Asymptotic Analysis of Algorithms

EECS2011 X: Fundamentals of Data Structures Winter 2023

CHEN-WEI WANG

What You're Assumed to Know

 You will be required to *implement* Java classes and methods, and to test their correctness using JUnit.

Review them if necessary:

```
https://www.eecs.yorku.ca/~jackie/teaching/
lectures/index.html#EECS2030_F21
```

- Implementing classes and methods in Java [Weeks 1 2]
- o Testing methods in Java [Week 4]
- Also, make sure you know how to trace programs using a debugger:

```
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
```

Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

Learning Outcomes

This module is designed to help you learn about:

- Notions of Algorithms and Data Structures
- Measurement of the "goodness" of an algorithm
- Measurement of the *efficiency* of an algorithm
- Experimental measurement vs. Theoretical measurement
- Understand the purpose of asymptotic analysis.
- Understand what it means to say two algorithms are:
 - equally efficient, asymptotically
 - one is more efficient than the other, asymptotically
- Given an algorithm, determine its asymptotic upper bound.

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A well-specified computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers $(a_1, a_2, ..., a_n)$
 - Output: A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \le a'_2 \le \ldots \le a'_n$
 - An instance of the problem: (3, 1, 2, 5, 4)
- An *algorithm* is:
 - A solution to a well-specified computational problem
 - A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an *algorithm* manipulate well-chosen *data structure(s)*.

Measuring "Goodness" of an Algorithm

1. Correctness:

- Does the algorithm produce the expected output?
- · Use JUnit to ensure this.

2. Efficiency:

- Time Complexity: processor time required to complete
- Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

LASSONDE SCHOOL OF ENGINEERING

Measuring Efficiency of an Algorithm

- *Time* is more of a concern than is *storage*.
- Solutions that are meant to be run on a computer should run as fast as possible.
- Particularly, we are interested in how *running time* depends on two *input factors*:
 - 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
 - 2. structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- How do you determine the running time of an algorithm?
 - 1. Measure time via experiments
 - 2. Characterize time as a *mathematical function* of the input size

Measure Running Time via Experiments

- Once the algorithm is implemented (e.g., in Java):
 - Execute program on test inputs of various sizes & structures.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make sound statistical claims about the algorithm's running time, the set of input tests must be "reasonably" complete.

LASSONDE SCHOOL OF ENGINEERING

Example Experiment

- Computational Problem:
 - **Input**: A character *c* and an integer *n*
 - Output: A string consisting of n repetitions of character c
 e.g., Given input '*' and 15, output ************
- Algorithm 1 using String Concatenations:

```
public static String repeat1(char c, int n) {
   String answer = "";
   for (int i = 0; i < n; i ++) {
        answer += c;
   }
   return answer; }</pre>
```

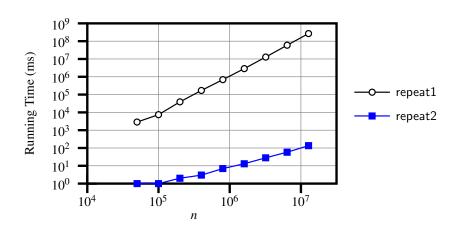
Algorithm 2 using append from StringBuilder:

```
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < n; i ++) {      sb.append(c); }
   return sb.toString(); }</pre>
```


Example Experiment: Detailed Statistics

n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,847,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421 (≈ 3 days)	135

- As *input size* is doubled, *rates of increase* for both algorithms are *linear*:
 - Running time of repeat1 increases by ≈ 5 times.
 - Running time of repeat2 increases by ≈ 2 times.



Experimental Analysis: Challenges

- **1.** An algorithm must be *fully implemented* (e.g., in Java) in order study its runtime behaviour **experimentally**.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a <u>higher-level analysis</u> to determine that one algorithm or data structure is more "superior" than others?
- Comparison of multiple algorithms is only meaningful when experiments are conducted under the <u>same</u> working environment of:
 - Hardware: CPU, running processes
 - Software: OS, JVM version
- 3. Experiments can be done only on a limited set of test inputs.
 - What if worst-case inputs were not included in the experiments?
 - What if "important" inputs were not included in the experiments?

