General Trees and Binary Trees

EECS2011 X: Fundamentals of Data Structures Winter 2023

CHEN-WEI WANG

Learning Outcomes of this Lecture

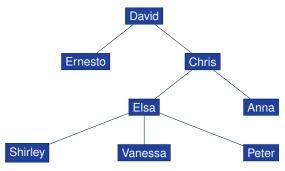
This module is designed to help you understand:

- Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
- Terminologies: General Trees vs. Binary Trees
- Implementation of a Generic Tree
- Mathematical Properties of Binary Trees
- Tree *Traversals*

General Trees

- A *linear* data structure is a sequence, where stored objects can be related via notions of "predecessor" and "successor".
 - e.g., arrays
 - e.g., Singly-Linked Lists (SLLs)
 - e.g., Doubly-Linked Lists (DLLs)
- The *Tree ADT* is a *non-linear* collection of nodes/positions.
 - Each node stores some data object.
 - Nodes in a tree are organized into levels: some nodes are "above" others, and some are "below" others.
 - Think of a tree forming a hierarchy among the stored nodes.
- Terminology of the *Tree ADT* borrows that of *family trees*:
 - o e.g., root
 - o e.g., parents, siblings, children
 - o e.g., ancestors, descendants

General Trees: Terminology (1)



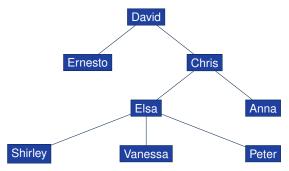
- top element of the tree
 e.g., root of the above family tree: David
- the node immediately above node n e.g., parent of Vanessa: Elsa
- all nodes <u>immediately below</u> node n
 e.g., children of Elsa: Shirley, Vanessa, and Peter
 e.g., children of Ernesto: Ø

[root of tree]

[parent of n]

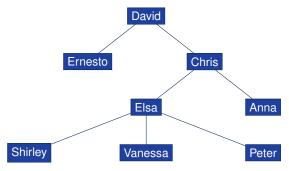
[children of n]

General Trees: Terminology (2)



- Union of n, n's parent, n's grand parent, ..., root [n's ancestors]
 e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
 e.g., ancestors of David: David
- Union of n, n's children, n's grand children, ... [n's descendants]
 e.g., descendants of Vanessa: Vanessa
 e.g., descendants of David: the entire family tree
- By the above definitions, a node is both its ancestor and descendant.

General Trees: Terminology (3)



- all nodes with the same parent as n's e.g., siblings of Vanessa: Shirley and Peter
- the tree formed by descendants of n
- nodes with no children
 - e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter
- nodes with at least one child
- e.g., non-leaves of the above tree: David, Chris, Elsa

[siblings of node n]

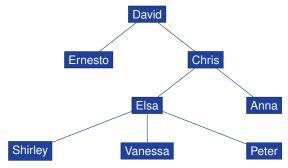
[subtree rooted at n]

[external nodes (leaves)]

[internal nodes]

6 of 47

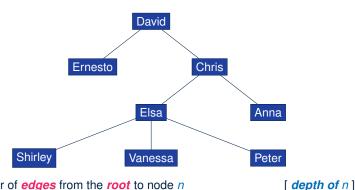
General Trees: Terminology (4)



- a <u>pair</u> of *parent* and *child* nodes
 e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges
- a <u>sequence</u> of nodes where any two consecutive nodes form an <u>edge</u>
 [a path of tree]

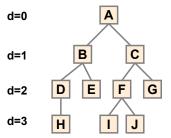
```
e.g., 〈 David, Chris, Elsa, Peter 〉 is a path e.g., Elsa's ancestor path: 〈 Elsa, Chris, David 〉
```

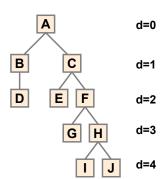

General Trees: Terminology (5)



