General Trees and Binary Trees

EECS2011 X:
Fundamentals of Data Structures
YORK ' Winter 2023
32:&52::15 CHEN-WEI WANG

LASSONDE

ooooooooooooooooo

Learning Outcomes of this Lecture

This module is designed to help you understand:

e Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
e Terminologies: General Trees vs. Binary Trees

e Implementation of a Generic Tree

e Mathematical Properties of Binary Trees

Tree Traversals

_

General Trees

ooooooooooooooooo

¢ A linear data structure is a sequence, where stored objects
can be related via notions of “predecessor” and “successor”.
o e.g., arrays
o e.g., Singly-Linked Lists (SLLs)
o e.g., Doubly-Linked Lists (DLLS)

e The Tree ADT is a non-linear collection of nodes/positions.

o Each node stores some data object.

o Nodes in a tree are organized into levels: some nodes are
“above” others, and some are “below” others.

o Think of a tree forming a hierarchy among the stored nodes.

e Terminology of the Tree ADT borrows that of family trees:

o e.g., root
o e.g., parents, siblings, children
o e.g., ancestors, descendants

3 of 47,

LASSONDE

ooooooooooooooooo

General Trees: Terminology (1)

Ernesto

Shirley Vanessa

o top element of the tree [root of tree]
e.g., root of the above family tree: David

o the node immediately above node n
e.g., parent of Vanessa: Elsa

o all nodes immediately below node n
e.g., children of Elsa: Shirley, Vanessa, and Peter

e.g., children of Ernesto: @

_

[parent of n]

[children of n]

General Trees: Terminology (2)

Ernesto

Shirley Vanessa

o Union of n, n's parent, n's grand parent, ..., root [n’s ancestors]
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David
o Union of n, n's children, n's grand children, ...
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree
o By the above definitions, a node is both its ancestor and descendant.

[n’s descendants]

LSSoNDE

General Trees: Terminology (3)

Ernesto

Shirley Vanessa

o all nodes with the same parent as n's
e.g., siblings of Vanessa: Shirley and Peter

o the tree formed by descendants of n [subtree rooted at n]

o nodes with no children [external nodes (leaves) |
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter

o nodes with af least one child [internal nodes]
e.g., non-leaves of the above tree: David, Chris, Elsa

[siblings of node n]

LSSoNDE

General Trees: Terminology (4)

Ernesto

Shirley Vanessa

o a pair of parent and child nodes [an edge of tree]
e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges
o a sequence of nodes where any two consecutive nodes form an edge
[a path of tree]
e.g., { David, Chris, Elsa, Peter) is a path
e.g., Elsa’s ancestor path: (Elsa, Chris, David)

LSSoNDE

General Trees: Terminology (5)

Ernesto

Shirley

Vanessa

o number of edges from the root to node n [depth of n]
alternatively: number of n's ancestors of n minus one
e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3

o maximum depth among all nodes [height of tree]

e.g., Shirley, Vanessa, and Peter have the maximum depth

General Trees: Example Node Depths LASSONDE
d=0 d=
d=1 d=1
d= d=
d=3 d=
d=

9 of 47

J

General Tree: Definition LASSONDE

ooooooooooooooooo

A tree T is a set of nodes satisfying parent-child properties:

1. If T is empty, then it does not contain any nodes.
2. If T is nonempty, then:
e T contains at least its root (a special node with no parent).
e Each node nof T that is not the root has a unique parent node w.
e Given two nodes nand w,
if w is the parent of n, then symmetrically, nis one of w’s children.

General Tree: Important Characteristics LASSONDE

ooooooooooooooooo

There is a single, unique path from the root to any particular
node in the same tree.

legal tree organization

illegal tree organization (nontrees)

General Trees: Ordered Trees IAesoNb:

ooooooooooooooooo

A treeis ordered if there is a meaningful linear order among
the children of each internal node.

