Introduction

MEB: Prologue, Chapter 1

EECS3342 Z: System Specification and Refinement Winter 2022

CHEN-WEI WANG

This module is designed to help you understand:

- What a safety-critical system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development

What is a Safety-Critical System (SCS)?

A safety-critical system (SCS) is a system whose failure or malfunction has one (or more) of the following consequences:

- death or serious injury to people
- loss or severe damage to equipment/property
- · harm to the environment

ASSOND

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,
 - fairness and loyalty to the practitioner's associates, employers, clients, subordinates and employees;
 - 2. fidelity to public needs;
 - 3. devotion to *high ideals* of personal honour and professional integrity;
 - **4.** *knowledge* of developments in the area of professional engineering relevant to any services that are undertaken; and
 - competence in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
 - suspension or termination of professional licenses
 - civil law suits

Developing Safety-Critical Systems

Industrial standards in various domains list *acceptance criteria* for mission- or safety-critical systems that practitioners need to comply with: e.g.,

Aviation Domain: **RTCA DO-178C** "Software Considerations in Airborne Systems and Equipment Certification"

Nuclear Domain: **IEEE 7-4.3.2** "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"

Two important criteria are:

- 1. System *requirements* are precise and complete
- **2.** System *implementation* conforms to the requirements But how do we accomplish these criteria?

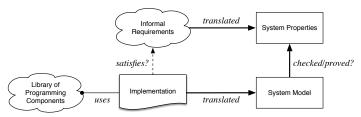
Using Formal Methods for Certification

- A formal method (FM) is a mathematically rigorous technique for the specification, development, and verification of software and hardware systems.
- **DO-333** "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods:

The use of **formal methods** is motivated by the expectation that, as in other engineering disciplines, performing appropriate **mathematical analyses** can contribute to establishing the **correctness** and **robustness** of a design.

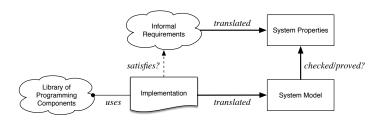
- FMs, because of their mathematical basis, are capable of:
 - Unambiguously describing software system requirements.
 - Enabling *precise* communication between engineers.
 - Providing verification evidence of:
 - A formal representation of the system being healthy.
 - A formal representation of the system satisfying safety properties.

Verification: Building the Product Right?



- Implementation built via reusable programming components.
- Goal : Implementation Satisfies Intended Requirements
- To verify this, we *formalize* them as a *system model* and a set of (e.g., safety) *properties*, using the specification language of a theorem prover (EECS3342) or a model checker (EECS4315).
- Two Verification Issues:
 - 1. Library components may not behave as intended.
 - 2. Successful checks/proofs ensure that we *built the product right*, with respect to the informal requirements. But...

Validation: Building the Right Product?



- Successful checks/proofs
 ⇒ We built the right product.
- The target of our checks/proofs may not be valid:
 The requirements may be ambiguous, incomplete, or contradictory.
- Solution: Precise Documentation [EECS4312]

Model-Based System Development

- Modelling and formal reasoning should be performed <u>before</u> implementing/coding a system.
 - A system's *model* is its *abstraction*, filtering irrelevant details.
 A system *model* means as much to a software engineer as a *blueprint* means to an architect.
 - A system may have a list of models, "sorted" by accuracy:

$$\langle m_0, m_1, \ldots, \boxed{m_i}, \boxed{m_j}, \ldots, m_n \rangle$$

- The list starts by the <u>most</u> **abstract** model with least details.
- A more abstract model m_i is said to be refined by its subsequent, more concrete model m_j.
- The list ends with the most concrete/refined model with most details.
- It is far easier to reason about:
 - a system's *abstract* models (rather than its full *implementation*)
 - **refinement steps** between subsequent models
- The final product is **correct by construction**.

- We will study example models of programs/codes, as well as proofs on them, drawn from various application domains:
 - SEQUENTIAL Programs [single thread of control]
 - CONCURRENT Programs [interleaving processes]
 - DISTRIBUTED Systems [(geographically) distributed parties]
 - REACTIVE Systems [sensors vs. actuators]
- The Rodin Platform will be used to:
 - Construct system models using the Even-B notation.
 - Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.

Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Model-Based System Development

Learning through Case Studies

Review of Math

MEB: Chapter 9

EECS3342 Z: System Specification and Refinement Winter 2022

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you **review**:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Unary logical operator: negation (¬)

p	$\neg p$
true	false
false	true

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
true	true	true	true	true		true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - We call *p* the antecedent, assumption, or premise.
 - We call q the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - ∘ antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
 - \circ consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - \circ honoured if the obligations fulfilled. [(true \Rightarrow true) \iff true]
 - \circ breached if the obligations violated. [(true \Rightarrow false) \iff false]
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

p	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$: $\circ q$ if p

q is true if p is true

 \circ p only if q

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

Note. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"):

p if q

 $[q \Rightarrow p]$ $[p \Rightarrow q]$

- p only if q
 - For *q* to be *true*, it is sufficient to have *p* being *true*.

• q is **necessary** for p

p is sufficient for q

[similar to p only if q]

If *p* is *true*, then it is necessarily the case that *q* is also *true*. Otherwise, if *p* is *true* but *q* is *false*, then ($true \Rightarrow false$) $\equiv false$.

q unless ¬p

[When is $p \Rightarrow q \text{ true?}$]

If q is true, then $p \Rightarrow q$ true regardless of p. If q is false, then $p \Rightarrow q$ cannot be true unless p is false.

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- **Inverse**: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- Converse: $q \Rightarrow p$ [swap antecedent and consequence]
- **Contrapositive**: $\neg q \Rightarrow \neg p$ [inverse of converse]

• **Axiom**: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

• **Theorem**: Identity of ⇒

$$true \Rightarrow p \equiv p$$

• **Theorem**: Zero of ⇒

$$false \Rightarrow p \equiv true$$

• Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:

```
\circ \mathbb{Z}: the set of integers [-\infty, ..., -1, 0, 1, ..., +\infty] \circ \mathbb{N}: the set of natural numbers [0, 1, ..., +\infty]
```

- Variable(s) in a predicate may be quantified:
 - Universal quantification:
 All values that a variable may take satisfy certain property.
 e.g., Given that i is a natural number, i is always non-negative.
 - Existential quantification:
 Some value that a variable may take satisfies certain property.
 e.g., Given that i is an integer, i can be negative.

Predicate Logic (2.1): Universal Q. (∀)

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied.

```
\circ \forall i \bullet i \in \mathbb{N} \Rightarrow i > 0
\circ \forall i \bullet i \in \mathbb{Z} \Rightarrow i > 0
\circ \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j
```

[true] [false]

[false]

- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?

```
• Hint. When is R \Rightarrow P true?
```

[true
$$\Rightarrow$$
 true, false \Rightarrow _]

- Show that for all instances of $x \in X$ s.t. R(x), P(x) holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.
- **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ **false**?
 - **Hint.** When is $R \Rightarrow P$ **false**?

[$true \Rightarrow false$]

• Give a *witness/counterexample* of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

Predicate Logic (2.2): Existential Q. (∃)

- An existential quantification has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.

```
\begin{array}{lll}
\circ & \exists i \bullet i \in \mathbb{N} \land i \geq 0 \\
\circ & \exists i \bullet i \in \mathbb{Z} \land i \geq 0 \\
\circ & \exists i \bullet i \bullet i \in \mathbb{Z} \land i \in \mathbb{Z} \land i \leq i \lor i \searrow i
\end{array}
```

[true]

 $\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land i < j \lor i > j$

[true]

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is *R* ∧ *P true*?

[true \(\) true]

- Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
- **2.** How to prove $(\exists X \bullet R \land P)$ *false*?
 - **Hint.** When is $R \wedge P$ **false**?

[true ∧ false, false ∧ _]

- Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

10 of 41

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 1$. Integer 1 (a witness/counterexample) in the range between 1 and 10 is *not* greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
 Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are not greater than 10.

Predicate Logic (4): Switching Quantificatio

Conversions between ∀ and ∃:

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P)$$
$$(\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

LASSONDE

Sets: Definitions and Membership

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - o Order in which elements are arranged does not matter.
 - o An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.

```
e.g., \{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}
```

- An empty set (denoted as {} or ∅) has no members.
- We may check if an element is a *member* of a set:

e.g.,
$$5 \in \{1, 3, 5, 7, 9\}$$

e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$

[true] [true]

• The number of elements in a set is called its *cardinality*.

e.g.,
$$|\varnothing| = 0$$
, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a **subset** of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$$

• S_1 and S_2 are **equal** iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a **proper subset** of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

$? \subseteq S$ always holds	$[\varnothing \text{ and } S]$
? ⊂ S always fails	[8]
? $\subset S$ holds for some S and fails for some S	[Ø]
$S_1 = S_2 \Rightarrow S_1 \subseteq S_2$?	[Yes]
$S_1 \subseteq S_2 \Rightarrow S_1 = S_2$?	[No]

Set Operations

Given two sets S_1 and S_2 :

• *Union* of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

 Difference of S₁ and S₂ is a set whose members are in S₁ but not S₂.

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

Power Sets

The *power set* of a set S is a set of all S's subsets.

$$\mathbb{P}(S) = \{ s \mid s \subseteq S \}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality 0, 1, 2, or 3:

$$\left\{ \begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array} \right\}$$

Exercise: What is $\mathbb{P}(\{1,2,3,4,5\}) \setminus \mathbb{P}(\{1,2,3\})$?

Set of Tuples

Given n sets S_1, S_2, \ldots, S_n , a *cross/Cartesian product* of theses sets is a set of n-tuples.

Each n-tuple (e_1, e_2, \dots, e_n) contains n elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \leq i \leq n\}$$

e.g., $\{a,b\} \times \{2,4\} \times \{\$,\&\}$ is a set of triples:

$$\{a,b\} \times \{2,4\} \times \{\$,\&\}$$

$$= \{ (e_1,e_2,e_3) \mid e_1 \in \{a,b\} \land e_2 \in \{2,4\} \land e_3 \in \{\$,\&\} \}$$

$$= \{ (a,2,\$), (a,2,\&), (a,4,\$), (a,4,\&), \}$$

$$= \{ (b,2,\$), (b,2,\&), (b,4,\$), (b,4,\&) \}$$

Relations (1): Constructing a Relation

A <u>relation</u> is a set of mappings, each being an **ordered pair** that maps a member of set S to a member of set T.

e.g., Say
$$S = \{1, 2, 3\}$$
 and $T = \{a, b\}$

- ∘ Ø is an empty relation.
- \circ $S \times T$ is the *maximum* relation (say r_1) between S and T, mapping from each member of S to each member in T:

$$\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

∘ $\{(x,y) \mid (x,y) \in S \times T \land x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in T:

$$\{(2,a),(2,b),(3,a),(3,b)\}$$

Relations (2.1): Set of Possible Relations

 We use the power set operator to express the set of all possible relations on S and T:

$$\mathbb{P}(S \times T)$$

Each member in $\mathbb{P}(S \times T)$ is a relation.

