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Learning Outcomes of this Lecture

This module is designed to help you understand:
● Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
● Terminologies: General Trees vs. Binary Trees
● Implementation of a Generic Tree
● Mathematical Properties of Binary Trees
● Tree Traversals
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General Trees

● A linear data structure is a sequence, where stored objects
can be related via notions of “predecessor” and “successor”.○ e.g., arrays○ e.g., Singly-Linked Lists (SLLs)○ e.g., Doubly-Linked Lists (DLLs)

● The Tree ADT is a non-linear collection of nodes/positions.○ Each node stores some data object.○ Nodes in a tree are organized into levels: some nodes are
“above” others, and some are “below” others.○ Think of a tree forming a hierarchy among the stored nodes.

● Terminology of the Tree ADT borrows that of family trees:○ e.g., root○ e.g., parents, siblings, children○ e.g., ancestors, descendants
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General Trees: Terminology (1)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ top element of the tree [ root of tree ]
e.g., root of the above family tree: David○ the node immediately above node n [ parent of n ]
e.g., parent of Vanessa: Elsa○ all nodes immediately below node n [ children of n ]
e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: �
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General Trees: Terminology (2)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ Union of n, n’s parent , n’s grand parent , . . . , root [ n’s ancestors ]
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David○ Union of n, n’s children, n’s grand children, . . . [ n’s descendants ]
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree○ By the above definitions, a node is both its ancestor and descendant .
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General Trees: Terminology (3)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ all nodes with the same parent as n’s [ siblings of node n ]
e.g., siblings of Vanessa: Shirley and Peter○ the tree formed by descendants of n [ subtree rooted at n ]○ nodes with no children [ external nodes (leaves) ]
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter○ nodes with at least one child [ internal nodes ]
e.g., non-leaves of the above tree: David, Chris, Elsa
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General Trees: Terminology (4)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ a pair of parent and child nodes [ an edge of tree ]
e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges○ a sequence of nodes where any two consecutive nodes form an edge

[ a path of tree ]
e.g., � David, Chris, Elsa, Peter � is a path
e.g., Elsa’s ancestor path: � Elsa, Chris, David �
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General Trees: Terminology (5)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ number of edges from the root to node n [ depth of n ]
alternatively: number of n’s ancestors of n minus one
e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3○ maximum depth among all nodes [ height of tree ]
e.g., Shirley, Vanessa, and Peter have the maximum depth
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General Trees: Example Node Depths

8

Tree ADT   (cont.)

Balanced Binary TreeBalanced Binary Tree – every node at depths 0, 1,   , dmax-2 has two
of Height hof Height h children; nodes at depth (dmac-1) may have

two, one, or no children; nodes at depth h
have no children

A

B C

D E F

H I J

A

B C

D E F

G H

I J

balanced binary tree ill-balanced binary tree

d=0

d=1

d=2

d=3

d=0

d=1

d=2

d=3

d=4

G
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General Tree: Definition

A tree T is a set of nodes satisfying parent-child properties:
1. If T is empty , then it does not contain any nodes.
2. If T is nonempty , then:

● T contains at least its root (a special node with no parent).● Each node n of T that is not the root has a unique parent node w .● Given two nodes n and w ,
if w is the parent of n, then symmetrically, n is one of w ’s children.
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General Tree: Important Characteristics

There is a single, unique path from the root to any particular
node in the same tree.

4

Important Characteristics   Important Characteristics   – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT   (cont.)

legal tree organization

illegal tree organization (nontrees)

4

Important Characteristics   Important Characteristics   – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT   (cont.)

legal tree organization

illegal tree organization (nontrees)
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General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among
the children of each internal node.
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General Trees: Unordered Trees
A tree is unordered if the order among the children of each
internal node does not matter.
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Implementation: Generic Tree Nodes (1)
1 public class TreeNode<E> {
2 private E element; /* data object */