General Trees: Unordered Trees

LSSoNDE

A tree is unordered if the order among the children of each

internal node does not matter.

/user/rt/courses/

cs016/
grades . grades
homeworks/ programs/ projects/
2| |h r2 r3
l i i ‘ﬁi paperS/ o

market

buylow | | sellhigh

13 of 47|

Implementation: Generic Tree Nodes (1) LASSONDE
1 |public class TreeNode<E> {
2 private E element; /+ data c */
3 private TreeNode<E> parent;
4 private TreeNode<E>[] children; */
5
6 private /% i */
7 private int noc; /+ of */
8
9 public TreeNode (E element) {
10 this.element = element;
11 this.parent = null;
12 this.children = (TreeNode<E>|[]
13 Array.newInstance (this.getClass (), MAX_NUM_CHILDREN) ;
14 this.noc = 0;
15 }
16
17 |}
Replacing L13 with the following results in a ClassCastException:
this.children = (TreeNode<E>[]) new Object [MAX NUM_CHILDREN];

Implementation: Generic Tree Nodes (2)

LSSoNDE

public class TreeNode<E> {
private E element; /x data ob
private TreeNode<E> parent; /x*
private TreeNode<E>[] children;

private final int MAX NUM _CHILDREN = 10; /=
private int noc; /#

er of child nodes

public E getElement() { ...}
public TreeNode<E> getParent() { ... }
public TreeNode<E>[] getChildren() { ... }

public void setElement (E element) { ... }

public void setParent (TreeNode<E> parent) { ... }
public void addChild(TreeNode<E> child) { ... }
public void removeChildAt (int 1) { ... }

Exercise: Implement void removeChildAt (int 1i).

15 of 47|

Testing: Connected Tree Nodes

LSSoNDE

Constructing a tree is similar to constructinga SLL :

@Test

public void test_general trees_construction() |
TreeNode<String> agnarr = new TreeNode<> ("Agnarr");
TreeNode<String> elsa = new TreeNode<>("Elsa");
TreeNode<String> anna = new TreeNode<> ("Anna");

agnarr.addChild(elsa) ;
agnarr.addChild(anna) ;
elsa.setParent (agnarr) ;
anna.setParent (agnarr) ;

assertNull (agnarr.getParent ());

assertTrue (agnarr == elsa.getParent());
assertTrue (agnarr == anna.getParent());
assertTrue (agnarr.getChildren() .length == 2);
assertTrue (agnarr.getChildren() [0] == elsa);
assertTrue (agnarr.getChildren() [1] == anna);

}

LASSONDE

ooooooooooooooooo

Problem: Computing a Node’s Depth

e Given a node n, its depth is defined as:

o If nis the root, then n’s depth is 0.
o Otherwise, n's depth is the depth of n's parent plus one.

e Assuming under a generic class TreeUtilities<E>:

1 |public int depth(TreeNode<E> n) {
2 if (n.getParent () == null) {

3 return 0;

4 }

5 else {

6 return 1 + depth(n.getParent());
7 }

8 |}

LASSONDE

ooooooooooooooooo

Testing: Computing a Node’s Depth

Ernesto

Shirley

@Test

public void test_general_ trees_depths() {
TreeUtilities<String> u = new TreeUtilities<>();
assertEquals (0, u.depth(david));
assertEquals (1, u.depth(ernesto));
assertEquals (1, u.depth(chris));
assertEquals (2, u.depth(elsa));
assertEquals (2, u.depth(anna));
assertEquals (3, u.depth(shirley));
assertEquals (3, u.depth(vanessa));
assertEquals (3, u.depth(peter));

}

Unfolding: Computing a Node’s Depth

Ernesto

depth(vanessa)

= { vanessa.getParent () == elsa }
1+ depth(elsa)

= { elsa.getParent () == chris }
1+ 1+ depth(chris)