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$r: \mathbb{P}(S \times T)$$

Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Relations (2.2): Exercise

Enumerate $\{a,b\} \leftrightarrow \{1,2,3\}$.

- Hints:
 - You may enumerate all relations in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$ via their cardinalities: $0, 1, \ldots, |\{a,b\} \times \{1,2,3\}|$.
 - What's the *maximum* relation in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$? $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- The answer is a set containing <u>all</u> of the following relations:
 - Relation with cardinality 0: Ø
 - How many relations with cardinality 1? $[(|\{a,b\} \times \{1,2,3\}|) = 6]$
 - How many relations with cardinality 2? $\left[{|\{a,b\} \times \{1,2,3\}| \choose 2} = \frac{6 \times 5}{2!} = 15 \right]$

. . .

• Relation with cardinality $|\{a,b\} \times \{1,2,3\}|$:

$$\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

Relations (3.1): Domain, Range, Inverse

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- **domain** of r: set of first-elements from r
 - Definition: $dom(r) = \{ d \mid (d, r') \in r \}$
 - e.g., $dom(r) = \{a, b, c, d, e, f\}$
 - ASCII syntax: dom(r)
- |range| of r: set of second-elements from r
 - Definition: $ran(r) = \{ r' \mid (d, r') \in r \}$
 - \circ e.g., ran(r) = {1, 2, 3, 4, 5, 6}
 - ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - e.g., $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
 - ASCII syntax: r~

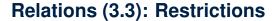
Relations (3.2): Image

Given a relation

```
r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
```

relational image of r over set s: sub-range of r mapped by s.

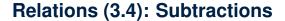
- Definition: $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$
- e.g., $r[{a,b}] = {1,2,4,5}$
- ASCII syntax: r[s]



Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- **domain restriction** of r over set ds: sub-relation of r with domain ds.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
 - e.g., $\{a,b\} \triangleleft r = \{(\mathbf{a},1), (\mathbf{b},2), (\mathbf{a},4), (\mathbf{b},5)\}$
 - ASCII syntax: ds <| r
- range restriction of r over set rs: sub-relation of r with range rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(a,1),(b,2),(d,1),(e,2)\}$
 - ASCII syntax: r |> rs



Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- *domain subtraction* of *r* over set *ds* : sub-relation of *r* with domain <u>not</u> *ds*.
 - Definition: $ds \leqslant r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a,b\} \le r = \{(\mathbf{c},3), (\mathbf{c},6), (\mathbf{d},1), (\mathbf{e},2), (\mathbf{f},3)\}$
 - ASCII syntax: ds <<| r
- range subtraction of r over set rs: sub-relation of r with range not rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - e.g., $r \triangleright \{1,2\} = \{\{(c,3),(a,4),(b,5),(c,6),(f,3)\}\}$
 - ASCII syntax: r |>> rs

Relations (3.5): Overriding

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

overriding of r with relation t: a relation which agrees with t within dom(t), and agrees with r outside dom(t)

o Definition:
$$r \Leftrightarrow t = \{ (d, r') \mid (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}$$

o e.g.,

$$r \Leftrightarrow \{(a,3), (c,4)\}$$

$$= \underbrace{\{(a,3), (c,4)\} \cup \{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\{(d,r') \mid (d,r') \in r \land d \notin dom(t)\}}$$

$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

ASCII syntax: r <+ t

Relations (4): Exercises

1. Define r[s] in terms of other relational operations.

Answer:
$$r[s] = ran(s \triangleleft r)$$

e.g., $r[\{a,b\}] = ran(\{(a,1),(b,2),(a,4),(b,5)\}) = \{1,2,4,5\}$

2. Define $r \triangleleft t$ in terms of other relational operators.

Answer:
$$r \Leftrightarrow t = t \cup (\text{dom}(t) \Leftrightarrow r)$$

e.g.,
$$r \Leftrightarrow \underbrace{\{(a,3),(c,4)\}}_{t} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{\text{dom}(t) \Leftrightarrow r}$$

$$= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}$$

Functions (1): Functional Property

• A *relation* r on sets S and T (i.e., $r \in S \leftrightarrow T$) is also a *function* if it satisfies the *functional property*:

```
isFunctional(r) \iff \forall s, t_1, t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2)
```

- That is, in a *function*, it is <u>forbidden</u> for a member of S to map to <u>more than one</u> members of T.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say S = {1,2,3} and T = {a,b}, which of the following relations satisfy the above functional property?
 - $\begin{array}{ll} \circ & S \times T & [\text{No}\,] \\ & \underline{\textit{Witness}}\,1: \, (1,a), (1,b); \, \underline{\textit{Witness}}\,2: \, (2,a), (2,b); \, \underline{\textit{Witness}}\,3: \, (3,a), (3,b). \\ \circ & (S \times T) \setminus \{(x,y) \mid (x,y) \in S \times T \land x = 1\} & [\text{No}\,] \\ & \underline{\textit{Witness}}\,1: \, (2,a), (2,b); \, \underline{\textit{Witness}}\,2: \, (3,a), (3,b) \\ \circ & \{(1,a), (2,b), (3,a)\} & [\text{Yes}\,] \\ \circ & \{(1,a), (2,b)\} & [\text{Yes}\,] \end{array}$

Functions (2.1): Total vs. Partial

Given a **relation** $r \in S \leftrightarrow T$

• r is a partial function if it satisfies the functional property:

$$r \in S \nrightarrow T \iff (isFunctional(r) \land dom(r) \subseteq S)$$

Remark. $r \in S \Rightarrow T$ means there **may (or may not) be** $s \in S$ s.t. r(s) is **undefined**.

- ∘ e.g., $\{\{(\mathbf{2},a),(\mathbf{1},b)\},\{(\mathbf{2},a),(\mathbf{3},a),(\mathbf{1},b)\}\}$ ⊆ $\{1,2,3\}$ \Rightarrow $\{a,b\}$
- ASCII syntax: r : +->
- r is a *total function* if there is a mapping for each $s \in S$:

$$|r \in S \rightarrow T| \iff (\text{isFunctional}(r) \land \text{dom}(r) = S)$$

Remark. $r \in S \rightarrow T$ implies $r \in S \rightarrow T$, but <u>not</u> vice versa. Why?

- ∘ e.g., $\{(\mathbf{2}, a), (\mathbf{3}, a), (\mathbf{1}, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\}$
- \circ e.g., $\{(\mathbf{2}, a), (\mathbf{1}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$
- ASCII syntax: r : -->

Functions (2.2):

Relation Image vs. Function Application

- Recall: A function is a relation, but a relation is not necessarily a function.
- Say we have a *partial function* $f \in \{1,2,3\} \Rightarrow \{a,b\}$:

$$f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$$

With f wearing the relation hat, we can invoke relational images:

$$f[{3}] = {a}$$

 $f[{1}] = {b}$
 $f[{2}] = \emptyset$

Remark. Given that the inputs are **singleton** sets (e.g., $\{3\}$), so are the output sets (e.g., $\{a\}$). \therefore Each member in the domain is mappe to at most one member in the range.

• With *f* wearing the *function* hat, we can invoke *functional applications*:

$$f(3) = a$$

 $f(1) = b$
 $f(2)$ is undefined

Functions (2.3): Modelling Decision

An organization has a system for keeping **track** of its employees as to where they are on the premises (e.g., ``Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- Employee denotes the set of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.
- Is it appropriate to model/formalize such a track functionality as a relation (i.e., where_is ∈ Employee ↔ Location)?
 Answer. No an employee cannot be at distinct locations simultaneously.
 e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- How about a total function (i.e., where_is ∈ Employee → Location)?
 Answer. No in reality, not necessarily all employees show up.
 e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
- How about a partial function (i.e., where_is ∈ Employee → Location)?
 Answer. Yes this addresses the inflexibility of the total function.

Functions (3.1): Injective Functions

Given a *function f* (either <u>partial</u> or <u>total</u>):

 f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T.

```
isInjective(f)
      \Leftrightarrow
     \forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)
• If f is a partial injection, we write: f \in S \Rightarrow T
     • e.g., \{\emptyset, \{(1, \mathbf{a})\}, \{(2, \mathbf{a}), (3, \mathbf{b})\}\} \subseteq \{1, 2, 3\} \Rightarrow \{a, b\}
     • e.g., \{(1, \mathbf{b}), (2, a), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}
                                                                                                    [total, not inj.]
     \circ e.g., \{(1, \mathbf{b}), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}
                                                                                                 [partial, not inj.]
     ASCII syntax: f : >+>
• If f is a total injection, we write: |f \in S \rightarrow T|
     \circ e.g., \{1,2,3\} \rightarrow \{a,b\} = \emptyset
     • e.g., \{(2,d),(1,a),(3,c)\}\in\{1,2,3\} \rightarrow \{a,b,c,d\}
     ∘ e.g., \{(\mathbf{2},d),(\mathbf{1},c)\} \notin \{1,2,3\} \rightarrow \{a,b,c,d\}
                                                                                                    [ not total, inj. ]
     \circ e.g., \{(2,\mathbf{d}),(1,c),(3,\mathbf{d})\} \notin \{1,2,3\} \rightarrow \{a,b,c,d\}
                                                                                                    [total, not inj.]
     ASCII syntax: f : >->
```


Functions (3.2): Surjective Functions

Given a *function f* (either <u>partial</u> or <u>total</u>):

f is surjective/onto/a surjection if f maps to all members of T.

$$isSurjective(f) \iff ran(f) = T$$

```
• If f is a partial surjection, we write: f \in S \nrightarrow T

• e.g., \{\{(1,\mathbf{b}),(2,\mathbf{a})\},\{(1,\mathbf{b}),(2,\mathbf{a}),(3,\mathbf{b})\}\}\subseteq\{1,2,3\} \nrightarrow \{a,b\}

• e.g., \{(2,\mathbf{a}),(1,\mathbf{a}),(3,\mathbf{a})\}\notin\{1,2,3\} \nrightarrow \{a,b\} [total, not sur.]

• e.g., \{(2,\mathbf{b}),(1,\mathbf{b})\}\notin\{1,2,3\} \nrightarrow \{a,b\} [partial, not sur.]

• ASCII syntax: f : +->>
```

• If f is a **total surjection**, we write: $f \in S \twoheadrightarrow T$

```
 \begin{array}{ll} \circ & \text{e.g., } \{ \, \{(2,a),(1,b),(3,a)\}, \{(2,b),(1,a),(3,b)\} \, \} \subseteq \{1,2,3\} \twoheadrightarrow \{a,b\} \\ \circ & \text{e.g., } \{(\mathbf{2},a),(\mathbf{3},b)\} \notin \{1,2,3\} \twoheadrightarrow \{a,b\} \\ \circ & \text{e.g., } \{(2,\mathbf{a}),(3,\mathbf{a}),(1,\mathbf{a})\} \notin \{1,2,3\} \twoheadrightarrow \{a,b\} \\ \end{array} \quad \begin{array}{ll} [ \  \, \underline{\text{not}} \  \, \underline{\text{total., }} \underline{\text{not}} \  \, \underline{\text{sur. }} ] \\ \end{array}
```

ASCII syntax: f : -->>

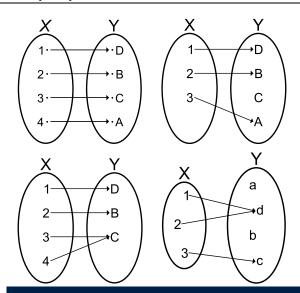
Functions (3.3): Bijective Functions

Given a function f:

ASCII syntax: f : >->>

f is **bijective**/a **bijection**/one-to-one correspondence if f is **total**, **injective**, and **surjective**.