3 private TreeNode<E> parent; /* unique parent node */

4 private TreeNode<E>[] children; /* list of child nodes */

5
6 private final int MAX_NUM_CHILDREN = 10; /* fixed max */

7 private int noc; /* number of child nodes */

8
9 public TreeNode(E element) {

10 this.element = element;
11 this.parent = null;
12 this.children = (TreeNode<E>[])
13 Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
14 this.noc = 0;
15 }
16 . . .
17 }

Replacing L13 with the following results in a ClassCastException:
this.children = (TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];
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Implementation: Generic Tree Nodes (2)

public class TreeNode<E> {
private E element; /* data object */

private TreeNode<E> parent; /* unique parent node */

private TreeNode<E>[] children; /* list of child nodes */

private final int MAX_NUM_CHILDREN = 10; /* fixed max */

private int noc; /* number of child nodes */

public E getElement() { . . . }
public TreeNode<E> getParent() { . . . }
public TreeNode<E>[] getChildren() { . . . }

public void setElement(E element) { . . . }
public void setParent(TreeNode<E> parent) { . . . }
public void addChild(TreeNode<E> child) { . . . }
public void removeChildAt(int i) { . . . }

}

Exercise: Implement void removeChildAt(int i).
15 of 47

Testing: Connected Tree Nodes
Constructing a tree is similar to constructing a SLL :
@Test

public void test_general_trees_construction() {
TreeNode<String> agnarr = new TreeNode<>("Agnarr");
TreeNode<String> elsa = new TreeNode<>("Elsa");
TreeNode<String> anna = new TreeNode<>("Anna");

agnarr.addChild(elsa);
agnarr.addChild(anna);
elsa.setParent(agnarr);
anna.setParent(agnarr);

assertNull(agnarr.getParent());
assertTrue(agnarr == elsa.getParent());
assertTrue(agnarr == anna.getParent());
assertTrue(agnarr.getChildren().length == 2);
assertTrue(agnarr.getChildren()[0] == elsa);
assertTrue(agnarr.getChildren()[1] == anna);

}
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Problem: Computing a Node’s Depth

● Given a node n, its depth is defined as:○ If n is the root , then n’s depth is 0.○ Otherwise, n’s depth is the depth of n’s parent plus one.
● Assuming under a generic class TreeUtilities<E>:

1 public int depth(TreeNode<E> n) {
2 if(n.getParent() == null) {
3 return 0;
4 }
5 else {
6 return 1 + depth(n.getParent());
7 }
8 }
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Testing: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_depths() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
assertEquals(0, u.depth(david));
assertEquals(1, u.depth(ernesto));
assertEquals(1, u.depth(chris));
assertEquals(2, u.depth(elsa));
assertEquals(2, u.depth(anna));
assertEquals(3, u.depth(shirley));
assertEquals(3, u.depth(vanessa));
assertEquals(3, u.depth(peter));

}
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Unfolding: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

depth(vanessa)= { vanessa.getParent() == elsa }
1 + depth(elsa)= { elsa.getParent() == chris }
1 + 1 + depth(chris)= { chris.getParent() == david }
1 + 1 + 1 + depth(David)= { David is the root }
1 + 1 + 1 + 0= 3
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Problem: Computing a Tree’s Height
● Given node n, the height of subtree rooted at n is defined as:○ If n is a leaf , then the height of subtree rooted at n is 0.○ Otherwise, the height of subtree rooted at n is one plus the

maximum height of all subtrees rooted at n’s children.
● Assuming under a generic class TreeUtilities<E>:

1 public int height(TreeNode<E> n) {
2 TreeNode<E>[] children = n.getChildren();
3 if(children.length == 0) { return 0; }
4 else {
5 int max = 0;
6 for(int i = 0; i < children.length; i ++) {
7 int h = 1 + height(children[i]);
8 max = h > max ? h : max;
9 }

10 return max;
11 }
12 }
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Testing: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_heights() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
/* internal nodes */

assertEquals(3, u.height(david));
assertEquals(2, u.height(chris));
assertEquals(1, u.height(elsa));
/* external nodes */

assertEquals(0, u.height(ernesto));
assertEquals(0, u.height(anna));
assertEquals(0, u.height(shirley));
assertEquals(0, u.height(vanessa));
assertEquals(0, u.height(peter));