LASSONDE SCHOOL OF ENGINEERING

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running time) of algorithms should be one that:
 - Allows us to calculate the <u>relative efficiency</u> (rather than <u>absolute</u> elapsed time) of algorithms in a way that is *independent of* the hardware and software environment.
 - Can be applied using a high-level description of the algorithm (without fully implementing it).
 - [e.g., Pseudo Code, Java Code (with "tolerances")]
 - Considers all possible inputs (esp. the worst-case scenario).
- We will learn a better approach that contains 3 ingredients:
 - 1. Counting primitive operations
 - 2. Approximating running time as a function of input size
 - **3.** Focusing on the *worst-case* input (requiring most running time)

Counting Primitive Operations

A *primitive operation* corresponds to a low-level instruction with a *constant execution time*.

(Variable) Assignment
 Indexing into an array
 Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
 Accessing an attribute of an object
 Returning from a method
 [e.g., acc.balance]
 [e.g., return result;]

Q: Is a *method call* a primitive operation?

A: Not in general. It may be a call to:

- o a "cheap" method (e.g., printing Hello World), or
- o an "expensive" method (e.g., sorting an array of integers)

1) LASSONDE

Example: Counting Primitive Operations (1) LASSON

```
int findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

```
# of times i < n in Line 3 is executed?
                                                              [ n ]
  # of times the loop body (Line 4 to Line 6) is executed? [n-1]
• I ine 2
                                      [1 indexing + 1 assignment]
           2
• Line 3: n+1
                                  [1 assignment + n comparisons]
• Line 4: (n-1)\cdot 2
                                      [1 indexing + 1 comparison]
• Line 5: (n-1) \cdot 2
                                      [1 indexing + 1 assignment]
• Line 6: (n-1) \cdot 2
                                       [1 addition + 1 assignment]

    Line 7:

                                                         [1 return]
```

7n - 2

14 of 41

Total # of Primitive Operations:

Example: Counting Primitive Operations (2)

Count the number of primitive operations for

```
boolean foundEmptyString = false;
int i = 0;
while (!foundEmptyString && i < names.length) {
   if (names[i].length() == 0) {
     /* set flag for early exit */
     foundEmptyString = true;
   }
   i = i + 1;
}</pre>
```

times the stay condition of the while loop is checked?

[between 1 and names.length + 1]

[worst case: names.length + 1 times]

times the body code of while loop is executed?

[between 0 and names.length]

[worst case: names.length times]

LASSONDE SCHOOL OF ENGINEERING

From Absolute RT to Relative RT

- Each primitive operation (PO) takes approximately the <u>same</u>, <u>constant</u> amount of time to execute. [say t]
 - The <u>absolute</u> value of *t* depends on the *execution environment*.
- The number of primitive operations required by an algorithm should be proportional to its actual running time on a specific working environment.

