Heap Construction :

Step 1: Treat the first N + 1
21 list entries as heap roots.

∴ N + 1
21 heaps with height 0 and size 21 − 1 constructed.

Step 2: Treat the next N + 1
22 list entries as heap roots.◇ Each root sets two heaps from Step 1 as its LST and RST .◇ Perform down-heap bubbling to restore HOP if necessary.

∴ N + 1
22 heaps, each with height 1 and size 22 − 1, constructed.

. . .

Step h + 1: Treat next N + 1
2h+1 = (2h+1−1)+1

2h+1 = 1 list entry as heap root.◇ Each root sets two heaps from Step h as its LST and RST .◇ Perform down-heap bubbling to restore HOP if necessary.
∴ N + 1

2h+1 = 1 heap, each with height h and size 2h+1 − 1, constructed.
22 of 33

Bottom-Up Heap Construction: Example (1.1)

● Build a heap from the following list of 15 keys:

�16,15,4,12,6,7,23,20,25,9,11,17,5,8,14�
● The resulting heap has:○ Size N is 15○ Height h is (log(15 + 1)) − 1 = 3
● According to the bottom-up heap construction technique,

we will need to perform h + 1 = 4 steps, utilizing 4 sublists:

�16,15,4,12,6,7,23,20��
15+1

21 = 8

, 25,9,11,17��
15+1

22 = 4

, 5,8���
15+1

23 = 2

, 14���
15+1

24 = 1

�

23 of 33

Bottom-Up Heap Construction: Example (1.2)
We know in advance to build a heap (Step 1) Treat first 15+1

21 entries as roots.
with height 3 and size 23+1 − 1 = 15 ∴ 8 one-node heaps.

415 12 6 7 23 2016

(Step 2) Treat next 15+1
22 entries as roots. (Step 2 cont.) Down-heap bubbling.

Set LST and RST of each root. ∴ 4 three-node heaps.

416 15

9

12 6 7

11

23

17

20

25

2016 25 9

4

12 11 7

6

23

1715

24 of 33

Bottom-Up Heap Construction: Example (1.3)
(Step 3) Treat next 15+1

23 entries as roots. (Step 3 cont.) Down-heap bubbling.
Set LST and RST of each root. ∴ 2 three-node heaps.

25 12 11 23 20

1715

16

8

4

9

5

6

7 25 12 11 23 20

1715

16 8

5

9

4 6

7

(Step 4) Treat next 15+1
24 entry as roots. (Step 4 cont.) Down-heap bubbling.

Set LST and RST of each root. ∴ 1 fifteen-node heap.

25 12 11 8 23 20

17715

6

16

5

14

4

9 25 12 11 8 23 20

17715

6

16 14

4

5

9

25 of 33

RT of Bottom-Up Heap Construction

● Intuitively, the majority of the intermediate roots from which we perform
down-heap bubbling are of very small height values:○ The first n+1

2 1-node heaps with height 0 require no down-heap bubbling.
[About 50% of the list entries processed]○ Next n+1

4 3-node heaps with height 1 require down-heap bubbling.
[Another 25% of the list entries processed]○ Next n+1

8 7 -node heaps with height 2 require down-heap bubbling.
[Another 12.5% of the list entries processed]

. . .

○ Next two N−1
2 -node heaps with height (h - 1) require down-heap

○ Final one N-node heaps with height h requires down-heap bubbling.

● Running Time of the Bottom-Up Heap Construction takes only O(n) .

26 of 33

The Heap Sort Algorithm
Sorting Problem:

Given a list of n numbers �a1,a2, . . . , an�:
Precondition: NONE

Postcondition: A permutation of the input list �a′1, a′2, . . . , a′n� sorted in a
non-descending order (i.e., a′1 ≤ a′2 ≤. . .≤ a′n)

The Heap Sort algorithm consists of two phases:

1. Construct a heap of size N out of the input array.
● Approach 1: Top-Down “Continuous-Insertions” [O(N ⋅ log N)]● Approach 2: Bottom-Up Heap Construction [O(N)]

2. Delete N entries from the heap.
● Each deletion takes O(log N) time.● 1st deletion extracts the minimum, 2nd deletion the 2nd minimum, . . .⇒ Extracted minimums from N deletions form a sorted sequence.