}
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Unfolding: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

height(subtree rooted at chris)= { chris is not a leaf }

MAX � 1 + height(subtree rooted at elsa),
1 + height(subtree rooted at anna) �= { elsa is not a leaf, anna is a leaf }

MAX
�����

1 +MAX
���

1 + height(subtree rooted at shirley),
1 + height(subtree rooted at vanessa),
1 + height(subtree rooted at peter)

��� ,
1 + 0

�����
= { shirley, vanessa, and peter are all leaves }

MAX
�����

1 +MAX
���

1 + 0,
1 + 0,
1 + 0

��� ,
1 + 0

�����
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Exercises on General Trees

● Implement and test the following recursive algorithm:

public TreeNode<E>[] ancestors(TreeNode<E> n)

which returns the list of ancestors of a given node n.
● Implement and test the following recursive algorithm:

public TreeNode<E>[] descendants(TreeNode<E> n)

which returns the list of descendants of a given node n.
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Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (≤ 2) children.
2. Each child node is labeled as either a left child or a right child .
3. A left child precedes a right child .

A binary tree (BT) is either:
○ An empty tree; or○ A nonempty tree with a root node r which has:
● a left subtree rooted at its left child , if any

● a right subtree rooted at its right child , if any

24 of 47



BT Terminology: LST vs. RST
For an internal node (with at least one child):
● Subtree rooted at its left child , if any, is called left subtree.
● Subtree rooted at its right child , if any, is called right subtree.

e.g.,

9

Tree ADT   (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes, 
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere 
between a full binary tree of height h and a full 

binary tree of height (h-1))

Node A has:○ a left subtree rooted at node B○ a right subtree rooted at node C
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BT Terminology: Depths, Levels
The set of nodes with the same depth d are said to be at the
same level d .

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes
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Background: Sum of Geometric Sequence

● Given a geometric sequence of n terms, where the initial term
is a and the common factor is r , the sum of all its terms is:

n−1
⌃

k = 0
(a ⋅ r k) = a ⋅ r0 + a ⋅ r1 + a ⋅ r2 + ⋅ ⋅ ⋅ + a ⋅ r n−1 = a ⋅ � r n − 1

r − 1
�

[ See here to see how the formula is derived. ]
● For the purpose of binary trees, maximum numbers of nodes

at all levels form a geometric sequence :
○ a = 1 [ the root at Level 0 ]○ r = 2 [ ≤ 2 children for each internal node ]○ e.g., Max total # of nodes at levels 0 to 4 = 1 + 2 + 4 + 8 + 16 = 1 ⋅ ( 25−1

2−1 ) = 31
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BT Properties: Max # Nodes at Levels

Given a binary tree with height h:
● At each level:
○ Maximum number of nodes at Level 0: 20 = 1○ Maximum number of nodes at Level 1: 21 = 2○ Maximum number of nodes at Level 2: 22 = 4

. . .○ Maximum number of nodes at Level h: 2h

● Summing all levels:

Maximum total number of nodes:

20 + 21 + 22 + ⋅ ⋅ ⋅ + 2h������������������������������������������������������������������������������������������������������������������������������
h + 1 terms

= 1 ⋅ (2h + 1 − 1
2 − 1

) = 2h + 1 − 1

28 of 47



BT Terminology: Complete BTs
A binary tree with height h is considered as complete if:
● Nodes with depth ≤ h − 2 has two children.
● Nodes with depth h − 1 may have zero, one, or two child nodes.
● Children of nodes with depth h − 1 are filled from left to right.

9

Tree ADT   (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes, 
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere 
between a full binary tree of height h and a full 

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? (2h −1)+1 = 2h

Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
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BT Terminology: Full BTs
A binary tree with height h is considered as full if:

Each node with depth ≤ h − 1 has two child nodes.
That is, all leaves are with the same depth h.