```
e.g., findMax (int[] a, int n) has 7n - 2 POs
RT = (7n - 2) \cdot t
```

Say two algorithms with RT $(7n - 2) \cdot t$ and RT $(10n + 3) \cdot t$.

⇒ It suffices to compare their *relative* running time:

$$7n - 2$$
 vs. $10n + 3$.

 To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.

Example: Approx. # of Primitive Operations LASSOND

 Given # of primitive operations counted precisely as 7n – 2, we view it as

$$7 \cdot n^1 - 2 \cdot n^0$$

- We say
 - *n* is the *highest power*
 - o 7 and 2 are the *multiplicative constants*
 - o 2 is the lower term
- When approximating a function (considering that input size may be very large):
 - Only the *highest power* matters.
 - multiplicative constants and lower terms can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*

Exercise: Consider $7n + 2n \cdot log \ n + 3n^2$:

- highest power?
- multiplicative constants?
- lower terms?

 $[n^2]$

[7, 2, 3]

 $[7n + 2n \cdot log n]$

Approximating Running Time as a Function of Input Size

Given the **high-level description** of an algorithm, we associate it with a function f, such that $\frac{f(n)}{f(n)}$ returns the **number of primitive operations** that are performed on an **input of size** n.

$$\circ$$
 $f(n) = 5$

$$\circ$$
 $f(n) = log_2 n$

$$\circ \ f(n) = 4 \cdot n$$

$$\circ$$
 $f(n) = n^2$

$$\circ$$
 $f(n) = n^3$

$$\circ$$
 $f(n) = 2^n$

[constant]

[logarithmic]

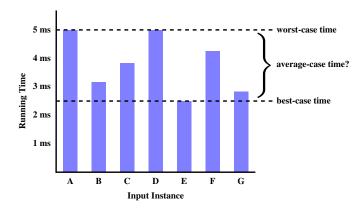
[linear]

[quadratic]

[cubic]

[exponential]

Focusing on the Worst-Case Input



- Average-case analysis calculates the <u>expected running time</u> based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour in the limit:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes <u>without</u> bound
 - e.g., Contrast: $RT_1(n) = n$ vs. $RT_2(n) = n^2$
- Allows us to compare the <u>relative</u> performance of alternative algorithms:
 - For large enough inputs, the <u>multiplicative constants</u> and <u>lower-order terms</u> of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, **asymptotically**.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, **asymptotically**.

Three Notions of Asymptotic Bounds

We may consider three kinds of **asymptotic bounds** for the **running time** of an algorithm:

•	Asymptotic	upper	bound	[(O]
•	Asymptotic	lower b	ound	2]	Ω]
•	Asymptotic	tight bo	und	[6	Э]

Asymptotic Upper Bound: Definition

- Let f(n) and g(n) be functions mapping positive integers (input size) to positive real numbers (running time).
 - o *f(n)* characterizes the running time of some algorithm.
 - **O(g(n))**:
 - denotes a collection of functions
 - consists of <u>all</u> functions that can be <u>upper bounded by g(n)</u>, starting at <u>some point</u>, using some <u>constant factor</u>
- $f(n) \in O(g(n))$ if there are:
 - A real *constant c* > 0
 - An integer **constant** $n_0 \ge 1$ such that:

$$f(n) \le c \cdot g(n)$$
 for $n \ge n_0$

- For each member function f(n) in O(g(n)), we say that:
 - \circ $f(n) \in O(g(n))$

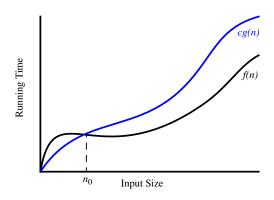
[f(n) is a member of "big-O of g(n)"]

 \circ f(n) is O(g(n))

[f(n) is "big-O of g(n)"]

 \circ f(n) is order of g(n)

Asymptotic Upper Bound: Visualization



From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$8n + 5 \le c \cdot n$$

Can we choose c = 9? What should the corresponding n_0 be?

n	8n + 5	9n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

. .

Therefore, we prove it by choosing c = 9 and $n_0 = 5$.

We may also prove it by choosing c = 13 and $n_0 = 1$. Why?

Prove: The function $f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1$ is $O(n^4)$.

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 \le c \cdot n^4$$

$$f(1) = 5 + 3 + 2 + 4 + 1 = 15$$

Choose c = 15 and $n_0 = 1!$

LASSONDE SCHOOL OF ENGINEERING

Asymptotic Upper Bound: Proposition (1)

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d$$

and a_0, a_1, \dots, a_d are integers, then f(n) is $O(n^d)$.

We prove by choosing

$$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $n_0 = 1$

• We know that for $n \ge 1$:

$$n^0 \le n^1 \le n^2 \le \cdots \le n^d$$

• Upper-bound effect: $n_0 = 1$? $[f(1) \le (|a_0| + |a_1| + \dots + |a_d|) \cdot 1^d]$

$$a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$$

Upper-bound effect holds?

$$[f(n) \le (|a_0| + |a_1| + \dots + |a_d|) \cdot n^d]$$

$$a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d \le |a_0| \cdot n^d + |a_1| \cdot n^d + \dots + |a_d| \cdot n^d$$

Asymptotic Upper Bound: Proposition (2)

$$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$$

If a function f(n) is **upper bounded by** another function g(n) of degree d, $d \ge 0$, then f(n) is <u>also</u> **upper bounded by** all other functions of a **strictly higher degree** (i.e., d + 1, d + 2, etc.).

e.g., Family of O(n) contains all f(n) that can be **upper** bounded by g(n) = n:

 n^0 , $2n^0$, $3n^0$, ... n, 2n, 3n, ...

[functions with degree 0] [functions with degree 1]

e.g., Family of $O(n^2)$ contains all f(n) that can be **upper** bounded by $g(n) = n^2$:

 n^0 , $2n^0$, $3n^0$, ... n, 2n, 3n, ... n^2 , $2n^2$, $3n^2$

[functions with degree 0] [functions with degree 1]

 n^2 , $2n^2$, $3n^2$, ... [fund

[functions with degree 2]

Asymptotic Upper Bound: More Examples

•
$$5n^2 + 3n \cdot logn + 2n + 5$$
 is $O(n^2)$

$$[c = 15, n_0 = 1]$$

•
$$20n^3 + 10n \cdot logn + 5$$
 is $O(n^3)$

$$[c = 35, n_0 = 1]$$

•
$$3 \cdot logn + 2$$
 is $O(logn)$

$$[c = 5, n_0 = 2]$$

- ∘ Why can't n₀ be 1?
- Choosing $n_0 = 1$ means $\Rightarrow f(\boxed{1})$ is upper-bounded by $c \cdot log \boxed{1}$:
 - We have $f(1) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot log \mid 1 \mid$, which is 0.

$$\Rightarrow f(1)$$
 is **not** upper-bounded by $c \cdot log 1$

[Contradiction!]

•
$$2^{n+2}$$
 is $O(2^n)$

$$[c = 4, n_0 = 1]$$

•
$$2n + 100 \cdot logn$$
 is $O(n)$

$$[c = 102, n_0 = 1]$$

Using Asymptotic Upper Bound Accurately

 Use the big-O notation to characterize a function (of an algorithm's running time) as closely as possible.

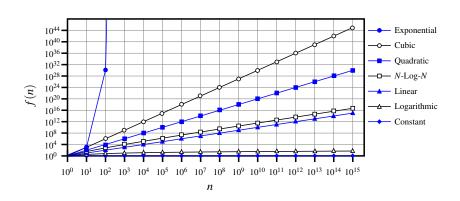
For example, say $f(n) = 4n^3 + 3n^2 + 5$:

- Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset \dots$
- It is the *most accurate* to say that f(n) is $O(n^3)$.
- It is *true*, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
- It is *false* to say that f(n) is $O(n^2)$, O(n), or O(1).
- Do <u>not</u> include *constant factors* and *lower-order terms* in the big-O notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

upper bound	class	cost	
<i>O</i> (1)	constant	cheapest	
O(log(n))	logarithmic		
<i>O</i> (<i>n</i>)	linear		
$O(n \cdot log(n))$	"n-log-n"		
$O(n^2)$	quadratic		
$O(n^3)$	cubic		
$O(n^k), k \ge 1$	polynomial		
$O(a^n), a > 1$	exponential	most expensive	

Rates of Growth: Comparison



Upper Bound of Algorithm: Example (1)