- number of edges from the root to node n <u>alternatively</u>: number of n's ancestors of n minus one e.g., depth of David (root): 0
 - e.g., depth of Shirley, Vanessa, and Peter: 3
- <u>maximum</u> depth among all nodes [height of tree]
 e.g., Shirley, Vanessa, and Peter have the maximum depth

General Trees: Example Node Depths



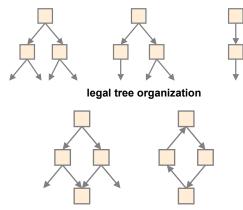


General Tree: Definition

- A *tree T* is a set of *nodes* satisfying **parent-child** properties:
 - **1.** If *T* is *empty*, then it does not contain any nodes.
 - **2.** If *T* is *nonempty*, then:
 - T contains <u>at least</u> its **root** (a special node with <u>no parent</u>).
 - Each node \underline{n} of T that is <u>not</u> the root has **a unique parent node** \underline{w} .
 - Given two nodes <u>n</u> and <u>w</u>,
 if <u>w</u> is the *parent* of <u>n</u>, then symmetrically, <u>n</u> is one of <u>w</u>'s *children*.

General Tree: Important Characteristics

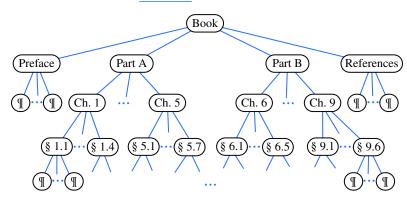
There is a *single, unique path* from the *root* to any particular node in the same tree.



illegal tree organization (nontrees)

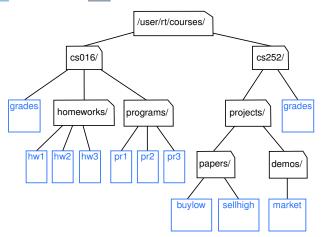
General Trees: Ordered Trees

A tree is *ordered* if there is a meaningful *linear order* among the *children* of each *internal node*.



General Trees: Unordered Trees

A tree is *unordered* if the order among the *children* of each *internal node* does **not** matter.



Implementation: Generic Tree Nodes (1)

```
public class TreeNode<E> {
     private E element: /* data object */
     private TreeNode<E> parent; /* unique parent node */
     private TreeNode<E>[] children: /* list of child nodes */
     private final int MAX NUM CHILDREN = 10; /* fixed max */
     private int noc: /* number of child nodes */
     public TreeNode(E element) {
10
       this.element = element:
11
       this.parent = null;
12
       this.children = (TreeNode<E>[])
13
        Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
14
       this, noc = 0:
15
16
17
```

Replacing **L13** with the following results in a **ClassCastException**:

```
this.children = (TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];
14 of 47
```


Implementation: Generic Tree Nodes (2)

```
public class TreeNode<E> {
 private E element; /* data object */
 private TreeNode<E> parent; /* unique parent node */
 private TreeNode<E>[] children; /* list of child nodes */
 private final int MAX NUM CHILDREN = 10; /* fixed max */
 private int noc: /* number of child nodes */
 public E getElement() { ... }
 public TreeNode<E> getParent() { ... }
 public TreeNode<E>[] getChildren() { ... }
 public void setElement(E element) { ... }
 public void setParent(TreeNode<E> parent) { ... }
 public void addChild(TreeNode<E> child) { ... }
 public void removeChildAt(int i) { ... }
```

Exercise: Implement void removeChildAt (int i).

Testing: Connected Tree Nodes

Constructing a *tree* is similar to constructing a *SLL*:

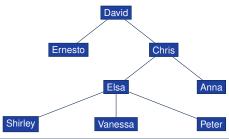
```
aTest
public void test general trees construction() {
 TreeNode<String> agnarr = new TreeNode<> ("Agnarr");
 TreeNode<String> elsa = new TreeNode<>("Elsa");
 TreeNode<String> anna = new TreeNode<>("Anna");
 agnarr.addChild(elsa);
 agnarr.addChild(anna);
 elsa.setParent(agnarr);
 anna.setParent(agnarr);
 assertNull(agnarr.getParent());
 assertTrue(agnarr == elsa.getParent());
 assertTrue(agnarr == anna.getParent());
 assertTrue(agnarr.getChildren().length == 2);
 assertTrue(agnarr.getChildren()[0] == elsa);
 assertTrue(agnarr.getChildren()[1] == anna);
```


