
Priority Queues, Heaps, and Heap Sort

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● When the Worst-Case RT of a BST Search Occurs
● Height-Balance Property
● The Priority Queue (PQ) ADT

● Time Complexities of List-Based PQ
● The Heap Data Structure (Properties & Operations)
● Heap Sort
● Time Complexities of Heap-Based PQ
● Heap Construction Methods: Top-Down vs. Bottom-Up
● Array-Based Representation of a Heap

2 of 33

Balanced Binary Search Trees: Motivation

● After insertions into a BST, the worst-case RT of a search
occurs when the height h is at its maximum: O(n) :
○ e.g., Entries were inserted in an decreasing order of their keys

⟨100,75,68,60,50,1⟩
⇒ One-path, left-slanted BST

○ e.g., Entries were inserted in an increasing order of their keys
⟨1,50,60,68,75,100⟩

⇒ One-path, right-slanted BST
○ e.g., Last entry’s key is in-between keys of the previous two entries

⟨1,100,50,75,60,68⟩
⇒ One-path, side-alternating BST

● To avoid the worst-case RT (∵ a ill-balanced tree), we need to
take actions as soon as the tree becomes unbalanced .

3 of 33

Balanced Binary Search Trees: Definition
● Given a node p, the height of the subtree rooted at p is:

height(p) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if p is external
1 +MAX ({ height(c) ∣ parent (c) = p }) if p is internal

● A balanced BST T satisfies the height-balance property :
For every internal node n, heights of n’s child nodes differ ≤ 1.

2

AVL Trees

Binary Search Trees Binary Search Trees – better than “linear” dictionaries; however, the
worst–case performance of find, insert, remove
operations still linear (O(n))

HeightHeight--Balance PropertyBalance Property – for every internal node v of T, the heights
of the children of v can differ at most by 1;
if v has only one (internal node) child, its
height must be 1

44

5617

325 48

51

4

3

2 1

2

11 77

1

AVL Tree AVL Tree – any binary search tree T that satisfies the height-balance
property is said to be an AVL Tree

If an AVL tree has n nodes,
what is the cost of

find, insert, remove ??

Q: Is the above tree a balanced BST ? ✓

Q: Will the tree remain balanced after inserting 55? ×

Q: Will the tree remain balanced after inserting 63? ✓

4 of 33

What is a Priority Queue?
● A Priority Queue (PQ) stores a collection of entries.

(6, e1) (3, e2) (9, e3) (3, e4) (1, e5) (2, e6)

Entry with Highest Priority

insert

remove

○ Each entry is a pair: an
element and its key .

○ The key of each entry
denotes its element ’s
“priority”.

○ Keys in a
Priority Queue (PQ) are
not used for uniquely
identifying an entry.

● In a PQ, the next entry to remove has the “highest” priority.
○ e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher

priority to replace any cancelled seats.
○ e.g., A network router, faced with insufficient bandwidth, may only handle real-time

tasks (e.g., streaming) with highest priorities.
5 of 33

The Priority Queue (PQ) ADT
● min

[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]

● size
[precondition: none]
[postcondition: return number of entries inserted to PQ]

● isEmpty
[precondition: none]
[postcondition: return whether there is no entry in PQ]

● insert(k, v)
[precondition: PQ is not full]
[postcondition: insert the input entry into PQ]

● removeMin
[precondition: PQ is not empty]
[postcondition: remove and return a min entry in PQ]

6 of 33

Two List-Based Implementations of a PQ

Consider two strategies for implementing a PQ , where we maintain:
1. A list always sorted in a non-descending order [≈ INSERTIONSORT]
2. An unsorted list [≈ SELECTIONSORT]

PQ Method List Method
SORTED LIST UNSORTED LIST

size list.size O(1)
isEmpty list.isEmpty O(1)

min list.first O(1) search min O(n)
insert insert to “right” spot O(n) insert to front O(1)

removeMin list.removeFirst O(1) search min and remove O(n)

7 of 33

Heaps

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

2. Satisfies a relational property of stored keys

3. Satisfies a structural property of tree organization

8 of 33

Heap Property 1: Relational

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Keys in a heap satisfy the Heap-Order Property :
○ Every node n (other than the root) is s.t. key(n) ≥ key(parent(n))
⇒ Keys in a root-to-leaf path are sorted in a non-descending order.

e.g., Keys in entry path ⟨(4,C), (5,A), (9,F), (14,E)⟩ are sorted.
⇒ The minimal key is stored in the root .

e.g., Root (4,C) stores the minimal key 4.
○ Keys of nodes from different subtrees are not constrained at all.

e.g., For node (5,A), key of its LST ’s root (15) is not minimal for its RST .
9 of 33

Heap Property 2: Structural

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

A heap with height h satisfies the Complete BT Property :
○ Nodes with depth ≤ h − 2 has two child nodes.
○ Nodes with depth h - 1 may have zero, one, or two child nodes.
○ Nodes with depth h are filled from left to right.

