
General Trees and Binary Trees

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:
● Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
● Terminologies: General Trees vs. Binary Trees
● Implementation of a Generic Tree
● Mathematical Properties of Binary Trees
● Tree Traversals

2 of 47

General Trees

● A linear data structure is a sequence, where stored objects
can be related via notions of “predecessor” and “successor”.○ e.g., arrays○ e.g., Singly-Linked Lists (SLLs)○ e.g., Doubly-Linked Lists (DLLs)

● The Tree ADT is a non-linear collection of nodes/positions.○ Each node stores some data object.○ Nodes in a tree are organized into levels: some nodes are
“above” others, and some are “below” others.○ Think of a tree forming a hierarchy among the stored nodes.

● Terminology of the Tree ADT borrows that of family trees:○ e.g., root○ e.g., parents, siblings, children○ e.g., ancestors, descendants

3 of 47

General Trees: Terminology (1)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ top element of the tree [root of tree]
e.g., root of the above family tree: David○ the node immediately above node n [parent of n]
e.g., parent of Vanessa: Elsa○ all nodes immediately below node n [children of n]
e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: �

4 of 47

General Trees: Terminology (2)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ Union of n, n’s parent , n’s grand parent , . . . , root [n’s ancestors]
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David○ Union of n, n’s children, n’s grand children, . . . [n’s descendants]
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree○ By the above definitions, a node is both its ancestor and descendant .

5 of 47

General Trees: Terminology (3)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ all nodes with the same parent as n’s [siblings of node n]
e.g., siblings of Vanessa: Shirley and Peter○ the tree formed by descendants of n [subtree rooted at n]○ nodes with no children [external nodes (leaves)]
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter○ nodes with at least one child [internal nodes]
e.g., non-leaves of the above tree: David, Chris, Elsa

6 of 47

General Trees: Terminology (4)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ a pair of parent and child nodes [an edge of tree]
e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges○ a sequence of nodes where any two consecutive nodes form an edge

[a path of tree]
e.g., � David, Chris, Elsa, Peter � is a path
e.g., Elsa’s ancestor path: � Elsa, Chris, David �

7 of 47

General Trees: Terminology (5)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ number of edges from the root to node n [depth of n]
alternatively: number of n’s ancestors of n minus one
e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3○ maximum depth among all nodes [height of tree]
e.g., Shirley, Vanessa, and Peter have the maximum depth

8 of 47

General Trees: Example Node Depths

8

Tree ADT (cont.)

Balanced Binary TreeBalanced Binary Tree – every node at depths 0, 1, , dmax-2 has two
of Height hof Height h children; nodes at depth (dmac-1) may have

two, one, or no children; nodes at depth h
have no children

A

B C

D E F

H I J

A

B C

D E F

G H

I J

balanced binary tree ill-balanced binary tree

d=0

d=1

d=2

d=3

d=0

d=1

d=2

d=3

d=4

G

9 of 47

General Tree: Definition

A tree T is a set of nodes satisfying parent-child properties:
1. If T is empty , then it does not contain any nodes.
2. If T is nonempty , then:

● T contains at least its root (a special node with no parent).● Each node n of T that is not the root has a unique parent node w .● Given two nodes n and w ,
if w is the parent of n, then symmetrically, n is one of w ’s children.

10 of 47

General Tree: Important Characteristics

There is a single, unique path from the root to any particular
node in the same tree.

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)
11 of 47

General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among
the children of each internal node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

12 of 47

General Trees: Unordered Trees
A tree is unordered if the order among the children of each
internal node does not matter.

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

13 of 47

Implementation: Generic Tree Nodes (1)
1 public class TreeNode<E> {
2 private E element; /* data object */

3 private TreeNode<E> parent; /* unique parent node */

4 private TreeNode<E>[] children; /* list of child nodes */

5
6 private final int MAX_NUM_CHILDREN = 10; /* fixed max */

7 private int noc; /* number of child nodes */

8
9 public TreeNode(E element) {

10 this.element = element;
11 this.parent = null;
12 this.children = (TreeNode<E>[])
13 Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
14 this.noc = 0;
15 }
16 . . .
17 }

Replacing L13 with the following results in a ClassCastException:
this.children = (TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];