Problem: Computing a Node's Depth

- Given a node n, its depth is defined as:
 - If *n* is the *root*, then *n*'s depth is 0.
 - Otherwise, n's depth is the depth of n's parent plus one.
- Assuming under a generic class TreeUtilities<E>:

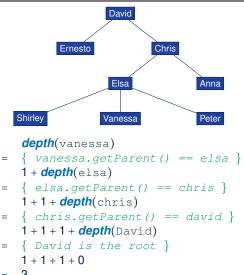
```
1  public int depth(TreeNode<E> n) {
2    if(n.getParent() == null) {
3      return 0;
4    }
5    else {
6      return 1 + depth(n.getParent());
7    }
8 }
```


Testing: Computing a Node's Depth



```
@Test
public void test_general_trees_depths() {
    ... /* constructing a tree as shown above */
    TreeUtilities<String> u = new TreeUtilities<>();
    assertEquals(0, u.depth(david));
    assertEquals(1, u.depth(ernesto));
    assertEquals(1, u.depth(chris));
    assertEquals(2, u.depth(elsa));
    assertEquals(2, u.depth(anna));
    assertEquals(3, u.depth(shirley));
    assertEquals(3, u.depth(vanessa));
    assertEquals(3, u.depth(vanessa));
    assertEquals(3, u.depth(peter));
}
```


Unfolding: Computing a Node's Depth

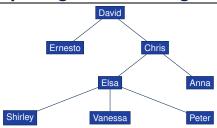


Problem: Computing a Tree's Height

- Given node n, the height of subtree rooted at n is defined as:
 - If n is a *leaf*, then the *height* of subtree rooted at n is 0.
 - Otherwise, the height of subtree rooted at n is one plus the maximum height of <u>all</u> subtrees rooted at n's children.
- Assuming under a generic class TreeUtilities<E>:

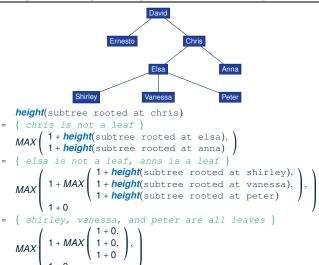
```
public int height(TreeNode<E> n) {
     TreeNode < E > [] children = n.getChildren();
     if(children.length == 0) { return 0; }
     else
 5
       int max = 0;
 6
       for (int i = 0; i < children.length; <math>i ++) {
         int h = 1 + height(children[i]);
8
         max = h > max ? h : max:
9
10
       return max;
11
12
```


Testing: Computing a Tree's Height



```
@Test
public void test_general_trees_heights() {
    ... /* constructing a tree as shown above */
    TreeUtilities<String> u = new TreeUtilities<>();
    /* internal nodes */
    assertEquals(3, u.height(david));
    assertEquals(2, u.height(chris));
    assertEquals(1, u.height(elsa));
    /* external nodes */
    assertEquals(0, u.height(ernesto));
    assertEquals(0, u.height(anna));
    assertEquals(0, u.height(shirley));
    assertEquals(0, u.height(vanessa));
    assertEquals(0, u.height(vanessa));
    assertEquals(0, u.height(peter));
}
```


Unfolding: Computing a Tree's Height



Exercises on General Trees

<u>Implement</u> and <u>test</u> the following *recursive* algorithm:

```
public TreeNode<E>[] ancestors(TreeNode<E> n)
```

which returns the list of ancestors of a given node n.

• <u>Implement</u> and <u>test</u> the following *recursive* algorithm:

```
public TreeNode<E>[] descendants(TreeNode<E> n)
```

which returns the list of *descendants* of a given node n.

Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

- **1.** Each node has **at most two** (\leq 2) children.
- 2. Each *child node* is labeled as either a <u>left child</u> or a <u>right child</u>.
- 3. A <u>left</u> child precedes a <u>right</u> child.

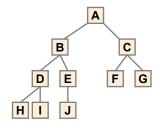
A binary tree (BT) is either:

- o An *empty* tree; or
- A nonempty tree with a root node r which has:
 - a <u>left subtree</u> rooted at its *left child*, if any
 - a <u>right subtree</u> rooted at its <u>right child</u>, if any

BT Terminology: LST vs. RST

For an *internal* node (with <u>at least</u> one child):

- Subtree rooted at its *left child*, if any, is called *left subtree*.
- Subtree <u>rooted</u> at its *right child*, if any, is called *right subtree*.
 e.g.,

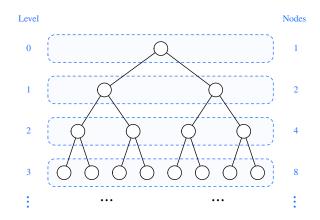


Node A has:

- o a *left subtree* rooted at node B
- o a *right subtree* rooted at node C

BT Terminology: Depths, Levels

The set of nodes with the same *depth d* are said to be at the same *level d*.



Background: Sum of Geometric Sequence

• Given a *geometric sequence* of *n* terms, where the initial term is *a* and the common factor is *r*, the *sum* of all its terms is:

$$\sum_{k=0}^{n-1} (a \cdot r^k) = a \cdot r^0 + a \cdot r^1 + a \cdot r^2 + \dots + a \cdot r^{n-1} = a \cdot \left(\frac{r^n - 1}{r - 1}\right)$$

[See *here* to see how the formula is derived.]

- For the purpose of binary trees, maximum numbers of nodes at all levels form a geometric sequence:
 - $\circ a = 1$

[the **root** at **Level 0**]

 \circ r=2

[≤ 2 children for each *internal* node]

• e.g., Max total # of nodes at levels 0 to $4 = 1 + 2 + 4 + 8 + 16 = 1 \cdot (\frac{2^5 - 1}{2 - 1}) = 31$

 $2^0 = 1$

 $2^1 = 2$

BT Properties: Max # Nodes at Levels

Given a binary tree with height h:

- At each level:
 - Maximum number of nodes at Level 0:
 - Maximum number of nodes at Level 1:
 - Maximum number of nodes at Level 2:
- $2^2 = 4$
 - Maximum number of nodes at Level h:
- 2^h
- Summing all levels:

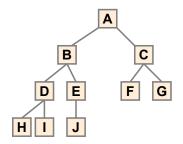
Maximum total number of nodes:

$$\underbrace{2^0 + 2^1 + 2^2 + \dots + 2^h}_{h+1 \text{ terms}} = 1 \cdot \left(\frac{2^{h+1} - 1}{2 - 1}\right) = 2^{h+1} - 1$$

BT Terminology: Complete BTs

A binary tree with height h is considered as complete if:

- Nodes with $depth \le h 2$ has two children.
- Nodes with depth h − 1 may have zero, one, or two child nodes.
- Children of nodes with depth h 1 are filled from left to right.



Q1: *Minimum* # of nodes of a *complete* BT? $(2^h - 1) + 1 = 2^h$

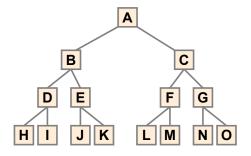
Q2: Maximum # of nodes of a complete BT? $2^{h+1} - 1$

BT Terminology: Full BTs

A binary tree with height h is considered as full if:

Each node with $depth \le h - 1$ has two child nodes.

That is, <u>all leaves</u> are with the same **depth** h.