∴ Running time of the Heap Sort algorithm is O(N ⋅ log N) .
27 of 33

The Heap Sort Algorithm: Exercise

Sort the following array of integers

�16,15,4,12,6,7,23,20,25,9,11,17,5,8,14�
into a non-descending order using the Heap Sort Algorithm .
Demonstrate:

1. Both top-down and bottom-up heap constructions in Phase 1
2. Extractions of minimums in Phase 2

28 of 33

Array-Based Representation of a CBT (1)

(12,H)

(4,C)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(14,E)

7

0

1 2

3 4 5 6

8 9 10 11 12

index(x) =
�����������

0 if x is the root

2 ⋅ index(parent(x)) + 1 if x is a left child

2 ⋅ index(parent(x)) + 2 if x is a right child

0 1 2 3 4 5 1211109876

(5,A) (13,W)(11,S)(12,H)(14,E)(25,J)(16,X)(20,B)(7,Q)(9,F)(15,K)(6,Z)(4,C)

29 of 33

Array-Based Representation of a CBT (2)

(12,H)

(4,C)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(14,E)

7

0

1 2

3 4 5 6

8 9 10 11 12

0 1 2 3 4 5 1211109876

(5,A) (13,W)(11,S)(12,H)(14,E)(25,J)(16,X)(20,B)(7,Q)(9,F)(15,K)(6,Z)(4,C)

● Q1: Where are nodes at Levels 0 .. h − 1 stored in the array?
Indices 0 .. (2h − 2) ≡ 0 .. (2�log2N� − 2) [e.g., Indices 0 .. 23 − 2]● Q2: Where are nodes at Level h stored in the array?
Indices 2h − 1 .. (N − 1) ≡ 2�log2N� − 1 .. (N − 1) [e.g., Indices 7 .. 12]● Q3: How do we determine if a non-root node x is a left or right child?
IF index(x) % 2 == 1 THEN left ELSE right● Q4: Given a non-root node x , how do we determine the index of x ’s parent?
IF index(x) % 2 == 1 THEN index(x)−1

2 ELSE index(x)−2
2

30 of 33

Index (1)

Learning Outcomes of this Lecture

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

What is a Priority Queue?

The Priority Queue (PQ) ADT

Two List-Based Implementations of a PQ

Heaps

Heap Property 1: Relational

Heap Property 2: Structural

Heaps: More Examples

Heap Operations
31 of 33

Index (2)
Updating a Heap: Insertion

Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ
Top-Down Heap Construction:
List of Entries is Not Known in Advance
Bottom-Up Heap Construction:
List of Entries is Known in Advance

32 of 33

Index (3)
Bottom-up Heap Construction: Example (1.1)

Bottom-up Heap Construction: Example (1.2)

Bottom-up Heap Construction: Example (1.3)

RT of Bottom-up Heap Construction

The Heap Sort Algorithm

The Heap Sort Algorithm: Exercise

Array-Based Representation of a CBT (1)

Array-Based Representation of a CBT (2)

33 of 33

Wrap-Up

EECS2011 X:

Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You Learned (1)

● Java Programming○ JUnit○ Recursion○ Generics

2 of 7

What You Learned (2)

● Data Structures○ Arrays○ (Circular Arrays, Dynamic Arrays, Amortized RT Analysis)○ Singly-Linked Lists and Doubly-Linked Lists○ Stacks, Queues○ Trees, Binary Trees, Binary Search Trees, Balanced BSTs○ Priority Queues and Heaps

● Algorithms○ Asymptotic Analysis○ Binary Search○ Insertion Sort, Selection Sort, Merge Sort, Quick Sort, Heap Sort○ Pre-order, in-order, and post-order traversals

3 of 7

Beyond this course. . . (1)

● Introduction to Algorithms (4th

Ed.) by Cormen, etc.

● DS by DS, Algo. by Algo.:

○ Understand math analysis

○ Read pseudo code○ Implement in Java○ Test in JUnit

4 of 7

Beyond this course. . . (2)

● Design Patterns: Elements of

Reusable Object-Oriented

Software by Gamma, etc.