14 of 47

Implementation: Generic Tree Nodes (2)

public class TreeNode<E> {
private E element; /* data object */

private TreeNode<E> parent; /* unique parent node */

private TreeNode<E>[] children; /* list of child nodes */

private final int MAX_NUM_CHILDREN = 10; /* fixed max */

private int noc; /* number of child nodes */

public E getElement() { . . . }
public TreeNode<E> getParent() { . . . }
public TreeNode<E>[] getChildren() { . . . }

public void setElement(E element) { . . . }
public void setParent(TreeNode<E> parent) { . . . }
public void addChild(TreeNode<E> child) { . . . }
public void removeChildAt(int i) { . . . }

}

Exercise: Implement void removeChildAt(int i).
15 of 47

Testing: Connected Tree Nodes
Constructing a tree is similar to constructing a SLL :
@Test

public void test_general_trees_construction() {
TreeNode<String> agnarr = new TreeNode<>("Agnarr");
TreeNode<String> elsa = new TreeNode<>("Elsa");
TreeNode<String> anna = new TreeNode<>("Anna");

agnarr.addChild(elsa);
agnarr.addChild(anna);
elsa.setParent(agnarr);
anna.setParent(agnarr);

assertNull(agnarr.getParent());
assertTrue(agnarr == elsa.getParent());
assertTrue(agnarr == anna.getParent());
assertTrue(agnarr.getChildren().length == 2);
assertTrue(agnarr.getChildren()[0] == elsa);
assertTrue(agnarr.getChildren()[1] == anna);

}

16 of 47

Problem: Computing a Node’s Depth

● Given a node n, its depth is defined as:○ If n is the root , then n’s depth is 0.○ Otherwise, n’s depth is the depth of n’s parent plus one.
● Assuming under a generic class TreeUtilities<E>:

1 public int depth(TreeNode<E> n) {
2 if(n.getParent() == null) {
3 return 0;
4 }
5 else {
6 return 1 + depth(n.getParent());
7 }
8 }

17 of 47

Testing: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_depths() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
assertEquals(0, u.depth(david));
assertEquals(1, u.depth(ernesto));
assertEquals(1, u.depth(chris));
assertEquals(2, u.depth(elsa));
assertEquals(2, u.depth(anna));
assertEquals(3, u.depth(shirley));
assertEquals(3, u.depth(vanessa));
assertEquals(3, u.depth(peter));

}

18 of 47

Unfolding: Computing a Node’s Depth
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

depth(vanessa)= { vanessa.getParent() == elsa }
1 + depth(elsa)= { elsa.getParent() == chris }
1 + 1 + depth(chris)= { chris.getParent() == david }
1 + 1 + 1 + depth(David)= { David is the root }
1 + 1 + 1 + 0= 3

19 of 47

Problem: Computing a Tree’s Height
● Given node n, the height of subtree rooted at n is defined as:○ If n is a leaf , then the height of subtree rooted at n is 0.○ Otherwise, the height of subtree rooted at n is one plus the

maximum height of all subtrees rooted at n’s children.
● Assuming under a generic class TreeUtilities<E>:

1 public int height(TreeNode<E> n) {
2 TreeNode<E>[] children = n.getChildren();
3 if(children.length == 0) { return 0; }
4 else {
5 int max = 0;
6 for(int i = 0; i < children.length; i ++) {
7 int h = 1 + height(children[i]);
8 max = h > max ? h : max;
9 }

10 return max;
11 }
12 }

20 of 47

Testing: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

@Test

public void test_general_trees_heights() {
. . . /* constructing a tree as shown above */

TreeUtilities<String> u = new TreeUtilities<>();
/* internal nodes */

assertEquals(3, u.height(david));
assertEquals(2, u.height(chris));
assertEquals(1, u.height(elsa));
/* external nodes */

assertEquals(0, u.height(ernesto));
assertEquals(0, u.height(anna));
assertEquals(0, u.height(shirley));
assertEquals(0, u.height(vanessa));
assertEquals(0, u.height(peter));

}

21 of 47

Unfolding: Computing a Tree’s Height
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

height(subtree rooted at chris)= { chris is not a leaf }

MAX � 1 + height(subtree rooted at elsa),
1 + height(subtree rooted at anna) �= { elsa is not a leaf, anna is a leaf }

MAX
�����

1 +MAX
���

1 + height(subtree rooted at shirley),
1 + height(subtree rooted at vanessa),
1 + height(subtree rooted at peter)

��� ,
1 + 0

�����
= { shirley, vanessa, and peter are all leaves }

MAX
�����

1 +MAX
���

1 + 0,
1 + 0,
1 + 0

��� ,
1 + 0

�����
= 222 of 47

Exercises on General Trees

● Implement and test the following recursive algorithm:

public TreeNode<E>[] ancestors(TreeNode<E> n)

which returns the list of ancestors of a given node n.
● Implement and test the following recursive algorithm:

public TreeNode<E>[] descendants(TreeNode<E> n)

which returns the list of descendants of a given node n.