Q1: *Minimum* # of nodes of a complete BT? $2^{h+1} - 1$

Q2: *Maximum* # of nodes of a complete BT? 2^{h+1} –

BT Properties: Bounding # of Nodes

Given a binary tree with height h, the number of nodes n is bounded as:

$$h+1 \le n \le 2^{h+1}-1$$

- Shape of BT with *minimum* # of nodes?
 A "one-path" tree (each *internal node* has exactly one child)
- Shape of BT with maximum # of nodes?
 A tree completely filled at each level

BT Properties: Bounding Height of Tree

Given a *binary tree* with *n nodes*, the *height h* is bounded as:

$$log(n+1)-1 \le h \le n-1$$

Shape of BT with *minimum* height?

A tree completely filled at each level

$$n = 2^{h+1} - 1$$

$$\iff n+1 = 2^{h+1}$$

$$\iff \log(n+1) = h+1$$

$$\iff \log(n+1) - 1 = h$$

Shape of BT with maximum height?

A "one-path" tree (each internal node has exactly one child)

BT Properties: Bounding # of Ext. Nodes

Given a binary tree with height h, the number of external nodes n_E is bounded as:

$$1 \leq n_E \leq 2^h$$

- Shape of BT with minimum # of external nodes?
 A tree with only one node (i.e., the root)
- Shape of BT with maximum # of external nodes?
 A tree whose bottom level (with depth h) is completely filled

BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal nodes n_l is bounded as:

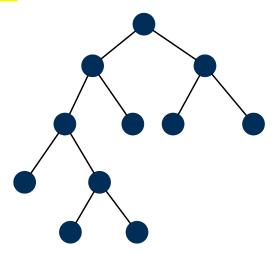
$$h \le n_l \le 2^h - 1$$

- Shape of BT with minimum # of internal nodes?
 - Number of nodes in a "one-path" tree (h + 1) minus one
 - That is, the "deepest" leaf node excluded
- Shape of BT with maximum # of internal nodes?
 - A tree whose $\leq h 1$ *levels* are all completely filled

• That is:
$$2^0 + 2^1 + \dots + 2^{h-1} = 2^h - 1$$

BT Terminology: Proper BT

A *binary tree* is *proper* if <u>each</u> *internal node* has two children.



BT Properties: #s of Ext. and Int. Nodes

Given a binary tree that is:

- nonempty and proper
- with n_l internal nodes and n_E external nodes

We can then expect that: $n_E = n_I + 1$

Proof by *mathematical induction*:

Base Case:

A *proper* BT with only the *root* (an *external node*): $n_E = 1$ and $n_I = 0$.

• Inductive Case:

- Assume a proper BT with n nodes (n > 1) with n₁ internal nodes and n_E external nodes such that n_E = n_I + 1.
- Only one way to create a <u>larger</u> BT (with n + 2 nodes) that is still **proper** (with $\mathbf{n'_E}$ external nodes and $\mathbf{n'_i}$ internal nodes):

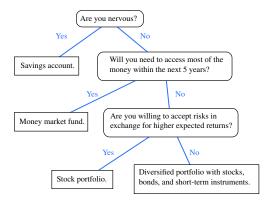
Convert an external node into an internal node.

$$\mathbf{n}_{\mathsf{E}}' = (n_{\mathsf{E}} - 1) + 2 = n_{\mathsf{E}} + 1 \land \mathbf{n}_{\mathsf{I}}' = n_{\mathsf{I}} + 1 \Rightarrow \mathbf{n}_{\mathsf{E}}' = \mathbf{n}_{\mathsf{E}}' + 1$$

Binary Trees: Application (1)

A *decision tree* is a <u>proper</u> binary tree used to to express the decision-making process:

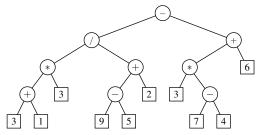
- Each internal node denotes a decision point: yes or no.
- Each external node denotes the consequence of a decision.



Binary Trees: Application (2)

An *infix arithmetic expression* can be represented using a binary tree:

- Each internal node denotes an operator (unary or binary).
- Each external node denotes an operand (i.e., a number).