Functions (4.1): Exercises



Functions (4.2): Modelling Decisions

- **1.** Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., $a \in \mathbb{Z} \rightarrow String$) or a total function (i.e., $a \in \mathbb{Z} \rightarrow String$)?

 Answer. $a \in \mathbb{Z} \rightarrow String$ is not appropriate as:
 - Indices are non-negative (i.e., a(i), where i < 0, is undefined).
 - Each array size is finite: not all positive integers are valid indices.
- 2. What does it mean if an array is modelled/formalized as a partial injection (i.e., a ∈ Z → String)?
 Answer. It means that the array does not contain any duplicates.
- Can an integer array "int[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → Z)?
 Answer. Yes, if a stores all 2³² integers (i.e., [-2³¹, 2³¹ 1]).
- **4.** Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \twoheadrightarrow String$)? **Answer**. No :: # possible strings is ∞ .
- **5.** Can an integer array "int[]" storing all 2^{32} values be *modelled/formalized* as a *bijection* (i.e., $a \in \mathbb{Z} \rightarrow \mathbb{Z}$)?

Answer. No, because it cannot be total (as discussed earlier).

 For the where_is ∈ Employee → Location model, what does it mean when it is:

```
    Injective [ where_is ∈ Employee → Location ]
    Surjective [ where_is ∈ Employee → Location ]
    Bijective [ where_is ∈ Employee → Location ]
```

- Review examples discussed in your earlier math courses on logic and set theory.
- Ask questions in the Q&A sessions to clarify the reviewed concepts.

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

Index (2)

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Index (3)

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

Index (4)

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...

Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System Specification and Refinement Winter 2022

Learning Outcomes

This module is designed to help you understand:

- What a Requirement Document (RD) is
- What a refinement is
- Writing <u>formal</u> specifications
 - o (Static) contexts: constants, axioms, theorems
 - o (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

Recall: Correct by Construction

- Directly reasoning about <u>source code</u> (written in a programming language) is too complicated to be feasible.
- Instead, given a requirements document, prior to implementation, we develop models through a series of refinement steps:
 - Each model formalizes an external observer's perception of the system.
 - Models are "sorted" with increasing levels of accuracy w.r.t. the system.
 - The first model, though the most abstract, can <u>already</u> be proved satisfying <u>some</u> requirements.
 - Starting from the second model, each model is analyzed and proved correct relative to two criteria:
 - 1. Some *requirements* (i.e., R-descriptions)
 - Proof Obligations (POs) related to the <u>preceding model</u> being refined by the <u>current model</u> (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

State Space of a Model

- A model's state space is the set of all configurations:
 - Each <u>configuration</u> assigns values to <u>constants</u> & <u>variables</u>, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - invariant properties/theorems
 - Say an initial model of a bank system with two constants and a variable:

```
c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \Rightarrow \mathbb{Z} /* typing constraint */ \forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L /* desired property */
```

- Q. What is the **state space** of this initial model?
- **A**. All <u>valid</u> combinations of *c*, *L*, and *accounts*.
 - Configuration 1: $(c = 1,000, L = 500,000, b = \emptyset)$
 - Configuration 2: (c = 2,375, L = 700,000, b = {("id1",500), ("id2",1,250)})
 ... [Challenge: Combinatorial Explosion]
- Model Concreteness ↑ ⇒ (State Space ↑ ∧ Verification Difficulty ↑)
- A model's complexity should be guided by those properties intended to be verified against that model.
 - \Rightarrow *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.
 - ⇒ *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.

Roadmap of this Module

We will walk through the development process of constructing models of a control system regulating cars on a bridge.

Such controllers exemplify a *reactive system*.

(with sensors and actuators)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
 - 2. A brief overview of the *refinement strategy*
 - 3. An initial, the most *abstract* model
 - 4. A subsequent *model* representing the 1st refinement
 - 5. A subsequent *model* representing the 2nd refinement
 - 6. A subsequent *model* representing the 3rd refinement

LASSONDE

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Requirements Document: E-Descriptions

Each *E-Description* is an <u>atomic</u> *specification* of a *constraint* or an *assumption* of the system's working environment.

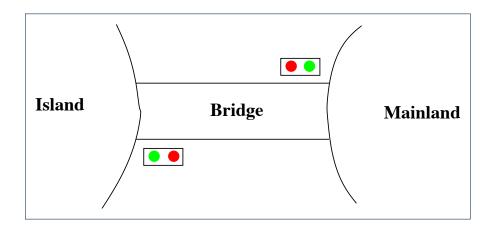
ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2	The traffic lights control the entrance to the bridge at both ends of it.
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.
ENV4	The system is equipped with four sensors with two states: on or off.
ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ2	The number of cars on bridge and island is limited.
REQ3	The bridge is one-way or the other, not both at the same time.

Requirements Document: Visual Summary of Equipment Pieces



LASSONDE

Refinement Strategy

- Before diving into details of the models, we first clarify the adopted design strategy of progressive refinements.
 - **0.** The *initial model* (m_0) will address the intended functionality of a *limited* number of cars on the island and bridge.

[REQ2]

 A 1st refinement (m₁ which refines m₀) will address the intended functionality of the bridge being one-way.

[REQ1, REQ3]

 A 2nd refinement (m₂ which refines m₁) will address the environment constraints imposed by traffic lights.

[ENV1, ENV2, ENV3]

3. A *final, 3rd refinement* (m_3 which *refines* m_2) will address the environment constraints imposed by *sensors* and the *architecture*: controller, environment, communication channels.

[ENV4, ENV5]

• Recall *Correct by Construction*:

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it *feasible* to conduct **analysis** and **proofs**.

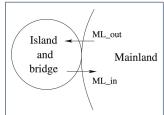
Model m_0 : Abstraction

- In this most abstract perception of the bridge controller, we do not even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

REQ2 The number of cars on bridge and island is limited.
--

Analogies:

 Observe the system from the sky: island and bridge appear only as a compound.



"Zoom in" on the system as refinements are introduced.

Model m_0 : State Space

1. The *static* part is fixed and may be seen/imported.

A *constant d* denotes the <u>maximum</u> number of cars allowed to be on the *island-bridge compound* at any time.

(whereas cars on the mainland is <u>unbounded</u>)

constants:

axioms:

 $axm0_1: d \in \mathbb{N}$

Remark. **Axioms** are <u>assumed true</u> and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

variables: n

invariants:

inv0_1 : $n \in \mathbb{N}$ inv0_2 : n < d

Remark. *Invariants* should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

LASSONDE

Model m_0 : State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as actions of <u>enabled</u> events change values of variables, subject to <u>invariants</u>.
- At any given *state* (a <u>valid</u> *configuration* of constants/variables):
 - An event is said to be <u>enabled</u> if its guard evaluates to <u>true</u>.
 - An event is said to be <u>disabled</u> if its guard evaluates to <u>false</u>.
 - An <u>enabled</u> event makes a <u>state transition</u> if it occurs and its <u>actions</u> take effect.
- <u>1st event</u>: A car <u>exits</u> mainland (and <u>enters</u> the island-bridge <u>compound</u>).

ML_out **begin** *n* := *n* + 1 **end**

Correct Specification? Say *d* = 2. <u>Witness</u>: Event Trace (init, ML_in)

<u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).

ML_in

begin

n:= n - 1

end

Correct Specification? Say d = 2. <u>Witness</u>: Event Trace $\langle init, ML_out, ML_out, ML_out \rangle$

Model m_0 : Actions vs. Before-After Predicates on Definition 1.

t esonde

- When an enabled event e occurs there are two notions of state:
 - o Before-/Pre-State: Configuration just before e's actions take effect
 - After-/Post-State: Configuration just <u>after</u> e's actions take effect
 <u>Remark</u>. When an <u>enabled</u> event occurs, its <u>action(s)</u> cause a <u>transition</u> from the
 <u>pre-state</u> to the <u>post-state</u>.
- As examples, consider *actions* of m_0 's two events:

- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The before-after predicate (BAP) "n' = n + 1" expresses that
 n' (the post-state value of n) is one more than n (the pre-state value of n).
- When we express proof obligations (POs) associated with events, we use BAP.

Design of Events: Invariant Preservation

· Our design of the two events

```
ML_out

begin

n := n + 1

end
```

```
ML_in

begin

n := n - 1

end
```

only specifies how the *variable n* should be updated.

Remember, invariants are conditions that should never be violated!

```
invariants:

inv0_1 : n \in \mathbb{N}

inv0_2 : n \le d
```

By simulating the system as an ASM, we discover witnesses
 (i.e., event traces) of the invariants not being preserved all the time.

$$\exists s \bullet s \in \mathsf{STATE} \; \mathsf{SPACE} \Rightarrow \neg invariants(s)$$

 We formulate such a commitment to preserving invariants as a proof obligation (PO) rule (a.k.a. a verification condition (VC) rule).

LASSONDE

Sequents: Syntax and Semantics

• We formulate each PO/VC rule as a (horizontal or vertical) sequent:

- The symbol ⊢ is called the turnstile.
- H is a <u>set</u> of predicates forming the *hypotheses/assumptions*.

[assumed as true]

 \circ G is a <u>set</u> of predicates forming the *goal/conclusion*.

[claimed to be **provable** from H]

- Informally:
 - $P \mapsto H \mapsto G$ is *true* if G can be proved by assuming H.

[i.e., We say "H entails G" or "H yields G"]

- $H \vdash G$ is *false* if G cannot be proved by assuming H.
- Formally: $H \vdash G \iff (H \Rightarrow G)$
 - **Q**. What does it mean when *H* is empty (i.e., no hypotheses)?