23 of 47

Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (≤ 2) children.
2. Each child node is labeled as either a left child or a right child .
3. A left child precedes a right child .

A binary tree (BT) is either:
○ An empty tree; or○ A nonempty tree with a root node r which has:
● a left subtree rooted at its left child , if any

● a right subtree rooted at its right child , if any

24 of 47

BT Terminology: LST vs. RST
For an internal node (with at least one child):
● Subtree rooted at its left child , if any, is called left subtree.
● Subtree rooted at its right child , if any, is called right subtree.

e.g.,

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Node A has:○ a left subtree rooted at node B○ a right subtree rooted at node C
25 of 47

BT Terminology: Depths, Levels
The set of nodes with the same depth d are said to be at the
same level d .

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

26 of 47

Background: Sum of Geometric Sequence

● Given a geometric sequence of n terms, where the initial term
is a and the common factor is r , the sum of all its terms is:

n−1
⌃

k = 0
(a ⋅ r k) = a ⋅ r0 + a ⋅ r1 + a ⋅ r2 + ⋅ ⋅ ⋅ + a ⋅ r n−1 = a ⋅ � r n − 1

r − 1
�

[See here to see how the formula is derived.]
● For the purpose of binary trees, maximum numbers of nodes

at all levels form a geometric sequence :
○ a = 1 [the root at Level 0]○ r = 2 [≤ 2 children for each internal node]○ e.g., Max total # of nodes at levels 0 to 4 = 1 + 2 + 4 + 8 + 16 = 1 ⋅ (25−1

2−1) = 31

27 of 47

BT Properties: Max # Nodes at Levels

Given a binary tree with height h:
● At each level:
○ Maximum number of nodes at Level 0: 20 = 1○ Maximum number of nodes at Level 1: 21 = 2○ Maximum number of nodes at Level 2: 22 = 4

. . .○ Maximum number of nodes at Level h: 2h

● Summing all levels:

Maximum total number of nodes:

20 + 21 + 22 + ⋅ ⋅ ⋅ + 2h��
h + 1 terms

= 1 ⋅ (2h + 1 − 1
2 − 1

) = 2h + 1 − 1

28 of 47

BT Terminology: Complete BTs
A binary tree with height h is considered as complete if:
● Nodes with depth ≤ h − 2 has two children.
● Nodes with depth h − 1 may have zero, one, or two child nodes.
● Children of nodes with depth h − 1 are filled from left to right.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? (2h −1)+1 = 2h

Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
29 of 47

BT Terminology: Full BTs
A binary tree with height h is considered as full if:

Each node with depth ≤ h − 1 has two child nodes.
That is, all leaves are with the same depth h.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? 2h+1 − 1
Q2: Maximum # of nodes of a complete BT? 2h+1 − 1

30 of 47

BT Properties: Bounding # of Nodes

Given a binary tree with height h, the number of nodes n is
bounded as:

h + 1 ≤ n ≤ 2h+1 − 1

● Shape of BT with minimum # of nodes?
A “one-path” tree (each internal node has exactly one child)

● Shape of BT with maximum # of nodes?
A tree completely filled at each level

31 of 47

BT Properties: Bounding Height of Tree

Given a binary tree with n nodes, the height h is bounded as:

log(n + 1) − 1 ≤ h ≤ n − 1

● Shape of BT with minimum height?
A tree completely filled at each level

n = 2h+1 − 1⇐⇒ n + 1 = 2h+1

⇐⇒ log(n + 1) = h + 1⇐⇒ log(n + 1) − 1 = h
● Shape of BT with maximum height?

A “one-path” tree (each internal node has exactly one child)

32 of 47

BT Properties: Bounding # of Ext. Nodes

Given a binary tree with height h, the number of external
nodes nE is bounded as:

1 ≤ nE ≤ 2h

● Shape of BT with minimum # of external nodes?
A tree with only one node (i.e., the root)

● Shape of BT with maximum # of external nodes?
A tree whose bottom level (with depth h) is completely filled

33 of 47

BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal
nodes nI is bounded as:

h ≤ nI ≤ 2h − 1

● Shape of BT with minimum # of internal nodes?○ Number of nodes in a “one-path” tree (h + 1) minus one○ That is, the “deepest” leaf node excluded
● Shape of BT with maximum # of internal nodes?○ A tree whose ≤ h − 1 levels are all completely filled○ That is: 20 + 21 + ⋅ ⋅ ⋅ + 2h−1��

n terms

= 2h − 1

34 of 47

BT Terminology: Proper BT
A binary tree is proper if each internal node has two children.