 To evaluate the expression that is represented by a binary tree, certain traversal over the entire tree is required.

Tree Traversal Algorithms: Definition

- A traversal of a tree T systematically visits all T's nodes.
- Visiting each node may be associated with an action: e.g.,
 - Print the node element.
 - Determine if the node element satisfies certain property

 (e.g., positive, matching a key).
 - Accumulate the node element values for some global result.

Tree Traversal Algorithms: Common Types

Three common traversal orders:

o Preorder: Visit parent, then visit child subtrees.

```
preorder (n)
visit and act on position n
for child C: children(n) { preorder (C) }
```

Postorder: Visit child subtrees, then visit parent.

```
postorder (n)
for child c: children(n) { postorder (c) }
visit and act on position n
```

• **Inorder** (for **BT**): Visit left subtree, then parent, then right subtree.

```
inorder (n)
if (n has a left child | lc) { inorder (|lc) }
visit and act on position n
if (n has a right child | rc) { inorder (|rc) }
```


Tree Traversal Algorithms: Preorder

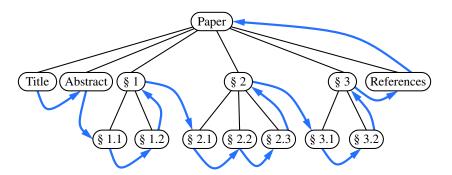
Preorder: Visit parent, then visit child subtrees.

```
preorder (n)
 visit and act on position n
 for child C: children(n) { preorder (C) }
                                 Paper
                                                               (References)
  Title
         Abstract)
                              (§ 2.1) (§ 2.2) (§ 2.3)
                                                    (§ 3.1
                                                            § 3.2
```


Tree Traversal Algorithms: Postorder

Postorder: Visit child subtrees, then visit parent.

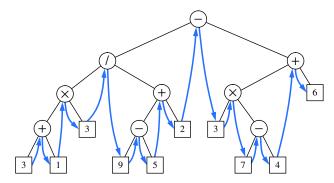
```
postorder (n)
for child c: children(n) { postorder (C) }
visit and act on position n
```



Tree Traversal Algorithms: Inorder

Inorder (for BT): Visit left subtree, then parent, then right subtree.

```
inorder (n)
if (n has a left child lc) { inorder (lc) }
visit and act on position n
if (n has a right child rc) { inorder (rc) }
```



Learning Outcomes of this Lecture

General Trees

General Trees: Terminology (1)

General Trees: Terminology (2)

General Trees: Terminology (3)

General Trees: Terminology (4)

General Trees: Terminology (5)

General Trees: Example Node Depths

General Tree: Definition

General Tree: Important Characteristics

General Trees: Ordered Trees

44 of 47

Index (2)

General Trees: Unordered Trees

Implementation: Generic Tree Nodes (1)

Implementation: Generic Tree Nodes (2)

Testing: Connected Tree Nodes

Problem: Computing a Node's Depth

Testing: Computing a Node's Depth

Unfolding: Computing a Node's Depth

Problem: Computing a Tree's Height

Testing: Computing a Tree's Height

Unfolding: Computing a Tree's Height

Exercises on General Trees

Binary Trees (BTs): Definitions

BT Terminology: LST vs. RST

BT Terminology: Depths, Levels

Background: Sum of Geometric Sequence

BT Properties: Max # Nodes at Levels

BT Terminology: Complete BTs

BT Terminology: Full BTs

BT Properties: Bounding # of Nodes

BT Properties: Bounding Height of Tree

BT Properties: Bounding # of Ext. Nodes

BT Properties: Bounding # of Int. Nodes

Index (4)

BT Terminology: Proper BT

BT Properties: #s of Ext. and Int. Nodes

Binary Trees: Application (1)

Binary Trees: Application (2)

Tree Traversal Algorithms: Definition

Tree Traversal Algorithms: Common Types

Tree Traversal Algorithms: Preorder

Tree Traversal Algorithms: Postorder

Tree Traversal Algorithms: Inorder