A.
$$\vdash G \equiv true \vdash G$$
 [Why not $\vdash G \equiv false \vdash G$?

LASSONDE

PO of Invariant Preservation: Sketch

Here is a sketch of the PO/VC rule for invariant preservation:

Axioms

Invariants Satisfied at *Pre-State* Guards of the Event

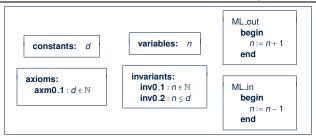
<u>INV</u>

 \vdash

Invariants Satisfied at **Post-State**

Informally, this is what the above PO/VC requires to prove:
 Assuming all axioms, invariants, and the event's guards hold at the pre-state, after the state transition is made by the event,

all invariants hold at the post-state.



c: list of constants

 $\langle d \rangle$

A(c): list of axioms

⟨axm0₋1⟩

• v and v': list of variables in pre- and post-states

 $\mathbf{v} \cong \langle n \rangle, \mathbf{v'} \cong \langle n' \rangle$

• *I*(*c*, *v*): list of *invariants*

 $\langle inv0_1, inv0_2 \rangle$

• G(c, v): the **event**'s list of guards

$$G(\langle d \rangle, \langle n \rangle)$$
 of $ML_out \cong \langle true \rangle$, $G(\langle d \rangle, \langle n \rangle)$ of $ML_in \cong \langle true \rangle$

• E(c, v): effect of the *event*'s actions i.t.o. what variable values <u>become</u>

$$E(\langle d \rangle, \langle n \rangle)$$
 of $ML_out \cong \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n-1 \rangle$

• v' = E(c, v): **before-after predicate** formalizing E's actions

BAP of
$$ML_out$$
: $\langle \mathbf{n}' \rangle = \langle \mathbf{n} + 1 \rangle$, BAP of ML_in : $\langle \mathbf{n}' \rangle = \langle \mathbf{n} - 1 \rangle$

Rule of Invariant Preservation: Sequents

 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the PO/VC Rule of Invariant Preservation:

- Accordingly, how many sequents to be proved? [# events × # invariants]
- We have two sequents generated for event ML_out of model m_0 :

Exercise. Write the **POs of invariant preservation** for event ML_in.

Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all *POs*</u> must be <u>proved/discharged</u>.

LASSONDE

Inference Rules: Syntax and Semantics

• An inference rule (IR) has the following form:

A L

Formally: $A \Rightarrow C$ is an <u>axiom</u>.

Informally: To prove *C*, it is <u>sufficient</u> to prove *A* instead.

Informally: *C* is the case, assuming that *A* is the case.

- L is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a set of sequents known as antecedents of rule L.
- C is a <u>single</u> sequent known as consequent of rule L.
- Let's consider inference rules (IRs) with two different flavours:

$$\begin{array}{c|c} H1 \vdash G \\ \hline H1, H2 \vdash G \end{array} \quad MON \qquad \qquad \boxed{ \qquad \qquad n \in \mathbb{N} \vdash n+1 \in \mathbb{N} } \qquad P2$$

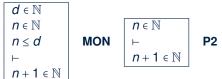
- IR **MON**: To prove $H1, H2 \vdash G$, it <u>suffices</u> to prove $H1 \vdash G$ instead.
- ∘ IR **P2**: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an *axiom*.

[proved automatically without further justifications]

Proof of Sequent: Steps and Structure

To prove the following sequent (related to invariant preservation):

- Apply a inference rule, which transforms some "outstanding" sequent to one or more other sequents to be proved instead.
- Keep applying inference rules until all transformed sequents are axioms that do not require any further justifications.
- Here is a formal proof of ML_out/inv0_1/INV, by applying IRs MON and P2:



Example Inference Rules (1)

1st Peano axiom: 0 is a natural number.

2nd Peano axiom: n+1 is a natural number, assuming that n is a natural number.

 $\boxed{ 0 < n \vdash n-1 \in \mathbb{N}}$ P2'

n-1 is a natural number, assuming that n is positive.

3rd Peano axiom: n is non-negative, assuming that n is a natural number.

Example Inference Rules (2)

		INC

 $n < m \vdash n + 1 < m$

n+1 is less than or equal to m, assuming that n is strictly less than m.

n-1 is strictly less than m, assuming that n is less than or equal to m.

Example Inference Rules (3)

$$\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$$

To prove a goal under certain hypotheses, it suffices to prove it under less hypotheses.

$$\frac{H,P \vdash R \qquad H,Q \vdash R}{H,P \lor Q \vdash R} \quad \mathsf{OR_L}$$

Proof by Cases:

To prove a goal under a disjunctive assumption, it suffices to prove **independently** the same goal, <u>twice</u>, under each disjunct.

$$\frac{H \vdash P}{H \vdash P \lor Q} \quad \mathsf{OR_R1}$$

To prove a disjunction, it suffices to prove the left disjunct.

$$\frac{H \vdash Q}{H \vdash P \lor Q} \quad \mathbf{OR_R2}$$

To prove a disjunction, it suffices to prove the right disjunct.

Revisiting Design of Events: ML_out

Recall that we already proved PO | ML_out/inv0_1/INV |:

- ∴ *ML_out/inv0_1/INV* succeeds in being discharged.
- How about the other PO | ML_out/inv0_2/INV | for the same event?

$$d \in \mathbb{N}$$
 $n \in \mathbb{N}$
 $n \le d$
 \vdash
 $n+1 \le d$

MON
 $n \le d$
 \vdash
 $n+1 \le d$

: ML_out/inv0_2/INV fails to be discharged.

Revisiting Design of Events: ML_in

• How about the **PO** ML_in/inv0_1/INV for ML_in:

- : ML_in/inv0_1/INV fails to be discharged.
- How about the other PO | ML_in/inv0_2/INV | for the same event?

$$d \in \mathbb{N}$$

$$n \in \mathbb{N}$$

$$n \leq d$$

$$\vdash$$

$$n-1 < d$$

$$mon$$

:. ML_in/inv0_2/INV succeeds in being discharged.

- Proofs of ML_out/inv0_2/INV and ML_in/inv0_1/INV fail due to the two events being enabled when they should not.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:

```
ML_out

when

n < d

then

n := n + 1

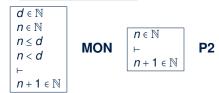
end
```

```
ML_in
when
n > 0
then
n := n - 1
end
```

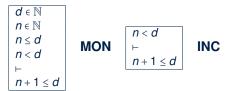
- Having changed both events, <u>updated</u> <u>sequents</u> will be generated for the PO/VC rule of <u>invariant preservation</u>.
- All sequents ({ML_out, ML_in} × {inv0_1, inv0_2}) now provable?

Revisiting Fixed Design of Events: *ML_out*

• How about the **PO** ML_out/**inv0**_1/INV for ML_out:



- :. ML_out/inv0_1/INV still succeeds in being discharged!
- How about the other PO | ML_out/inv0_2/INV | for the same event?



:. ML_out/inv0_2/INV now succeeds in being discharged!

Revisiting Fixed Design of Events: ML_in

• How about the **PO** ML_in/inv0_1/INV for ML_in:

- ∴ *ML_in/inv0_1/INV* now <u>succeeds</u> in being discharged!
- How about the other PO | ML_in/inv0_2/INV | for the same event?

:. ML_in/inv0_2/INV still succeeds in being discharged!

LASSONDE

Initializing the Abstract System m_0

- Discharging the <u>four</u> <u>sequents</u> proved that <u>both</u> <u>invariant</u> conditions are <u>preserved</u> between occurrences/interleavings of <u>events</u> ML_out and ML_in.
- But how are the invariants established in the first place?

Analogy. Proving *P* via *mathematical induction*, two cases to prove:

```
○ P(1), P(2), ... [ base cases ≈ establishing inv. ]

○ P(n) \Rightarrow P(n+1) [ inductive cases ≈ preserving inv. ]
```

• Therefore, we specify how the **ASM**'s *initial state* looks like:

√ The IB compound, once initialized, has no cars.

init **begin** n := 0

end

- ✓ Initialization always possible: guard is *true*.
- √ There is no pre-state for init.
 - : The RHS of := must not involve variables.
 - \therefore The <u>RHS</u> of := may <u>only</u> involve constants.
- √ There is only the post-state for init.
 - \therefore Before-*After Predicate*: n' = 0

PO of Invariant Establishment

init

begin *n* := 0 **end**

- ✓ An *reactive system*, once *initialized*, should <u>never</u> terminate.
- ✓ Event init cannot "preserve" the invariants.
 - : State before its occurrence (*pre-state*) does <u>not</u> exist.
- ✓ Event *init* only required to *establish* invariants for the first time
- A new formal component is needed:
 - K(c): effect of *init*'s actions i.t.o. what variable values <u>become</u>
 e.g., K(⟨d⟩) of *init* ≘ ⟨0⟩
 - v' = K(c): **before-after predicate** formalizing *init*'s actions

e.g., BAP of *init*: $\langle n' \rangle = \langle 0 \rangle$

Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms

 \vdash

Invariants Satisfied at **Post-State**

INV

A(c) \vdash $I_{i}(c, K(c))$

INV

Discharging PO of Invariant Establishment

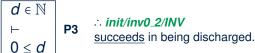
• How many **sequents** to be proved?

[# invariants]

• We have $\underline{\text{two}}$ sequents generated for event init of model m_0 :

Can we discharge the PO init/inv0_1/INV ?

• Can we discharge the **PO** init/inv0_2/INV ?



32 of 124

System Property: Deadlock Freedom

- So far we have proved that our initial model m₀ is s.t. <u>all</u> invariant conditions are:
 - Established when system is first initialized via init
 - Preserved whenevner there is a state transition

(via an enabled event: ML_out or ML_in)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
 - A state where guards of all events evaluate to false
 - When a deadlock happens, none of the events is enabled.
 - ⇒ The system is blocked and not reactive anymore!
- We express this non-blocking property as a new requirement:

REQ4	Once started, the system should work for ever.
------	--

DLF

- Recall some of the formal components we discussed:
 - o c: list of constants $\langle d \rangle$ o A(c): list of axioms $\langle axm0.1 \rangle$

 - G(c, v): the event's list of *quards*

$$G(\langle d \rangle, \langle n \rangle) \text{ of } ML_out \ \widehat{=} \ \langle n < d \rangle, \ G(\langle d \rangle, \langle n \rangle) \text{ of } ML_in \ \widehat{=} \ \langle n > 0 \rangle$$

A system is deadlock-free if at least one of its events is enabled:

```
Axioms
Invariants Satisfied at Pre-State

\vdash
Disjunction of the guards satisfied at Pre-State
G_1(c, \mathbf{v}) \vdash G_2(c, \mathbf{v}) \lor \cdots \lor G_m(c, \mathbf{v})
```

To prove about deadlock freedom

- o An event's effect of state transition is **not** relevant.
- Instead, the evaluation of <u>all</u> events' guards at the pre-state is relevant.

PO of Deadlock Freedom (2)

- **Deadlock freedom** is not necessarily a desired property.
 - \Rightarrow When it is (like m_0), then the generated **sequents** must be discharged.
- Applying the PO of **deadlock freedom** to the initial model m_0 :

$$\begin{array}{c|c}
A(c) & d \in \mathbb{N} \\
I(c, \mathbf{v}) & n \in \mathbb{N} \\
 & n \leq d \\
G_1(c, \mathbf{v}) \vee \cdots \vee G_m(c, \mathbf{v})
\end{array}$$

$$\underline{DLF} \quad n \leq d \vee n > 0$$

Our bridge controller being **deadlock-free** means that cars can **always** enter (via *ML_out*) or leave (via *ML_in*) the island-bridge compound.