35 of 47

BT Properties: #s of Ext. and Int. Nodes
Given a binary tree that is:

○ nonempty and proper○ with nI internal nodes and nE external nodes

We can then expect that: nE = nI + 1
Proof by mathematical induction :

● Base Case:
A proper BT with only the root (an external node): nE = 1 and nI = 0.

● Inductive Case:
○ Assume a proper BT with n nodes (n > 1) with nI internal nodes and nE

external nodes such that nE = nI + 1.○ Only one way to create a larger BT (with n + 2 nodes) that is still proper
(with n′E external nodes and n′I internal nodes):

Convert an external node into an internal node.
n′E = (nE − 1) + 2 = nE + 1 ∧ n′I = nI + 1⇒ n′E = n′E + 1

36 of 47

Binary Trees: Application (1)
A decision tree is a proper binary tree used to to express the
decision-making process:○ Each internal node denotes a decision point: yes or no.○ Each external node denotes the consequence of a decision.

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the
money within the next 5 years?

Are you willing to accept risks in
exchange for higher expected returns?

Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,
bonds, and short-term instruments.

37 of 47

Binary Trees: Application (2)

An infix arithmetic expression can be represented using a
binary tree:
○ Each internal node denotes an operator (unary or binary).○ Each external node denotes an operand (i.e., a number).

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

○ To evaluate the expression that is represented by a binary tree,
certain traversal over the entire tree is required.

38 of 47

Tree Traversal Algorithms: Definition

● A traversal of a tree T systematically visits all T ’s nodes.
● Visiting each node may be associated with an action: e.g.,○ Print the node element.○ Determine if the node element satisfies certain property

(e.g., positive, matching a key).○ Accumulate the node element values for some global result.

39 of 47

Tree Traversal Algorithms: Common Types
Three common traversal orders:○ Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

○ Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

○ Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

40 of 47

Tree Traversal Algorithms: Preorder
Preorder: Visit parent, then visit child subtrees.
preorder (n)
visit and act on position n
for child c: children(n) { preorder (c) }

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

41 of 47

Tree Traversal Algorithms: Postorder
Postorder: Visit child subtrees, then visit parent.
postorder (n)

for child c: children(n) { postorder (c) }

visit and act on position n

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

42 of 47

Tree Traversal Algorithms: Inorder
Inorder (for BT): Visit left subtree, then parent, then right subtree.
inorder (n)

if (n has a left child lc) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

43 of 47

Index (1)

Learning Outcomes of this Lecture

General Trees

General Trees: Terminology (1)

General Trees: Terminology (2)

General Trees: Terminology (3)

General Trees: Terminology (4)

General Trees: Terminology (5)

General Trees: Example Node Depths

General Tree: Definition

General Tree: Important Characteristics

General Trees: Ordered Trees
44 of 47

Index (2)
General Trees: Unordered Trees

Implementation: Generic Tree Nodes (1)

Implementation: Generic Tree Nodes (2)

Testing: Connected Tree Nodes

Problem: Computing a Node’s Depth

Testing: Computing a Node’s Depth

Unfolding: Computing a Node’s Depth

Problem: Computing a Tree’s Height

Testing: Computing a Tree’s Height

Unfolding: Computing a Tree’s Height

Exercises on General Trees
45 of 47

Index (3)
Binary Trees (BTs): Definitions

BT Terminology: LST vs. RST

BT Terminology: Depths, Levels

Background: Sum of Geometric Sequence

BT Properties: Max # Nodes at Levels

BT Terminology: Complete BTs

BT Terminology: Full BTs

BT Properties: Bounding # of Nodes

BT Properties: Bounding Height of Tree

BT Properties: Bounding # of Ext. Nodes

BT Properties: Bounding # of Int. Nodes
46 of 47

Index (4)
BT Terminology: Proper BT

BT Properties: #s of Ext. and Int. Nodes

Binary Trees: Application (1)

Binary Trees: Application (2)

Tree Traversal Algorithms: Definition

Tree Traversal Algorithms: Common Types

Tree Traversal Algorithms: Preorder

Tree Traversal Algorithms: Postorder

Tree Traversal Algorithms: Inorder

47 of 47