Q. When the # of nodes is n, what is h? ⌊log2n⌋
Q. # of nodes from Level 0 through Level h − 1? 2h − 1
Q. # of nodes at Level h? n − (2h − 1)
Q. Minimum # of nodes of a complete BT? 2h

Q. Maximum # of nodes of a complete BT? 2h+1 − 1
10 of 33

Heaps: More Examples
● The smallest heap is just an empty binary tree.
● The smallest non-empty heap is a one-node heap.

e.g.,

4

● Two-node and Three-node Heaps:
4

6

4

6 8

4

8 6

● These are not two-node heaps:

6

4

4

6

relational property violated structural property violated
11 of 33

Heap Operations

● There are three main operations for a heap :
1. Extract the Entry with Minimal Key:

Return the stored entry of the root . [O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected. [O(h) or O(log n)]
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected. [O(h) or O(log n)]

● After performing each operation,
both relational and structural properties must be maintained.

12 of 33

Updating a Heap: Insertion
To insert a new entry (k ,v) into a heap with height h:
1. Insert (k , v), possibly temporarily breaking the relational property .

1.1 Create a new entry e = (k , v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

2.1 Let c = n.
2.2 While HOP is not restored and c is not the root:

2.2.1 Let p be c’s parent.
2.2.2 If key(p) ≤ key(c), then HOP is restored.

Else, swap nodes c and p. [“upwards” along n’s ancestor path]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(log n)]
13 of 33

Updating a Heap: Insertion Example (1.1)
(0) A heap with height 3. (1) Insert a new entry (2,T)

as the right-most node at Level 3.
Perform up-heap bubbling from here.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(2) HOP violated ∵ 2 < 20 ∴ Swap. (3) After swap, entry (2,T) prompted up.

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

14 of 33

Updating a Heap: Insertion Example (1.2)

(4) HOP violated ∵ 2 < 6 ∴ Swap. (5) After swap, entry (2,T) prompted up.

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(6) HOP violated ∵ 2 < 4 ∴ Swap. (7) Entry (2,T) becomes root ∴ Done.

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

15 of 33

Updating a Heap: Deletion
To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.

1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.

After steps 1.1 – 1.3, the structural property is maintained.

2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:

2.2.1 IF p has no right child, let c be p’s left child .
Else, let c be p’s child with a smaller key value.

2.2.2 If key(p) ≤ key(c), then HOP is restored.
Else, swap nodes p and c. [“downwards” along a root-to-leaf path]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(log n)]
16 of 33

Updating a Heap: Deletion Example (1.1)
(0) Start with a heap with height 3. (1) Replace root with (13,W) and delete

right-most node from Level 3.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)
(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(2) (13,W) becomes the root. Perform (3) Child with smaller key is (5,A).
down-heap bubbling from here. HOP violated ∵ 13 > 5 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)

17 of 33

Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13,W) (5) Child with smaller key is (9,F).
demoted down. HOP violated ∵ 13 > 9 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(6) After swap, entry (13,W) (7) Child with smaller key is (12,H).
demoted down. HOP violated ∵ 13 > 12 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

18 of 33

Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13,W) becomes an external node ∴ Done.

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

19 of 33

Heap-Based Implementation of a PQ

PQ Method Heap Operation RT
min root O(1)

insert insert then up-heap bubbling O(log n)
removeMin delete then down-heap bubbling O(log n)

20 of 33

Top-Down Heap Construction:
List of Entries is Not Known in Advance

Problem: Build a heap out of N entires, supplied one at a time.
● Initialize an empty heap h. [O(1)]
● As each new entry e = (k ,v) is supplied, insert e into h.

○ Each insertion triggers an up-heap bubbling step,
which takes O(log n) time. [n = 0,1,2, . . . ,N - 1]

○ There are N insertions.