• Can we formally discharge this **PO** for our *initial model* m_0 ?

Example Inference Rules (4)

______ **HYP**

A goal is proved if it can be assumed.

FALSE_L

Assuming $false(\perp)$, anything can be proved.

——— TRUE_R

 $\textit{true} \ (\top)$ is proved, regardless of the assumption.

 $P \vdash E = E$ EQ

An expression being equal to itself is proved, regardless of the assumption.

Example Inference Rules (5)

$$H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})$$

$$H(E), E = F \vdash P(E)$$

EQ_LR

To prove a goal P(E) assuming H(E), where both P and H depend on expression E, it <u>suffices</u> to prove P(F) assuming H(F), where both P and H depend on expresion F, given that E is equal to F.

$$H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})$$

$$H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})$$

EQ_RL

To prove a goal P(F) assuming H(F), where both P and H depend on expression F, it suffices to prove P(E) assuming H(E), where both P and H depend on expresion E, given that E is equal to F.

Discharging PO of DLF: Exercise

$$A(c)$$
 $I(c, \mathbf{v})$
 \vdash
 $G_1(c, \mathbf{v}) \lor \cdots \lor G_m(c, \mathbf{v})$
 DLF

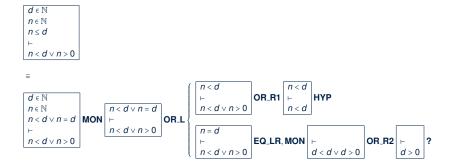
$$n \in \mathbb{N}$$
 $n \le d$

 $d \in \mathbb{N}$

$$n < d \lor n > 0$$

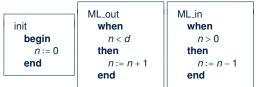
38 of 124

Discharging PO of DLF: First Attempt



Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This *unprovable* sequent gave us a good hint:
 - For the model under consideration (m_0) to be **deadlock-free**, it is required that d > 0. [≥ 1 car allowed in the IB compound]
 - But current specification of m₀ not strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given axm0_1 : d ∈ N
 - \Rightarrow d = 0 is allowed by m_0 which causes a **deadlock**.
- Recall the init event and the two guarded events:



When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$

⇒ As soon as the system is initialized, it *deadlocks immediately*

as no car can either enter or leave the IR compound!!

Fixing the Context of Initial Model

• Having understood the <u>failed</u> proof, we add a proper **axiom** to m_0 :

axioms:

 $axm0_2: d > 0$

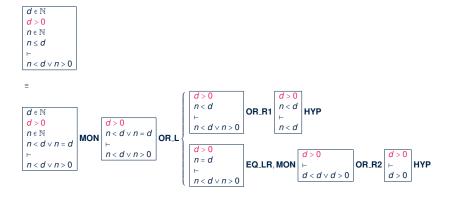
We have effectively elaborated on REQ2:

REQ2

The number of cars on bridge and island is limited but positive.

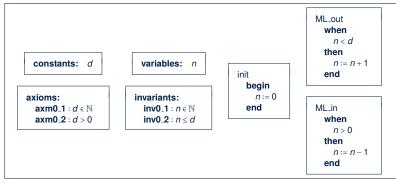
- Having changed the context, an <u>updated</u> sequent will be generated for the PO/VC rule of deadlock freedom.
- Is this new sequent now provable?

Discharging PO of DLF: Second Attempt



Initial Model: Summary

- The <u>final</u> version of our *initial model m*₀ is *provably correct* w.r.t.:
 - Establishment of *Invariants*
 - Preservation of *Invariants*
 - Deadlock Freedom
- Here is the <u>final</u> **specification** of m_0 :

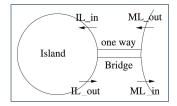


13 of 124

Model m_1 : "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from closer to the ground, so that the island-bridge compound is split into:

- the island
- the (one-way) bridge



- Nonetheless, traffic lights and sensors remain abstracted away!
- That is, we focus on these two *requirement*:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

We are obliged to prove this added concreteness is consistent with m₀.

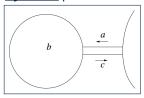
Model m_1 : Refined State Space

1. The **static** part is the same as m_0 's:

constants: d

axioms: $axm0_1 : d \in \mathbb{N}$ $axm0_2 : d > 0$

2. The dynamic part of the concrete state consists of three variables:



- a: number of cars on the bridge, heading to the <u>island</u>
- b: number of cars on the island
- c: number of cars on the bridge, heading to the <u>mainland</u>

 variables: a, b, c a, b, c

 invariants: $a \in \mathbb{N}$ $a \in \mathbb{N$

- √ inv1_1, inv1_2, inv1_3 are typing constraints.
- √ inv1_4 links/glues the
 abstract and concrete states.
- √ inv1_5 specifies
 that the bridge is one-way.

Model m_1 : State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" *events* already existing in m_0 .
- Concrete/Refined version of event ML_out:

- Meaning of ML_out is refined:
 a car exits mainland (getting on the bridge).
- ML_out enabled only when:
 - the bridge's current traffic <u>flows to</u> the island
 - number of cars on both the <u>bridge</u> and the <u>island</u> is <u>limited</u>
- Concrete/Refined version of event ML_in:

- Meaning of ML_in is refined:
 a car enters mainland (getting off the bridge).
- ML_in enabled only when:

there is some car on the bridge heading to the mainland.

Model m_1 : Actions vs. Before-After Predicates on Definition 1.

• Consider the **concrete/refined** version of **actions** of m_0 's two events:

- An event's actions are a specification: "c becomes c 1 after the transition".
- The before-after predicate (BAP) "c' = c 1" expresses that
 c' (the post-state value of c) is one less than c (the pre-state value of c).
- Given that the concrete state consists of three variables:
 - An event's actions only specify those changing from pre-state to post-state.

[e.g.,
$$c' = c - 1$$
]

• Other <u>unmentioned</u> variables have their **post**-state values remain <u>unchanged</u>.

[e.g.,
$$a' = a \wedge b' = b$$
]

When we express proof obligations (POs) associated with events, we use BAP.

States & Invariants: Abstract vs. Concrete

- m_0 refines m_1 by introducing more *variables*:
 - Abstract State (of m₀ being refined):
 - Concrete State (of the refinement model m_1):

variables: n

variables: a, b, c

- Accordingly, invariants may involve different states:
 - Abstract Invariants (involving the abstract state only):

Concrete Invariants
(involving at least the concrete state):

invariants: inv0_1 : $n \in \mathbb{N}$ inv0_2 : $n \le d$

invariants:

inv1_1 : $a \in \mathbb{N}$ inv1_2 : $b \in \mathbb{N}$ inv1_3 : $c \in \mathbb{N}$

 $inv1_4: a+b+c=n$ $inv1_5: a=0 \lor c=0$

Events: Abstract vs. Concrete

- When an **event** exists in both models m_0 and m_1 , there are two versions of it:
 - The abstract version modifies the abstract state.

```
(abstract_)ML_out

when

n < d

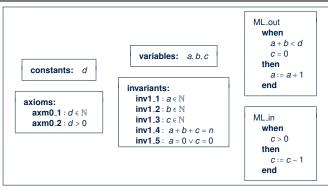
then

a := n := n + 1

end
```

The concrete version modifies the concrete state.

 A <u>new event</u> may <u>only</u> exist in m₁ (the <u>concrete</u> model): we will deal with this kind of events later, separately from "redefined/overridden" events.



• c: list of constants

(d)

A(c): list of axioms

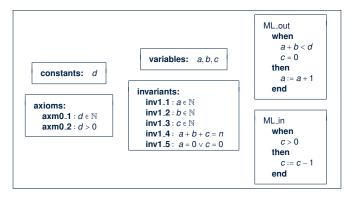
 $\langle axm0_{-}1 \rangle$ $v \cong \langle n \rangle, v' \cong \langle n \rangle$

- *v* and *v'*: *abstract variables* in pre- & post-states
- w and w': concrete variables in pre- & post-states $w \cong (a, b, c), w' \cong (a', b', c')$
- I(c, v): list of abstract invariants

 $\langle inv0_{-}1, inv0_{-}2 \rangle$

- J(c, v, w): list of **concrete invariants**
- (inv1_1, inv1_2, inv1_3, inv1_4, inv1_5)

PO of Refinement: Components (2)



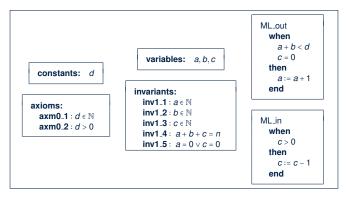
G(c, v): list of guards of the abstract event

$$G(\langle d \rangle, \langle n \rangle)$$
 of $ML_out \cong \langle n < d \rangle$, $G(c, v)$ of $ML_in \cong \langle n > 0 \rangle$

• H(c, w): list of guards of the **concrete event**

$$H(\langle d \rangle, \langle a, b, c \rangle)$$
 of $ML_out \cong \langle a + b < d, c = 0 \rangle$, $H(c, w)$ of $ML_in \cong \langle c > 0 \rangle$

PO of Refinement: Components (3)



• E(c, v): effect of the **abstract event**'s actions i.t.o. what variable values **become**

$$E(\langle d \rangle, \langle n \rangle)$$
 of $ML_out \cong \langle n + 1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n - 1 \rangle$

• F(c, w): effect of the *concrete event*'s actions i.t.o. what variable values <u>become</u>

$$F(c, v)$$
 of $ML_out \cong \langle a + 1, b, c \rangle$, $F(c, w)$ of $ML_out \cong \langle a, b, c - 1 \rangle$

Sketching PO of Refinement

The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event

Guards of the Abstract Event

- A concrete event is enabled if its abstract counterpart is enabled.
- A concrete transition <u>always</u> has an abstract counterpart.

2. Invariant Preservation

Axioms

Abstract Invariants Satisfied at Pre-State

Concrete Invariants Satisfied at Pre-State

Guards of the Concrete Event

⊢

Concrete Invariants Satisfied at Post-State

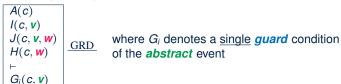
- A concrete event performs a transition on concrete states.
- This concrete state transition must be consistent with how its abstract counterpart performs a corresponding abstract transition.

<u>Note</u>. *Guard strengthening* and *invariant preservation* are only <u>applicable</u> to events that might be *enabled* after the system is <u>launched</u>.

The special, <u>non-guarded init</u> event will be discussed separately later.

Refinement Rule: Guard Strengthening

 Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:



How many sequents to be proved?