= { chris.getParent () == david }

1+1+1+depth(David)
= { David is the root }
1+1+1+0

- 3

Problem: Computing a Tree’s Height

¢ Given node n, the height of subtree rooted at n is defined as:
o If nis a leaf, then the height of subtree rooted at nis 0.
o Otherwise, the height of subtree rooted at n is one plus the
maximum height of all subtrees rooted at r’s children.

e Assuming under a generic class TreeUtilities<E>:

1 |public int height (TreeNode<E> n) {
2 TreeNode<E>[] children = n.getChildren();
3 if (children.length == 0) { return 0; }
4 else {
5 int max = 0;
6 for(int i = 0; i < children.length; i ++) {
7 int h = 1 + height(children([i]);
8 max = h > max ? h : max;
9 }
10 return max;
11 }
12 |}
[20 of 47]

LASSONDE

ooooooooooooooooo

Testing: Computing a Tree’s Height

Ernesto

@Test
publlc void test_ general trees_ helghts() {
TreeUtllltles<Str1ng> u = new TreeUtllltles<>();
+ internal nodes
assertEquals (3,
assertEquals (2,
assertEquals (1,

<

.height (david));
.height (chris));
height (elsa));

SIS

+ external nodes #/
assertEquals (0, u.height (ernesto));
assertEquals (0, u.height(anna));
assertEquals (0, u.height (shirley));
assertEquals (0, u.height(vanessa));
assertEquals (0, u.height (peter));
}

LASSONDE

ooooooooooooooooo

Unfolding: Computing a Tree’s Height

height(subtree rooted at chris)
= { chris is not a leaf }
(1+ height(subtree rooted at elsa),)
MAX ;
1+helghf(subtree rooted at anna)
= { elsa is not a leaf, anna is a leaf }
1+h61ght(subtree rooted at shirley),
1+MAX 1+helght(subtree rooted at vanessa),)
1+ height(subtree rooted at peter)
1+0

= shirley, vanessa, and peter are al

1+0,
1+MAX 1+0‘, s

1 leaves }

1+0

22 of 47|

LASSONDE

ooooooooooooooooo

Exercises on General Trees

¢ Implement and test the following recursive algorithm:

public TreeNode<E>[] ancestors(TreeNode<E> n)

which returns the list of ancestors of a given node n.
¢ Implement and test the following recursive algorithm:

public TreeNode<E>[] descendants (TreeNode<E> n)

which returns the list of descendants of a given node n.

23 of 47|

LASSONDE

ooooooooooooooooo

Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (< 2) children.
2. Each child node is labeled as either a left child or a right child.
3. A left child precedes a right child.

A binary tree (BT) is either:

o An empty tree; or
o A nonempty tree with a root node r which has:

e a left subtree rooted at its left child, if any
e a right subtree rooted at its right child, if any

24 of 47|

BT Terminology: LST vs. RST LASSONDE

ooooooooooooooooo

For an internal node (with at least one child):

e Subtree rooted at its left child, if any, is called left subtree.

e Subtree rooted at its right child, if any, is called right subtree.
e.g.,

Node A has:

o a left subtree rooted at node B

o a right subtree rooted at node C

BT Terminology: Depths, Levels Mot

ooooooooooooooooo

The set of nodes with the same depth d are said to be at the
same level d .

Level Nodes

S

Background: Sum of Geometric Sequence |.ssono:

ooooooooooooooooo

e Given a geometric sequence of nterms, where the initial term
is a and the common factor is r, the sum of all its terms is:

nt rm—1
> (a-r"):a-r°+a-r1+a-r2+-~-+a-r”1:a-()
k=0

r-1

[See|herelto see how the formula is derived.]
e For the purpose of binary trees, maximum numbers of nodes
at all levels form a geometric sequence :
o a=1 [the root at Level 0]

or=2 [< 2 children for each interlgal node]
o e.g., Max total # of nodes at levels 0to4=1+2+4+8+16 =1 (22%1') =31