∴ Running time is O(N ⋅ log N)

21 of 33

Bottom-Up Heap Construction:
List of Entries is Known in Advance
Problem: Build a heap out of N entires, supplied all at once.
● Assume: The resulting heap will be completely filled at all levels.
⇒ N = 2h+1 − 1 for some height h ≥ 1 [h = (log (N + 1)) − 1]

● Perform the following steps called Bottom-Up Heap Construction :

Step 1: Treat the first N + 1
21 list entries as heap roots.

∴ N + 1
21 heaps with height 0 and size 21 − 1 constructed.

Step 2: Treat the next N + 1
22 list entries as heap roots.

◇ Each root sets two heaps from Step 1 as its LST and RST .
◇ Perform down-heap bubbling to restore HOP if necessary.
∴ N + 1

22 heaps, each with height 1 and size 22 − 1, constructed.

. . .

Step h + 1: Treat next N + 1
2h+1 =

(2h+1−1)+1
2h+1 = 1 list entry as heap root.

◇ Each root sets two heaps from Step h as its LST and RST .
◇ Perform down-heap bubbling to restore HOP if necessary.
∴ N + 1

2h+1 = 1 heap, each with height h and size 2h+1 − 1, constructed.
22 of 33

Bottom-Up Heap Construction: Example (1.1)

● Build a heap from the following list of 15 keys:

⟨16,15,4,12,6,7,23,20,25,9,11,17,5,8,14⟩

● The resulting heap has:
○ Size N is 15
○ Height h is (log(15 + 1)) − 1 = 3

● According to the bottom-up heap construction technique,
we will need to perform h + 1 = 4 steps, utilizing 4 sublists:

⟨16,15,4,12,6,7,23,20
´¹¹¸¹¹¹¶

15+1
21 = 8

, 25,9,11,17
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

15+1
22 = 4

, 5,8
´¸¶

15+1
23 = 2

, 14
´¸¶

15+1
24 = 1

⟩

23 of 33

Bottom-Up Heap Construction: Example (1.2)
We know in advance to build a heap (Step 1) Treat first 15+1

21 entries as roots.
with height 3 and size 23+1

− 1 = 15 ∴ 8 one-node heaps.

415 12 6 7 23 2016

(Step 2) Treat next 15+1
22 entries as roots. (Step 2 cont.) Down-heap bubbling.

Set LST and RST of each root. ∴ 4 three-node heaps.

416 15

9

12 6 7

11

23

17

20

25

2016 25 9

4

12 11 7

6

23

1715

24 of 33

Bottom-Up Heap Construction: Example (1.3)
(Step 3) Treat next 15+1

23 entries as roots. (Step 3 cont.) Down-heap bubbling.
Set LST and RST of each root. ∴ 2 three-node heaps.

25 12 11 23 20

1715

16

8

4

9

5

6

7 25 12 11 23 20

1715

16 8

5

9

4 6

7

(Step 4) Treat next 15+1
24 entry as roots. (Step 4 cont.) Down-heap bubbling.

Set LST and RST of each root. ∴ 1 fifteen-node heap.

25 12 11 8 23 20

17715

6

16

5

14

4

9 25 12 11 8 23 20

17715

6

16 14

4

5

9

25 of 33

RT of Bottom-Up Heap Construction

● Intuitively, the majority of the intermediate roots from which we perform
down-heap bubbling are of very small height values:
○ The first n+1

2 1-node heaps with height 0 require no down-heap bubbling.
[About 50% of the list entries processed]

○ Next n+1
4 3-node heaps with height 1 require down-heap bubbling.

[Another 25% of the list entries processed]
○ Next n+1

8 7 -node heaps with height 2 require down-heap bubbling.
[Another 12.5% of the list entries processed]

. . .

○ Next two N−1
2 -node heaps with height (h - 1) require down-heap

○ Final one N-node heaps with height h requires down-heap bubbling.

● Running Time of the Bottom-Up Heap Construction takes only O(n) .

26 of 33

The Heap Sort Algorithm
Sorting Problem:

Given a list of n numbers ⟨a1,a2, . . . , an⟩:
Precondition: NONE

Postcondition: A permutation of the input list ⟨a′1, a′2, . . . , a′n⟩ sorted in a
non-descending order (i.e., a′1 ≤ a′2 ≤. . .≤ a′n)

The Heap Sort algorithm consists of two phases:

1. Construct a heap of size N out of the input array.
● Approach 1: Top-Down “Continuous-Insertions” [O(N ⋅ log N)]
● Approach 2: Bottom-Up Heap Construction [O(N)]

2. Delete N entries from the heap.
● Each deletion takes O(log N) time.
● 1st deletion extracts the minimum, 2nd deletion the 2nd minimum, . . .
⇒ Extracted minimums from N deletions form a sorted sequence.