● Pattern by Pattern:

○ Understand the problem

○ Read the solution (not in Java)○ Implement in Java○ Test in JUnit

5 of 7

Beyond this course. . . (3)

A tutorial on building a language compiler using Java (from

EECS4302-F22):

Using the ANTLR4 Parser Generator to Develop a Compiler

○ Trees○ Recursion○ Visitor Design Pattern

6 of 7

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS4302_F22
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq

Wish You All the Best

● What you have learned will be assumed in the third year.

● Some topics we did not cover:○ Hash table [See Weeks 10 – 11 of EECS2030-F19]○ Graphs [EECS3101]

● Logic is your friend: Learn/Review EECS1019/EECS1090.

● Do not abandon Java during the break!!

● Feel free to get in touch and let me know how you’re doing :D

7 of 7

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F19

	01-Recursion-Part-1
	Background Study: Basic Recursion
	Learning Outcomes of this Lecture
	Recursion: Principle
	Tracing Method Calls via a Stack
	Tracing Method Calls via a Stack
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)

	02-Asymptotic-Analysis
	What You're Assumed to Know
	Learning Outcomes
	Algorithm and Data Structure
	Measuring ``Goodness'' of an Algorithm
	Measuring Efficiency of an Algorithm
	Measure Running Time via Experiments
	Example Experiment
	Example Experiment: Detailed Statistics
	Example Experiment: Visualization
	Experimental Analysis: Challenges
	Moving Beyond Experimental Analysis
	Counting Primitive Operations
	Example: Counting Primitive Operations (1)
	Example: Counting Primitive Operations (2)
	From Absolute RT to Relative RT
	Example: Approx. # of Primitive Operations
	Approximating Running Time as a Function of Input Size
	Focusing on the Worst-Case Input
	What is Asymptotic Analysis?
	Three Notions of Asymptotic Bounds
	Asymptotic Upper Bound: Definition
	Asymptotic Upper Bound: Visualization
	Asymptotic Upper Bound: Example (1)
	Asymptotic Upper Bound: Example (2)
	Asymptotic Upper Bound: Proposition (1)
	Asymptotic Upper Bound: Proposition (2)
	Asymptotic Upper Bound: More Examples
	Using Asymptotic Upper Bound Accurately
	Classes of Functions
	Rates of Growth: Comparison
	Upper Bound of Algorithm: Example (1)
	Upper Bound of Algorithm: Example (2)
	Upper Bound of Algorithm: Example (3)
	Upper Bound of Algorithm: Example (4)
	Upper Bound of Algorithm: Example (5)
	Beyond this lecture …

	03-Arrays-vs-Linked-Lists
	Learning Outcomes of this Lecture
	Basic Data Structure: Arrays
	Array Case Study: Comparing Two Sorting Strategies
	Sorting: Strategy 1 – Selection Sort
	Sorting: Strategy 2 – Insertion Sort
	Sorting: Alternative Implementations?
	Tracing Insertion & Selection Sorts in Java
	Comparing Insertion & Selection Sorts
	Basic Data Structure: Singly-Linked Lists
	Singly-Linked List: How to Keep Track?
	Singly-Linked List: Java Implementation
	Singly-Linked List: Constructing a Chain of Nodes
	Singly-Linked List: Setting a List's Head
	Singly-Linked List: Counting # of Nodes (1)
	Singly-Linked List: Counting # of Nodes (2)
	Singly-Linked List: Finding the Tail (1)
	Singly-Linked List: Finding the Tail (2)
	Singly-Linked List: Can We Do Better?
	Singly-Linked List: Inserting to the Front (1)
	Singly-Linked List: Inserting to the Front (2)
	Exercise
	Exercise
	Singly-Linked List: Accessing the Middle (1)
	Singly-Linked List: Accessing the Middle (2)
	Singly-Linked List: Accessing the Middle (3)
	Singly-Linked List: Inserting to the Middle (1)
	Singly-Linked List: Inserting to the Middle (2)
	Singly-Linked List: Removing from the End
	Singly-Linked List: Exercises
	Exercise
	Arrays vs. Singly-Linked Lists
	Background Study: Generics in Java
	Generic Classes: Singly-Linked List (1)
	Generic Classes: Singly-Linked List (2)
	Generic Classes: Singly-Linked List (3)
	Singly-Linked Lists: Handling Edge Cases
	Basic Data Structure: Doubly-Linked Lists (1)
	Basic Data Structure: Doubly-Linked Lists (2)
	Generic Doubly-Linked Lists in Java (1)
	Generic Doubly-Linked Lists in Java (2)
	Header, Trailer, and prev Reference
	Doubly-Linked List: Insertions
	Doubly-Linked List: Inserting to Front/End
	Doubly-Linked List: Inserting to Middle
	Doubly-Linked List: Removals
	Doubly-Linked List: Removing from Front/End
	Doubly-Linked List: Removing from Middle
	Reference Node: To be Given or Not to be Given
	Arrays vs. (Singly- and Doubly-Linked) Lists
	Beyond this lecture …