27 of 47|

BT Properties: Max # Nodes at Levels s

ooooooooooooooooo

Given a binary tree with height h:
e At each level:

o Maximum number of nodes at Level 0: 20 = 14
o Maximum number of nodes at Level 1: 21=2
o Maximum number of nodes at Level 2: 22-4
o Maximum number of nodes at Level h: 2h

e Summing all levels:

Maximum total number of nodes:

0,01, 02 h_ 2h+ 71 _oh+1_
2°+2 +2°+--+2" =1 (51)=2 1

h + 1 terms

28 of 47|

BT Terminology: Complete BTs LASSONDE
A binary tree with height h is considered as complete if:

¢ Nodes with depth < h- 2 has two children.

¢ Nodes with depth h—1 may have zero, one, or two child nodes.

e Children of nodes with depth h -1 are filled from left to right.

(2"-1)+1=2"
2h+1_1

Q1: Minimum # of nodes of a complete BT?

Q2: Maximum # of nodes of a complete BT?

BT Terminology: Full BTs

LSSoNDE

A binary tree with height h is considered as full if:
Each node with depth < h -1 has two child nodes.
That is, all leaves are with the same depth h.

Q1: Minimum # of nodes of a complete BT?

2h+1 -1
Q2: Maximum # of nodes of a complete BT? 21 _1

BT Properties: Bounding # of Nodes

LSSoNDE

Given a binary tree with height h, the number of nodes n is
bounded as:
h+1<n<2™ 4

e Shape of BT with minimum # of nodes?

A “one-path” tree (each internal node has exactly one child)
e Shape of BT with maximum # of nodes?

A tree completely filled at each level

31 of 47|

BT Properties: Bounding Height of Tree

LSSoNDE

Given a binary tree with n nodes, the height h is bounded as:

log(n+1)-1<h<n-1

e Shape of BT with minimum height?
A tree completely filled at each level

n — 2h+1 -1
~— n+1 = ot
<~ log(n+1) = h+1
<~ Jlog(n+1)-1 = h

e Shape of BT with maximum height?
A “one-path” tree (each internal node has exactly one child)

32 of 47|

BT Properties: Bounding # of Ext. Nodes

\wy

—

ASSONDE

ooooooooooooooooo

Given a binary tree with height h, the number of external
nodes ng is bounded as:

1<ng <2l

e Shape of BT with minimum # of external nodes?
A tree with only one node (i.e., the root)
e Shape of BT with maximum # of external nodes?
A tree whose bottom level (with depth h) is completely filled

LASSONDE

ooooooooooooooooo

BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal
nodes n, is bounded as:

h<n <2"-1

e Shape of BT with minimum # of internal nodes?
o Number of nodes in a “one-path” tree (h+ 1) minus one
o That is, the “deepest” leaf node excluded
e Shape of BT with maximum # of internal nodes?
o Atree whose < h—1 levels are all completely filled
o Thatis: 20 +2' +... 421 =2h 1

nterms

BT Terminology: Proper BT

A binary tree is proper if each internal node has two children.

ooooooooooooooooo

5 of 47|

LASSONDE

ooooooooooooooooo

BT Properties: #s of Ext. and Int. Nodes

Given a binary tree that is:

o nonempty and proper
o with n, internal nodes and n: external nodes

We can then expect that:

Proof by mathematical induction :

¢ Base Case:
A proper BT with only the root (an external node): ng =1 and n; = 0.

¢ Inductive Case:

o Assume a proper BT with n nodes (n > 1) with n, internal nodes and ng

external nodes such that ng = n; + 1.
o Only one way to create a larger BT (with n + 2 nodes) that is still proper
(with ng external nodes and n; internal nodes):

Convert an external node into an internal node.
ne=(Me-1)+2=ng+1Aan/=n+1=ng=ng+1

LASSONDE

ooooooooooooooooo

Binary Trees: Application (1)

A decision tree is a proper binary tree used to to express the
decision-making process:

o Each internal node denotes a decision point: yes or no.

o Each external node denotes the consequence of a decision.

