EECS2011-X Winter 2023
Fundamentals of Data Structures
Example Exam Questions
April 23, 2023
Time Limit: 180 Minutes

Name (Print):

PPY Login

Signature

This exam contains 6 pages (including this cover page) and 3 problems.

Check to see if any pages are missing.

Do not detach any question pages from the booklet.

Enter all requested information on the top of this page before you start the exam, and put your initials on the top of every page, in case the pages become separated.

Attempt all questions. Answer each question in the boxed space provided.

The following rules apply:

- NO QUESTIONS DURING THE EXAM.
- If a question is ambiguous or unclear, then please write your assumptions and proceed to answer the question.
- All answers must appear in the boxed areas in this booklet.
- Only writings within the designated answer boxes will be graded. Plan your answers on the sketch paper provided.
- Write in valid Java syntax wherever required.
- Where descriptive answers are requested, use complete sentences and paragraphs. Be precise and concise.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive credit. A correct answer, unsupported by calculations or explanation will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Do not write in this table which contains your raw mark scores.

Problem		Points	Score
	1	20	
2	30		
2	50		
Total:		100	

1. Consider the following fragment of Java code:
```
boolean containsDuplicate (int[] a, int n) \{
    for (int \(i=0 ; i<n ;)\) \{
        for (int \(j=0 ; j<n\); ) \{
            if (i != \(j \& \& a[i]==a[j]\) ) \{
                return true; \}
            j ++; \}
        i ++; \}
    return false; \}
```

Derive, in the worst case, the number of primitive operations executed to return the result.
2. (a) Given a BST rooted at node n, describe how an entry (k, v) can be inserted.

Requirements. Do not write any Java code. Describe the steps precisely and concisely.
\square
(b) Explain why an inorder traversal of a binary search tree produces a sequence of entries whose keys are sorted in an increasing order.
\square
3. (a) Consider the following classes of functions:

- $O(n)$
- $O(\log (n))$
- $O\left(n^{2}\right)$
- $O(1)$
- $O\left(2^{n}\right)$
- $O\left(n^{3}\right)$
- $O(n \cdot \log (n))$

Say each of the above functions maps from input size n to the approximated algorithm running time. Sort, from left to right, the above classes of functions from the cheapest to the most expensive.
Caution: You will lose all marks if the order is not completely correct.
\square
[of 10 marks]
For Part (b) to Part (d), consider the following statements:
(A) $3 n+7$ is $O(n \cdot \log (n))$
(B) $3 n+7$ is $O(n)$
(C) $3 n+7$ is $O(1)$
(D) $3 n+7$ is $O\left(2^{n}\right)$
(E) $3 n+7$ is $O(\log (n))$
(F) $3 n+7$ is $O\left(n^{2}\right)$
(b) Which of the above statement or statements are correct? Do not guess: you lose all marks if you make a mistake.

[of 10 marks]
(c) Among the above statement or statements that are correct, which one is the most accurate?
\square
[of 10 marks$]$
(d) Justify your answer to the previous question. That is, clearly explain why it is more accurate than all other correct statements.
\square
[of 10 marks]
(e) Prove that $f(n)=4 n^{3}-5 n^{2}+59+n^{4}+9 n$ is $O\left(n^{4}\right)$.

[of 10 marks]

This is a blank page for sketching purpose. You may detach it from the exam booklet.
Do not detach other question pages from the exam booklet.

This is a blank page for sketching purpose. You may detach it from the exam booklet.
Do not detach other question pages from the exam booklet.