9

Tree ADT   (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes, 
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere 
between a full binary tree of height h and a full 

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? 2h+1 − 1
Q2: Maximum # of nodes of a complete BT? 2h+1 − 1

30 of 47

BT Properties: Bounding # of Nodes

Given a binary tree with height h, the number of nodes n is
bounded as:

h + 1 ≤ n ≤ 2h+1 − 1

● Shape of BT with minimum # of nodes?
A “one-path” tree (each internal node has exactly one child)

● Shape of BT with maximum # of nodes?
A tree completely filled at each level
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BT Properties: Bounding Height of Tree

Given a binary tree with n nodes, the height h is bounded as:

log(n + 1) − 1 ≤ h ≤ n − 1

● Shape of BT with minimum height?
A tree completely filled at each level

n = 2h+1 − 1⇐⇒ n + 1 = 2h+1

⇐⇒ log(n + 1) = h + 1⇐⇒ log(n + 1) − 1 = h
● Shape of BT with maximum height?

A “one-path” tree (each internal node has exactly one child)
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BT Properties: Bounding # of Ext. Nodes

Given a binary tree with height h, the number of external
nodes nE is bounded as:

1 ≤ nE ≤ 2h

● Shape of BT with minimum # of external nodes?
A tree with only one node (i.e., the root)

● Shape of BT with maximum # of external nodes?
A tree whose bottom level (with depth h) is completely filled
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BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal
nodes nI is bounded as:

h ≤ nI ≤ 2h − 1

● Shape of BT with minimum # of internal nodes?○ Number of nodes in a “one-path” tree (h + 1) minus one○ That is, the “deepest” leaf node excluded
● Shape of BT with maximum # of internal nodes?○ A tree whose ≤ h − 1 levels are all completely filled○ That is: 20 + 21 + ⋅ ⋅ ⋅ + 2h−1����������������������������������������������������������������������������������������������������������

n terms

= 2h − 1
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BT Terminology: Proper BT
A binary tree is proper if each internal node has two children.
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BT Properties: #s of Ext. and Int. Nodes
Given a binary tree that is:

○ nonempty and proper○ with nI internal nodes and nE external nodes

We can then expect that: nE = nI + 1
Proof by mathematical induction :

● Base Case:
A proper BT with only the root (an external node): nE = 1 and nI = 0.

● Inductive Case:
○ Assume a proper BT with n nodes (n > 1) with nI internal nodes and nE

external nodes such that nE = nI + 1.○ Only one way to create a larger BT (with n + 2 nodes) that is still proper
(with n′E external nodes and n′I internal nodes):

Convert an external node into an internal node.
n′E = (nE − 1) + 2 = nE + 1 ∧ n′I = nI + 1⇒ n′E = n′E + 1
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Binary Trees: Application (1)
A decision tree is a proper binary tree used to to express the
decision-making process:○ Each internal node denotes a decision point: yes or no.○ Each external node denotes the consequence of a decision.

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the
money within the next 5 years?

Are you willing to accept risks in
exchange for higher expected returns?

Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,
bonds, and short-term instruments.
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Binary Trees: Application (2)

An infix arithmetic expression can be represented using a
binary tree:
○ Each internal node denotes an operator (unary or binary).○ Each external node denotes an operand (i.e., a number).

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

○ To evaluate the expression that is represented by a binary tree,
certain traversal over the entire tree is required.
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Tree Traversal Algorithms: Definition

● A traversal of a tree T systematically visits all T ’s nodes.
● Visiting each node may be associated with an action: e.g.,○ Print the node element.○ Determine if the node element satisfies certain property

(e.g., positive, matching a key).○ Accumulate the node element values for some global result.
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Tree Traversal Algorithms: Common Types
Three common traversal orders:○ Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

○ Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

○ Inorder (for BT ): Visit left subtree, then parent, then right subtree.

inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }
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Tree Traversal Algorithms: Preorder
Preorder: Visit parent, then visit child subtrees.
preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2
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Tree Traversal Algorithms: Postorder
Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2
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Tree Traversal Algorithms: Inorder
Inorder (for BT): Visit left subtree, then parent, then right subtree.
inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

3 1 9 5 47

+ 3 2− 3 −
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−
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