∴ Running time of the Heap Sort algorithm is O(N ⋅ log N) .
27 of 33

The Heap Sort Algorithm: Exercise

Sort the following array of integers

⟨16,15,4,12,6,7,23,20,25,9,11,17,5,8,14⟩

into a non-descending order using the Heap Sort Algorithm .

Demonstrate:
1. Both top-down and bottom-up heap constructions in Phase 1
2. Extractions of minimums in Phase 2

28 of 33

Array-Based Representation of a CBT (1)

(12,H)

(4,C)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(14,E)

7

0

1 2

3 4 5 6

8 9 10 11 12

index(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if x is the root

2 ⋅ index(parent(x)) + 1 if x is a left child

2 ⋅ index(parent(x)) + 2 if x is a right child

0 1 2 3 4 5 1211109876

(5,A) (13,W)(11,S)(12,H)(14,E)(25,J)(16,X)(20,B)(7,Q)(9,F)(15,K)(6,Z)(4,C)

29 of 33

Array-Based Representation of a CBT (2)

(12,H)

(4,C)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(14,E)

7

0

1 2

3 4 5 6

8 9 10 11 12

0 1 2 3 4 5 1211109876

(5,A) (13,W)(11,S)(12,H)(14,E)(25,J)(16,X)(20,B)(7,Q)(9,F)(15,K)(6,Z)(4,C)

● Q1: Where are nodes at Levels 0 .. h − 1 stored in the array?
Indices 0 .. (2h − 2) ≡ 0 .. (2⌊log2N⌋ − 2) [e.g., Indices 0 .. 23 − 2]

● Q2: Where are nodes at Level h stored in the array?
Indices 2h − 1 .. (N − 1) ≡ 2⌊log2N⌋ − 1 .. (N − 1) [e.g., Indices 7 .. 12]

● Q3: How do we determine if a non-root node x is a left or right child?
IF index(x) % 2 == 1 THEN left ELSE right

● Q4: Given a non-root node x , how do we determine the index of x ’s parent?

IF index(x) % 2 == 1 THEN index(x)−1
2 ELSE index(x)−2

2
30 of 33

Index (1)

Learning Outcomes of this Lecture

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

What is a Priority Queue?

The Priority Queue (PQ) ADT

Two List-Based Implementations of a PQ

Heaps

Heap Property 1: Relational

Heap Property 2: Structural

Heaps: More Examples

Heap Operations
31 of 33

Index (2)
Updating a Heap: Insertion

Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ
Top-Down Heap Construction:
List of Entries is Not Known in Advance
Bottom-Up Heap Construction:
List of Entries is Known in Advance

32 of 33

Index (3)
Bottom-up Heap Construction: Example (1.1)

Bottom-up Heap Construction: Example (1.2)

Bottom-up Heap Construction: Example (1.3)

RT of Bottom-up Heap Construction

The Heap Sort Algorithm

The Heap Sort Algorithm: Exercise

Array-Based Representation of a CBT (1)

Array-Based Representation of a CBT (2)

33 of 33

	Learning Outcomes of this Lecture
	Balanced Binary Search Trees: Motivation
	Balanced Binary Search Trees: Definition
	What is a Priority Queue?
	The Priority Queue (PQ) ADT
	Two List-Based Implementations of a PQ
	Heaps
	Heap Property 1: Relational
	Heap Property 2: Structural
	Heaps: More Examples
	Heap Operations
	Updating a Heap: Insertion
	Updating a Heap: Insertion Example (1.1)
	Updating a Heap: Insertion Example (1.2)
	Updating a Heap: Deletion
	Updating a Heap: Deletion Example (1.1)
	Updating a Heap: Deletion Example (1.2)
	Updating a Heap: Deletion Example (1.3)
	Heap-Based Implementation of a PQ
	Top-Down Heap Construction: List of Entries is Not Known in Advance
	Bottom-Up Heap Construction: List of Entries is Known in Advance
	Bottom-up Heap Construction: Example (1.1)
	Bottom-up Heap Construction: Example (1.2)
	Bottom-up Heap Construction: Example (1.3)
	RT of Bottom-up Heap Construction
	The Heap Sort Algorithm
	The Heap Sort Algorithm: Exercise
	Array-Based Representation of a CBT (1)
	Array-Based Representation of a CBT (2)