	Interface
	Learning Outcomes
	Interface (1.1)
	Interface (1.2)
	Interface (2)
	Interface (3)
	Interface (4)
	Interface (5)
	Interface (6)
	Abstract Classes vs. Interfaces: When to Use Which?
	Beyond this lecture…

	04-ADTs-Stack-ADT-vs-Queue-ADT
	Learning Outcomes of this Lecture
	Abstract Data Types (ADTs)
	Java API Approximates ADTs (1)
	Java API Approximates ADTs (2)
	Building ADTs for Reusability
	What is a Stack?
	The Stack ADT
	Stack: Illustration
	Generic Stack: Interface
	Generic Stack: Architecture
	Implementing Stack: Array (1)
	Implementing Stack: Array (2)
	Implementing Stack: Singly-Linked List (1)
	Implementing Stack: Singly-Linked List (2)
	Generic Stack: Testing Implementations
	Polymorphism & Dynamic Binding
	Stack Application: Reversing an Array
	Stack Application: Matching Delimiters (1)
	Stack Application: Matching Delimiters (2)
	Stack Application: Postfix Notations (1)
	Stack Application: Postfix Notations (2)
	What is a Queue?
	The Queue ADT
	Queue: Illustration
	Generic Queue: Interface
	Generic Queue: Architecture
	Implementing Queue ADT: Array (1)
	Implementing Queue ADT: Array (2)
	Implementing Queue: Singly-Linked List (1)
	Implementing Queue: Singly-Linked List (2)
	Generic Queue: Testing Implementations
	Polymorphism & Dynamic Binding
	Exercise: Implementing a Queue using Two Stacks
	Optional Materials
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	Modularity (1): Childhood Activity
	Modularity (2): Daily Construction
	Modularity (3): Computer Architecture
	Modularity (4): System Development
	Modularity (5): Software Design
	Design Principle: Modularity
	Implementing Queue ADT: Circular Array (1)
	Implementing Queue ADT: Circular Array (2)
	Limitations of Queue
	The Double-Ended Queue ADT
	Array Implementations: Stack and Queue
	Dynamic Array: Constant Increments
	Dynamic Array: Doubling
	Avg. RT: Const. Increment vs. Doubling
	Beyond this lecture …

	05-Recursion-Part-2
	Background Study: Basic Recursion
	Extra Challenging Recursion Problems
	Learning Outcomes of this Lecture
	Recursion: Binary Search (1)
	Recursion: Binary Search (2)
	Running Time: Binary Search (1)
	Running Time: Binary Search (2)
	Recursion: Merge Sort
	Recursion: Merge Sort in Java (1)
	Recursion: Merge Sort in Java (2)
	Recursion: Merge Sort Example (1)
	Recursion: Merge Sort Example (2)
	Recursion: Merge Sort Example (3)
	Recursion: Merge Sort Example (4)
	Recursion: Merge Sort Example (5)
	Recursion: Merge Sort Running Time (1)
	Recursion: Merge Sort Running Time (2)
	Recursion: Merge Sort Running Time (3)
	Recursion: Merge Sort Running Time (4)
	Recursion: Quick Sort
	Recursion: Quick Sort in Java (1)
	Recursion: Quick Sort in Java (2)
	Recursion: Quick Sort Example (1)
	Recursion: Quick Sort Example (2)
	Recursion: Quick Sort Example (3)
	Recursion: Quick Sort Example (4)
	Recursion: Quick Sort Example (5)
	Recursion: Quick Sort Example (6)
	Recursion: Quick Sort Running Time (1)
	Recursion: Quick Sort Running Time (2)
	Recursion: Quick Sort Running Time (3)
	Beyond this lecture …