- [# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of *ML_out*

```
axm<sub>0</sub> 1
                                         d \in \mathbb{N}
                        axm0 2
                                         d > 0
                          inv0_1
                                         n \in \mathbb{N}
                          inv<sub>0</sub> 2
                                         n < d
                          inv1 1
                                         a \in \mathbb{N}
                          inv1 2
                                         b \in \mathbb{N}
                          inv1 3
                                         c \in \mathbb{N}
                          inv1_4
                                         a+b+c=n
                          inv1 5
                                         a = 0 \lor c = 0
                                         a+b < d
Concrete guards of ML_out
                                         c = 0
Abstract guards of ML_out
```

ML_out/GRD

PO Rule: Guard Strengthening of ML_in

```
d \in \mathbb{N}
                    axm0 1
                    axm0 2
                                    d > 0
                      inv0_1
                                    n \in \mathbb{N}
                      inv0 2
                                    n < d
                      inv1 1
                                    a \in \mathbb{N}
                                    b \in \mathbb{N}
                      inv1 2
                      inv1_3
                                    c \in \mathbb{N}
                      inv1 4
                                    a+b+c=n
                      inv15
                                    a = 0 \lor c = 0
                                    c > 0
Concrete guards of ML_in
Abstract guards of ML_in
```

ML_in/GRD

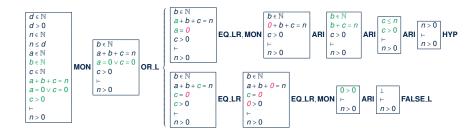
Proving Refinement: ML_out/GRD


```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n \le d
a \in \mathbb{N}
b \in \mathbb{N}
c \in \mathbb{N}
a + b + c = n
a = 0 \lor c = 0
a + b < d
c = 0
h
```


EQ_LR, MON $\begin{bmatrix} a+b+0=n\\ a+b<d\\ b\\ n<d \end{bmatrix}$

EQ_LR, MON $\begin{bmatrix} n < d \\ \vdash \\ n < d \end{bmatrix}$ HYP

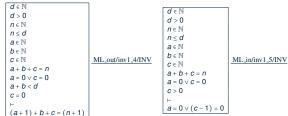
Proving Refinement: ML_in/GRD



Refinement Rule: Invariant Preservation

 Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

- How many sequents to be proved? [# concrete evts × # concrete invariants]
- Here are two (of the ten) sequents generated:

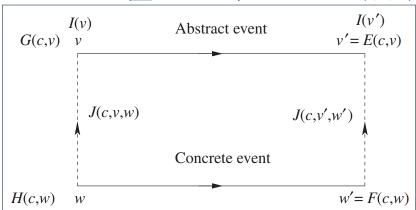


• Exercises. Specify and prove other eight POs of Invariant Preservation.

Visualizing Inv. Preservation in Refinement

Each **concrete** event (w to w') is **simulated by** an **abstract** event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')



60 of 12/


```
axm0 1
                                                  d \in \mathbb{N}
                                  axm<sub>0</sub> 2
                                                  d > 0
                                    inv0 1
                                                 n \in \mathbb{N}
                                    inv<sub>0</sub> 2
                                                 n < d
                                    inv1 1
                                                  a \in \mathbb{N}
                                    inv1_2
                                                 b \in \mathbb{N}
                                    inv1_3
                                                \{c \in \mathbb{N}\}
                                    inv1 4
                                                 a+b+c=n
                                    inv1 5
                                                 a = 0 \lor c = 0
                                                 a+b < d
            Concrete guards of ML_out
                                                  c = 0
             Concrete invariant inv1 4
                                               \{(a+1)+b+c=(n+1)\}
with ML_out's effect in the post-state
```

ML_out/inv1_4/INV


```
axm0 1
                                                  d \in \mathbb{N}
                                  axm<sub>0</sub> 2
                                                  d > 0
                                   inv0 1
                                                  n \in \mathbb{N}
                                    inv<sub>0</sub> 2
                                                  n < d
                                    inv1 1
                                                  a \in \mathbb{N}
                                    inv1_2
                                                  b \in \mathbb{N}
                                    inv1 3
                                                C \in \mathbb{N}
                                    inv1 4
                                                a+b+c=n
                                                a = 0 \lor c = 0
                                    inv1 5
            Concrete guards of ML_in
                                                  c > 0
            Concrete invariant inv1 5
                                               \{ a = 0 \lor (c-1) = 0 \}
with ML_in's effect in the post-state
```

ML_in/inv1_5/INV

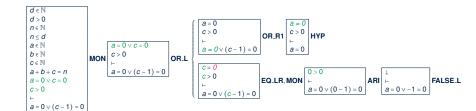
EQ

Proving Refinement: ML_out/inv1_4/INV

```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n < d
a \in \mathbb{N}
b \in \mathbb{N}
                                   a+b+c=n
                                                                     a+b+c=n
c \in \mathbb{N}
                            MON
                                                               ARI
                                                                                             EQ_LR, MON |
a+b+c=n
                                   (a + 1) + b + c = (n + 1)
                                                                     a + b + c + 1 = n + 1
                                                                                                             n+1=n+1
a = 0 \lor c = 0
a+b < d
c = 0
(a+1)+b+c=(n+1)
```

LASSONDE

Proving Refinement: ML_in/inv1_5/INV



Initializing the Refined System m_1

- Discharging the **twelve sequents** proved that:
 - concrete invariants preserved by ML_out & ML_in
 - concrete quards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM**'s *initial state* looks like:

init

begin

a := 0

b := 0

c := 0

end

- √ No cars on bridge (heading either way) and island
- Initialization always possible: guard is *true*.
- √ There is no pre-state for init.
 - ∴ The RHS of := must not involve variables.
 - : The RHS of := may only involve constants.
- There is only the **post-state** for *init*.
 - \therefore Before-After Predicate: $a' = 0 \land b' = 0 \land c' = 0$

PO of m₁ Concrete Invariant Establishment

- o Some (new) formal components are needed:
 - K(c): effect of abstract init's actions:

e.g.,
$$K(\langle d \rangle)$$
 of init $\widehat{=} \langle 0 \rangle$

- v' = K(c): before-after predicate formalizing abstract init's actions
 e.g., BAP of init: ⟨n'⟩ = ⟨0⟩
- *L*(*c*): effect of *concrete init*'s actions:

e.g.,
$$K(\langle d \rangle)$$
 of init $\widehat{=} \langle 0, 0, 0 \rangle$

- w' = L(c): before-after predicate formalizing concrete init's actions
 e.g., BAP of init: (a', b', c') = (0, 0, 0)
- Accordingly, PO of invariant establisment is formulated as a sequent:

Discharging PO of m_1 Concrete Invariant Establishment

How many sequents to be proved?

- [# concrete invariants]
- <u>Two</u> (of the <u>five</u>) sequents generated for *concrete* init of m₁:

• Can we discharge the PO init/inv1_4/INV ?

$$d \in \mathbb{N}$$

 $d > 0$
 \vdash
 $0 + 0 + 0 = 0$ ARI, MON \vdash T TRUE_R

∴ *init/inv1_4/INV* succeeds in being discharged.

• Can we discharge the PO init/inv1_5/INV ?

$$d \in \mathbb{N}$$

$$d > 0$$

$$\vdash$$

$$0 = 0 \lor 0 = 0$$

ARI, MON

:. init/inv1_5/INV

succeeds in being discharged.

67 of 124

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered *concrete/refined events* already existing in m_0 : $ML_out & ML_in$
- New event IL_in:

- *IL_in* denotes a car <u>entering</u> the island (getting off the bridge).
- IL_in enabled only when:
 - The bridge's current traffic <u>flows to</u> the island.
 - **Q**. <u>Limited</u> number of cars on the <u>bridge</u> and the <u>island</u>?
 - A. Ensured when the earlier ML_out (of same car) occurred
- New event IL_out:

- *IL_out* denotes a car <u>exiting</u> the island (getting on the bridge).
- IL_out enabled only when:
 - There is some car on the island.
 - The bridge's current traffic <u>flows to</u> the mainland.

Consider *actions* of m_1 's two *new* events:

• What is the BAP of ML_in's actions?

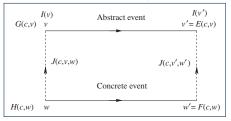
$$a' = a - 1 \wedge b' = b + 1 \wedge c' = c$$

• What is the BAP of ML_in's actions?

$$a' = a \wedge b' = b - 1 \wedge c' = c + 1$$

Visualizing Inv. Preservation in Refinement

Recall how a concrete event is simulated by its abstract counterpart:



- For each new event:
 - Strictly speaking, it does <u>not</u> have an *abstract* counterpart.
 - It is **simulated by** a special **abstract** event (transforming v to v'):

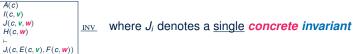
skip begin end

- skip is a "dummy" event: non-guarded and does nothing
- Q. BAP of the skip event?

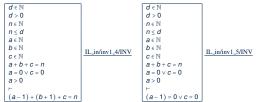
A.
$$n' = n$$

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do <u>not</u> exist in **m**₀, but:
 - They <u>exist</u> in m₁ and may impact upon the *concrete* state space.
 - They preserve the concrete invariants, just as ML_out & ML_in do.
- Recall the PO/VC Rule of <u>Invariant Preservation</u> for <u>Refinement</u>:



- How many sequents to be proved? [# new evts × # concrete invariants]
- Here are <u>two</u> (of the <u>ten</u>) sequents generated:



Exercises. Specify and prove other eight POs of Invariant Preservation.

INV PO of m_1 : IL_in/inv1_4/INV


```
axm0 1
                                             d \in \mathbb{N}
                              axm<sub>0</sub> 2
                                             d > 0
                                inv0 1
                                             n \in \mathbb{N}
                                inv0 2
                                            n < d
                                inv1 1
                                             a \in \mathbb{N}
                                             b \in \mathbb{N}
                                inv1 2
                                inv1_3
                                           \{c \in \mathbb{N}\}
                                inv1 4
                                            a+b+c=n
                                inv15
                                             a = 0 \lor c = 0
                      Guards of IL_in
                                             a > 0
         Concrete invariant inv1_4
                                          \{(a-1)+(b+1)+c=n\}
with IL_in's effect in the post-state
```

IL_in/inv1_4/INV

INV PO of m_1 : IL_in/inv1_5/INV


```
axm<sub>0</sub> 1
                                                d \in \mathbb{N}
                                                d > 0
                                axm0.2
                                  inv<sub>0</sub> 1
                                                n \in \mathbb{N}
                                  inv0 2
                                                n < d
                                  inv1 1
                                                a \in \mathbb{N}
                                  inv1 2
                                                b \in \mathbb{N}
                                  inv1 3
                                              c \in \mathbb{N}
                                  inv14
                                                a+b+c=n
                                  inv1 5
                                              a = 0 \lor c = 0
                       Guards of IL_in
                                                a > 0
          Concrete invariant inv1 5
                                             \{ (a-1) = 0 \lor c = 0 \}
with IL_in's effect in the post-state
```

IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

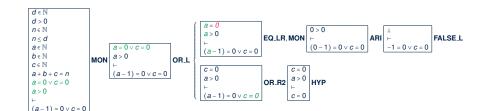
```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n < d
a \in \mathbb{N}
b \in \mathbb{N}
C \in \mathbb{N}
a+b+c=n
a = 0 \lor c = 0
a > 0
(a-1)+(b+1)+c=n
```

MON
$$\begin{vmatrix} a+b+c=n \\ + \\ (a-1)+(b+1)+c=n \end{vmatrix}$$

ARI | H

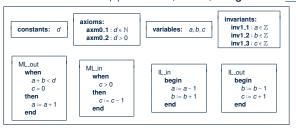
$$\begin{vmatrix} a+b+c=n \\ \vdash \\ a+b+c=n \end{vmatrix}$$
 HYP

Proving Refinement: IL_in/inv1_5/INV



Livelock Caused by New Events Diverging

• An alternative m_1 (with **inv1_4**, **inv1_5**, and **quards** of new events removed):



Concrete invariants are under-specified: only typing constraints.