Are you nervous?

Yes No

Savines 2 Will you need to access most of the
avings account. money within the next 5 years?
Yes \ No
i Are you willing to accept risks in
Money market fund. [exchange for higher expected returns?
Yes \Nn
N Diversified portfolio with stocks,
Stock portfolio.
37 of 47|

bonds, and short-term instruments.

LASSONDE

ooooooooooooooooo

Binary Trees: Application (2)

An infix arithmetic expression can be represented using a
binary tree:

o Each internal node denotes an operator (unary or binary).
o Each external node denotes an operand (i.e., a number).

o To evaluate the expression that is represented by a binary tree,
certain fraversal over the entire tree is required.

38 of 47|

LASSONDE

ooooooooooooooooo

Tree Traversal Algorithms: Definition

e A traversal of a tree T systematically visits all T’s nodes.
¢ Visiting each node may be associated with an action: e.g.,
o Print the node element.
o Determine if the node element satisfies certain property
(e.g., positive, matching a key).
o Accumulate the node element values for some global result.

39 of 47|

Tree Traversal Algorithms: Common Types |ussono:

ooooooooooooooooo

Three common traversal orders:
o Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n

for child ¢: children(n) { preorder (C) }
o Postorder: Visit child subtrees, then visit parent.

postorder (n)
for child C: children(n) { postorder (C) }

visit and act on position n
o Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)

if (n has a left child Ilc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

Tree Traversal Algorithms: Preorder LASSONDE

ooooooooooooooooo

Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n

for child C¢: children(n) { preorder (C) }

/
hv

Tree Traversal Algorithms: Postorder LASSONDE

ooooooooooooooooo

Postorder: Visit child subtrees, then visit parent.

postorder (n)

for child C¢: children(n) { postorder (C) }

visit and act on position n

§2.2) (5§23 §3.2

Tree Traversal Algorithms: Inorder LASSONDE

ooooooooooooooooo

Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)
if (n has a left child Ic) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

Index (1) :ASSONDE

ooooooooooooooooo

|[Learning Outcomes of this Lecture|
General Trees
|General Trees: Terminology (1)|

|General Trees: Terminology (2)|

|General Trees: Terminology (3)|

|General Trees: Terminology (4)|

|General Trees: Terminology (5)|

|General Trees: Example Node Depths|
General Tree: Definition
|General Tree: Important Characteristics|

[General Trees: Ordered Trees|

Index (2) LASSONDE Index (4) LASSONDE
|General Trees: Unordered Trees| BT Terminology: Proper BT

|BT Properties: #s of Ext. and Int. Nodes|

[Implementation: Generic Tree Nodes (1))

[Implementation: Generic Tree Nodes (2)| [Binary Trees: Application (1)

[Testing: Connected Tree Nodes| [Binary Trees: Application (2)

[Tree Traversal Algorithms: Definition|

[Problem: Computing a Node’s Depth|

|Tree Traversal Algorithms: Common Types|

|Testing: Computing a Node’s Depth|

[Tree Traversal Algorithms: Preorder|

|Unfolding: Computing a Node’s Depth|

[Tree Traversal Algorithms: Postorder|

[Problem: Computing a Tree’s Height|

[Tree Traversal Algorithms: Inorder|

[Testing: Computing a Tree’s Height|
|Unfolding: Computing a Tree’s Height|

[Exercises on General Trees|

Index (3) Sssonee

[Binary Trees (BTs): Definitions|
(BT Terminology: LST vs. RST)|
(BT Terminology: Depths, Levels|

|Background: Sum of Geometric Sequence|

BT Properties: Max # Nodes at Levels|

BT Terminology: Complete BTs|

BT Terminology: Full BTs
BT Properties: Bounding # of Nodes|

(BT Properties: Bounding Height of Tree|

(BT Properties: Bounding # of Ext. Nodes|

BT Properties: Bounding # of Int. Nodes|