	06a-Tree-ADT
	Learning Outcomes of this Lecture
	General Trees
	General Trees: Terminology (1)
	General Trees: Terminology (2)
	General Trees: Terminology (3)
	General Trees: Terminology (4)
	General Trees: Terminology (5)
	General Trees: Example Node Depths
	General Tree: Definition
	General Tree: Important Characteristics
	General Trees: Ordered Trees
	General Trees: Unordered Trees
	Implementation: Generic Tree Nodes (1)
	Implementation: Generic Tree Nodes (2)
	Testing: Connected Tree Nodes
	Problem: Computing a Node's Depth
	Testing: Computing a Node's Depth
	Unfolding: Computing a Node's Depth
	Problem: Computing a Tree's Height
	Testing: Computing a Tree's Height
	Unfolding: Computing a Tree's Height
	Exercises on General Trees
	Binary Trees (BTs): Definitions
	BT Terminology: LST vs. RST
	BT Terminology: Depths, Levels
	Background: Sum of Geometric Sequence
	BT Properties: Max # Nodes at Levels
	BT Terminology: Complete BTs
	BT Terminology: Full BTs
	BT Properties: Bounding # of Nodes
	BT Properties: Bounding Height of Tree
	BT Properties: Bounding # of Ext. Nodes
	BT Properties: Bounding # of Int. Nodes
	BT Terminology: Proper BT
	BT Properties: #s of Ext. and Int. Nodes
	Binary Trees: Application (1)
	Binary Trees: Application (2)
	Tree Traversal Algorithms: Definition
	Tree Traversal Algorithms: Common Types
	Tree Traversal Algorithms: Preorder
	Tree Traversal Algorithms: Postorder
	Tree Traversal Algorithms: Inorder

	06b-Search-Trees
	Learning Outcomes of this Lecture
	Binary Search Tree: Recursive Definition
	BST: Internal Nodes vs. External Nodes
	BST: Sorting Property
	Implementation: Generic BST Nodes
	Implementation: BST Utilities – Traversal
	Testing: Connected BST Nodes
	Implementing BST Operation: Searching
	Visualizing BST Operation: Searching (1)
	Visualizing BST Operation: Searching (2)
	Testing BST Operation: Searching
	RT of BST Operation: Searching (1)
	RT of BST Operation: Searching (2)
	Sketch of BST Operation: Insertion
	Visualizing BST Operation: Insertion (1)
	Visualizing BST Operation: Insertion (2)
	Exercise on BST Operation: Insertion
	Sketch of BST Operation: Deletion
	Visualizing BST Operation: Deletion (1.1)
	Visualizing BST Operation: Deletion (1.2)
	Visualizing BST Operation: Deletion (2.1)
	Visualizing BST Operation: Deletion (2.2)
	Exercise on BST Operation: Deletion

	06c-Balanced-BST-Priority-Queue-ADT
	Learning Outcomes of this Lecture
	Balanced Binary Search Trees: Motivation
	Balanced Binary Search Trees: Definition
	What is a Priority Queue?
	The Priority Queue (PQ) ADT
	Two List-Based Implementations of a PQ
	Heaps
	Heap Property 1: Relational
	Heap Property 2: Structural
	Heaps: More Examples
	Heap Operations
	Updating a Heap: Insertion
	Updating a Heap: Insertion Example (1.1)
	Updating a Heap: Insertion Example (1.2)
	Updating a Heap: Deletion
	Updating a Heap: Deletion Example (1.1)
	Updating a Heap: Deletion Example (1.2)
	Updating a Heap: Deletion Example (1.3)
	Heap-Based Implementation of a PQ
	Top-Down Heap Construction: List of Entries is Not Known in Advance
	Bottom-Up Heap Construction: List of Entries is Known in Advance
	Bottom-up Heap Construction: Example (1.1)
	Bottom-up Heap Construction: Example (1.2)
	Bottom-up Heap Construction: Example (1.3)
	RT of Bottom-up Heap Construction
	The Heap Sort Algorithm
	The Heap Sort Algorithm: Exercise
	Array-Based Representation of a CBT (1)
	Array-Based Representation of a CBT (2)

	07-Wrapup
	What You Learned (1)
	What You Learned (2)
	Beyond this course… (1)
	Beyond this course… (2)
	Beyond this course… (3)
	Wish You All the Best