Exercises: Show that **Invariant Preservation** is provable, but **Guard Strengthening** is not.

Say this alternative m₁ is implemented as is:
 IL_in and IL_out <u>always</u> <u>enabled</u> and may occur <u>indefinitely</u>, preventing other "old" events (ML_out and ML_in) from ever happening:
 (init, IL_in, IL_out, IL_in, IL_out,...)

Q: What are the corresponding *abstract* transitions?

 $\underline{\mathbf{A}}$: $\langle init, skip, skip, skip, skip, skip, \dots \rangle$ [\approx executing while (true);

- We say that these two new events diverge, creating a livelock:
 - Different from a deadlock : always an event occurring (IL_in or IL_out).
 - But their indefinite occurrences contribute nothing useful.

PO of Convergence of New Events

The PO/VC rule for non-divergence/livelock freedom consists of two parts:

- Interleaving of new events charactered as an integer expression: variant.
- A variant V(c, w) may refer to constants and/or *concrete* variables.
- In the original m_1 , let's try **variants**: $2 \cdot a + b$

1. Variant Stays Non-Negative

NAT

$$A(c)$$

$$I(c, v)$$

$$J(c, v, w)$$

$$H(c, w)$$

$$\vdash$$

$$V(c, w) \in \mathbb{N}$$

- Variant V(c, w) measures <u>how many more times</u> the <u>new</u> events can occur.
- If a **new** event is **enabled**, then V(c, w) > 0.
- When V(c, w) reaches 0, some "old" events must happen s.t. V(c, w) goes back above 0.

2. A New Event Occurrence Decreases Variant

VAR

```
A(c)
I(c, v)
J(c, v, w)
H(c, w)
\vdash
V(c, F(c, w)) < V(c, w)
```

 If a new event is enabled and occurs, the value of V(c, w) ↓.

77 of 124

PO of Convergence of New Events: NAT

• Recall: PO related to Variant Stays Non-Negative:

For the new event IL_in:

$$d \in \mathbb{N} \qquad d > 0$$

$$n \in \mathbb{N} \qquad n \le d$$

$$a \in \mathbb{N} \qquad b \in \mathbb{N} \qquad c \in \mathbb{N}$$

$$a + b + c = n \quad a = 0 \lor c = 0$$

$$a > 0$$

$$\vdash$$

$$2 \cdot a + b \in \mathbb{N}$$

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

78 of 124

PO of Convergence of New Events: VAR

• Recall: PO related to A New Event Occurrence Decreases Variant

$$A(c)$$

$$I(c, v)$$

$$J(c, v, w)$$

$$H(c, w)$$

$$V(c, F(c, w)) < V(c, w)$$

How many *sequents* to be proved? VAR

[# new events]

• For the **new** event **IL_in**:

$$d \in \mathbb{N} \qquad d > 0$$

$$n \in \mathbb{N} \qquad n \le d$$

$$a \in \mathbb{N} \qquad b \in \mathbb{N} \qquad c \in \mathbb{N}$$

$$a + b + c = n \quad a = 0 \lor c = 0$$

$$a > 0$$

$$\vdash$$

$$2 \cdot (a - 1) + (b + 1) < 2 \cdot a + b$$

IL_in/VAR

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

Convergence of New Events: Exercise

Given the original m₁, what if the following *variant* expression is used:

Are the formulated sequents still *provable*?

PO of Refinement: Deadlock Freedom

- · Recall:
 - We proved that the initial model m_0 is deadlock free (see **DLF**).
 - We proved, according to *guard strengthening*, that if a *concrete*event is enabled, then its *abstract* counterpart is enabled.
- PO of *relative deadlock freedom* for a *refinement* model:

If an **abstract** state does <u>not</u> **deadlock** (i.e., $G_1(c, v) \lor \cdots \lor G_m(c, v)$), then its **concrete** counterpart does <u>not</u> **deadlock** (i.e., $H_1(c, w) \lor \cdots \lor H_n(c, w)$).

Another way to think of the above PO:

The **refinement** does **not** introduce, in the **concrete**, any "new" **deadlock** scenarios **not** existing in the **abstract** state.

PO Rule: Relative Deadlock Freedom m_1

```
axm<sub>0</sub> 1
                                        d \in \mathbb{N}
                                        d > 0
                         axm0 2
                           inv0 1
                                        n \in \mathbb{N}
                           inv0 2
                                        n < d
                           inv1 1
                                        a \in \mathbb{N}
                          inv1 2
                                        b \in \mathbb{N}
                          inv1 3
                                        c \in \mathbb{N}
                           inv1 4
                                        a+b+c=n
                                                                                                            DI F
                           inv15
                                        a = 0 \lor c = 0
                                              n < d
                                                          quards of ML_out in m<sub>0</sub>
Disjunction of abstract guards
                                                          quards of ML_in in m<sub>0</sub>
                                              a+b < d \land c = 0
                                                                       guards of ML_out in m<sub>1</sub>
                                                            c > 0
                                                                       guards of ML_in in m<sub>1</sub>
                                        V
Disjunction of concrete guards
                                                                       quards of IL_in in m1
                                                            a > 0
                                                                       quards of IL_out in m1
                                                   b > 0 \land a = 0
```

R2 of 124

Example Inference Rules (6)

$$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} \quad \mathsf{OR}_{\mathsf{L}}\mathsf{R}$$

To prove a disjunctive goal,

it suffices to prove one of the disjuncts, with the the <u>negation</u> of the the other disjunct serving as an additional <u>hypothesis</u>.

$$\frac{H,P,Q \vdash R}{H,P \land Q \vdash R} \quad \textbf{AND_L}$$

To prove a goal with a *conjunctive hypothesis*, it suffices to prove the same goal, with the the two *conjuncts* serving as two separate hypotheses.

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \mathbf{AND_R}$$

To prove a goal with a <u>conjunctive goal</u>, it suffices to prove each <u>conjunct</u> as a separate <u>goal</u>.

Proving Refinement: DLF of m_1


```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n < d
a \in \mathbb{N}
b = N
a+b+c=n
a = 0 \lor c = 0
n < d \lor n > 0
     a+b < d \land c = 0
 v c>0
 \vee a > 0
 \lor b > 0 \land a = 0
```


d > 0 $a \in \mathbb{N}$ $b \in \mathbb{N}$ $a+b < d \land c = 0$ v c>0 v a>0 $\forall b > 0 \land a = 0$

d > 0 $a \in \mathbb{N}$ $b \in \mathbb{N}$ c = 0OR_R $a+b < d \land c = 0$ v c>0 $\vee a > 0$ $\vee b > 0 \wedge a = 0$

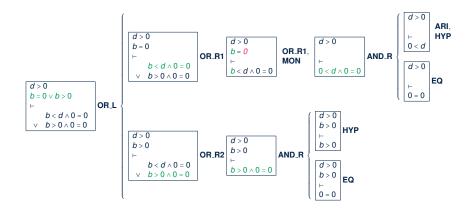
ARI

d > 0 $a \in \mathbb{N}$ b = N EQ.LR. $a+b < d \land 0 = 0$ v 0 > 0 $\vee a > 0$ $\lor b > 0 \land a = 0$

MON

LR,	d > 0
	$b \in \mathbb{N}$
	F
	$0 + b < d \land 0 = 0$
	∨ b > 0 ∧ 0 = 0

Proving Refinement: DLF of m_1 (continued)



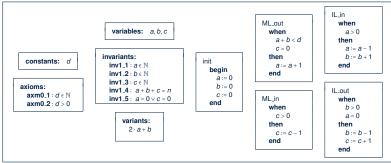
[init]

[old & new events] [old events]

[new events]

First Refinement: Summary

- The <u>final</u> version of our *first refinement m*₁ is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants
 - Strengthening of quards
 - Convergence (a.k.a. livelock freedom, non-divergence)
 - Relative **Deadlock** Freedom
- Here is the final specification of m_1 :

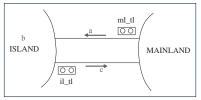


86 of 124

Model m_2 : "More Concrete" Abstraction

- 2nd refinement has even more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML
il_tl: a traffic light for exiting the IL
abstract variables a, b, c from m₁
still used (instead of being replaced)



- Nonetheless, sensors remain abstracted away!
- That is, we focus on these three *environment constraints*:

ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2	The traffic lights control the entrance to the bridge at both ends of it.
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.

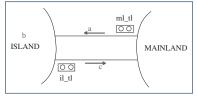
• We are **obliged to prove** this **added concreteness** is **consistent** with m_1 .

Model m_2 : Refined, Concrete State Space

1. The **static** part introduces the notion of traffic light colours:

sets: COLOR constants: red, green axioms: axm2_1: COLOR = {green, red} axm2_2: green ≠ red

2. The **<u>dynamic</u>** part shows the **<u>superposition</u> refinement** scheme:



- Abstract variables a, b, c from m₁ are still in use in m₂.
- Two new, concrete variables are introduced: ml_tl and il_tl
- <u>Constrast</u>: In m₁, abstract variable n is replaced by concrete variables a, b, c.
- variables:
 a, b, c

 ml_tl inv2.1: $ml_tl \in COLOUR$

 inv2.2: $il_tl \in COLOUR$

 inv2.3: $il_tl \in COLOUR$

 inv2.3: $il_tl \in COLOUR$

 inv2.4: $il_tl \in COLOUR$
- inv2_1 & inv2_2: typing constraints
- inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
- inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

88 of 124

LASSONDE

Model m_2 : Refining Old, Abstract Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as actions of <u>enabled</u> events change values of variables, subject to <u>invariants</u>.
- Concrete/Refined version of event ML_out:

- Recall the *abstract* guard of $ML_{-}out$ in m_1 : $(c = 0) \land (a + b < d)$
 - \Rightarrow Unrealistic as drivers should **not** know about a, b, c!
- o ML_out is refined: a car exits the ML (to the bridge) only when:
 - the traffic light ml_tl allows
- Concrete/Refined version of event IL_out:

- Recall the **abstract** guard of IL-out in m_1 : $(a = 0) \land (b > 0)$
 - \Rightarrow <u>Unrealistic</u> as drivers should <u>not</u> know about *a*, *b*, *c*!
- *IL_out* is *refined*: a car <u>exits</u> the IL (to the bridge) only when:
 - the traffic light *il_tl* allows
- **Q1**. How about the other two "old" *events IL_in* and *ML_in*?
- **<u>A1</u>**. No need to *refine* as already *guarded* by *ML_out* and *IL_out*.
- **Q2**. What if the driver disobeys $ml_{-}tl$ or $il_{-}tl$?