```
1 int maxOf (int x, int y) {
2   int max = x;
3   if (y > x) {
     max = y;
5   }
6   return max;
}
```

- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is O(1).
- That is, this is a *constant-time* algorithm.

Upper Bound of Algorithm: Example (2)

```
int findMax (int[] a, int n) {
   currentMax = a[0];
   for (int i = 1; i < n; ) {
      if (a[i] > currentMax) {
        currentMax = a[i]; }
      i ++ }
   return currentMax; }
```

- From last lecture, we calculated that the # of primitive operations is 7n − 2.
- Therefore, the running time is O(n).
- That is, this is a *linear-time* algorithm.

Upper Bound of Algorithm: Example (3)

```
boolean containsDuplicate (int[] a, int n) {
  for (int i = 0; i < n; ) {
    for (int j = 0; j < n; ) {
      if (i != j && a[i] == a[j]) {
      return true; }
      j ++; }
    i ++; }
  return false; }</pre>
```

- Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a *quadratic* algorithm.

Upper Bound of Algorithm: Example (4)

```
int sumMaxAndCrossProducts (int[] a, int n) {
  int max = a[0];
  for(int i = 1; i < n; i ++) {
    if (a[i] > max) { max = a[i]; }
  }
  int sum = max;
  for (int j = 0; j < n; j ++) {
    for (int k = 0; k < n; k ++) {
        sum += a[j] * a[k]; }
  return sum; }
</pre>
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1 , c_2 , c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

Upper Bound of Algorithm: Example (5)

- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

Beyond this lecture ...

 You will be required to *implement* Java classes and methods, and to test their correctness using JUnit.

Review them if necessary:

```
https://www.eecs.yorku.ca/~jackie/teaching/
lectures/index.html#EECS2030_F21
```

- Implementing classes and methods in Java [Weeks 1 2]
- Testing methods in Java
 [Week 4]
- Also, make sure you know how to trace programs using a debugger:

```
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
```

Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

Index (1)

What You're Assumed to Know Learning Outcomes Algorithm and Data Structure

Measuring "Goodness" of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization

Experimental Analysis: Challenges

Moving Beyond Experimental Analysis

Index (2)

Counting Primitive Operations

Example: Counting Primitive Operations (1)

Example: Counting Primitive Operations (2)

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations

Approximating Running Time as a Function of Input Size

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

Index (3)

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Example (1)

Asymptotic Upper Bound: Example (2)

Asymptotic Upper Bound: Proposition (1)

Asymptotic Upper Bound: Proposition (2)

Asymptotic Upper Bound: More Examples

Using Asymptotic Upper Bound Accurately

Classes of Functions

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

Index (4)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

Beyond this lecture ...