[<u>A2</u>. ENV3]

Model m_2 : New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as
 actions of enabled events change values of variables, subject to invariants.
- Considered *events* already existing in m_1 :
 - ML_out & IL_out

[REFINED]

[UNCHANGED]

- IL_in & ML_in
- New event ML_tl_green:

- ML_tl_green denotes the traffic light ml_tl turning green.
- ML_tl_green enabled only when:
 - the traffic light <u>not</u> already green
 - <u>limited</u> number of cars on the <u>bridge</u> and the <u>island</u>
 - No opposite traffic

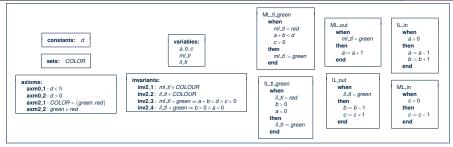
[\Rightarrow *ML_out*'s *abstract* guard in m_1]

New event IL_tl_green:

- *IL_tl_green* denotes the traffic light *il_tl* turning green.
- o *IL_tl_green enabled* only when:
 - the traffic light not already green
 - some cars on the island (i.e., island not empty)
 - No opposite traffic

[\Rightarrow *IL_out*'s *abstract* guard in m_1]

Invariant Preservation in Refinement m_2



Recall the PO/VC Rule of Invariant Preservation for Refinement:

```
 \begin{array}{c|c} A(c) \\ I(c, v) \\ J(c, V, \mathbf{w}) \\ H(c, \mathbf{w}) \\ \vdash \\ J_i(c, E(c, v), F(c, \mathbf{w})) \end{array} \underline{ \ \ \text{Inv} \ \ } \text{ where } J_i \text{ denotes a } \underline{ \text{single } \textit{concrete invariant} }
```

- How many **sequents** to be proved? [#concrete evts \times #concrete invariants = 6 \times 4]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV

Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.


```
axm0_1
                                             d \in \mathbb{N}
                               axm0 2
                                             d > 0
                               axm2 1
                                             COLOUR = { green, red}
                               axm2 2
                                             areen + red
                                inv0 1
                                           \{n \in \mathbb{N}\}
                                inv0_2
                                            n < d
                                inv1 1
                                            a \in \mathbb{N}
                                inv1 2
                                            b \in \mathbb{N}
                                inv1 3
                                          ( C∈N
                                inv1 4 \{a+b+c=n\}
                                inv1_5 \{ a = 0 \lor c = 0 \}
                                inv2 1
                                          inv2 2 { il_tl ∈ COLOUR
                                inv2_3 { ml\_tl = green \Rightarrow a + b < d \land c = 0
                                inv2 4
                                             iI_{-}tI = green \Rightarrow b > 0 \land a = 0
          Concrete guards of ML_out
                                             ml_{-}tl = areen
            Concrete invariant inv2 4
                                           \{ il_{-}tl = qreen \Rightarrow b > 0 \land (a+1) = 0 \}
with ML_out's effect in the post-state
```

ML_out/inv2_4/INV


```
axm<sub>0</sub> 1
                                              d \in \mathbb{N}
                                axm0 2
                                              d > 0
                                axm2 1
                                              COLOUR = {green, red}
                                axm2 2
                                              areen + red
                                 inv0_1
                                              n \in \mathbb{N}
                                 inv0 2
                                              n < d
                                 inv1 1
                                              a \in \mathbb{N}
                                 inv1 2
                                              h \in \mathbb{N}
                                 inv1 3
                                              CEN
                                 inv1 4
                                              a+b+c=n
                                 inv1.5 {
                                              a = 0 \lor c = 0
                                 inv2 1
                                              ml tl ∈ COLOUR
                                 inv2 2
                                              il tl ∈ COLOUR
                                 inv2 3 3
                                              mI_{-}tI = green \Rightarrow a + b < d \land c = 0
                                 inv2 4
                                              iI_{-}tI = areen \Rightarrow b > 0 \land a = 0
            Concrete guards of IL_out
                                              iI_{-}tI = areen
            Concrete invariant inv2 3
                                            \{ ml\_tl = green \Rightarrow a + (b-1) < d \land (c+1) = 0 
with ML_out's effect in the post-state
```

IL_out/inv2_3/INV

Example Inference Rules (7)

$$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} \quad \mathbf{IMP_L}$$

If a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis P* ⇒ *Q*, then the <u>conclusion</u> *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathsf{IMP_R}$$

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

$$\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \textbf{NOT_L}$$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the <u>negated</u> hypothesis $\neg (\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new <u>hypothesis</u>.

LASSONDE

Proving ML_out/inv2_4/INV: First Attempt

```
d \in \mathbb{N}
d > 0
COLOUR = { green, red}
areen ± red
n c N
n < d
a e N
b = N
CEN
a+b+c=n
a = 0 \lor c = 0
ml tl = COLOUR
il ti a COLOUR
ml_{-}tl = areen \Rightarrow a + b < d \land c = 0
iI_{-}tI = areen \Rightarrow b > 0 \land a = 0
ml_tl = areen
iI_{-}tI = green \Rightarrow b > 0 \land (a+1) = 0
```

MON

Proving IL_out/inv2_3/INV: First Attempt

```
d + N
d > 0
COLOUR = {green, red}
areen ± red
n e N
n < d
a \in \mathbb{N}
b \in \mathbb{N}
CEN
a+b+c=n
a = 0 \lor c = 0
ml tl = COLOUB
il_tl ∈ COLOUR
ml \ tl = areen \Rightarrow a + b < d \land c = 0
iI_{-}tI = areen \Rightarrow b > 0 \land a = 0
il_tl = green
ml_{-}tl = areen \Rightarrow a + (b-1) < d \land (c+1) = 0
```

MON

```
areen + red
ml_{\perp}tl = green \Rightarrow a + b < d \land c = 0
il_tl = areen
ml_atl = green \Rightarrow a + (b-1) < d \land (c+1) = 0
```

IMP R

```
areen ± red
areen + red
                                            areen ± red
                                                                                    a+b < d
ml_{\perp}tl = green \Rightarrow a + b < d \land c = 0
                                            a+b< d \land c=0
                                                                                    c = 0
il_tl = areen
                                            il_tl = areen
                                                                                                                   AND_R
                                   IMP.L
                                                                           AND_L | il_tl = green
ml_tl = areen
                                            ml_tl = areen
                                                                                    ml_tl = green
a + (b-1) < d \land (c+1) = 0
                                            a + (b-1) < d \land (c+1) = 0
                                                                                     a + (b-1) < d \land (c+1) = 0
```


LASSONDE

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

 Our first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both failed the 2nd case (resulted from applying IR AND_R):

$$green \neq red \land il_tl = green \land ml_tl = green \vdash 1 = 0$$

- This *unprovable* sequent gave us a good hint:
 - Goal 1 = 0 =false suggests that the safety requirements a = 0 (for inv2_4) and c = 0 (for inv2_3) contradict with the current m_2 .
 - Hyp. $il_tl = green = ml_tl$ suggests a **possible**, **dangerous state** of m_2 , where two cars heading different directions are on the <u>one-way</u> bridge:

(init	,	ML_tl_green	, <u>ML_out</u>	, <u>IL_in</u>	,	IL_tl_green	,	<u>IL_out</u>	,	ML_out	>
	d = 2		d = 2	d = 2	d = 2		d = 2		d = 2		d = 2	
	a' = 0		a'=0	a' = 1	a' = 0		a'=0		a'=0		a' = 1	
	b' = 0		b'=0	b' = 0	b' = 1		b' = 1		b' = 0		b'=0	
	c'=0		c'=0	c'=0	c'=0		c'=0		c' = 1		c' = 1	
- 1	$nl_t l' = rea$	1	ml_tl' = green	ml_tl' = green	ml_tl' = green	m	l_tl' = green	- 1	ml_tl' = green	n	nI_tI' = green	1
	$il_{-}tl' = red$		$il_{-}tl' = red$	$iI_{-}tI' = red$	$iI_{-}tI' = red$		tl' = green		il_tl' = green	i	I_tI' = green	

Fixing m_2 : Adding an Invariant

• Having understood the failed proofs, we add a proper *invariant* to m_2 :

• We have effectively resulted in an improved m_2 more faithful w.r.t. **REQ3**:

REQ3	The bridge is one-way or the other, not both at the same time.
------	--

- Having added this new invariant inv2_5:
 - Original 6 x 4 generated sequents to be <u>updated</u>: <u>inv2_5</u> a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now <u>provable</u>?
 - Additional 6 x 1 sequents to be generated due to this new invariant e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?

INV PO of m_2 : ML_out/inv2_4/INV – Updated

```
axm0 1
                                              d \in \mathbb{N}
                                axm0 2
                                              d > 0
                                axm2_1
                                              COLOUR = { green, red}
                                axm2 2
                                              areen + red
                                 inv0 1
                                             n \in \mathbb{N}
                                  inv0 2
                                              n < d
                                  inv1 1
                                              a \in \mathbb{N}
                                             b \in \mathbb{N}
                                  inv1_2
                                  inv1 3
                                            { c∈ N
                                  inv1 4 \{a+b+c=n\}
                                  inv1 5
                                           \{ a = 0 \lor c = 0 \}
                                  inv2 1 { ml tl ∈ COLOUR
                                  inv2_2 { il_tl ∈ COLOUR
                                  inv2 3
                                             mI_{t}I = qreen \Rightarrow a + b < d \land c = 0
                                  inv2_4
                                              iI_{-}tI = green \Rightarrow b > 0 \land a = 0
                                  inv2 5
                                              ml tl = red \lor il tl = red
           Concrete guards of ML_out
                                              ml_{-}tl = green
            Concrete invariant inv2 4
                                            \{ il_t tl = areen \Rightarrow b > 0 \land (a+1) = 0 \}
with ML_out's effect in the post-state
```

ML_out/inv2_4/INV

INV PO of m_2 : IL_out/inv2_3/INV – Updated

```
axm0 1
                                             d \in \mathbb{N}
                               axm0 2
                                             d > 0
                               axm2 1
                                             COLOUR = {green, red}
                               axm2 2
                                             areen + red
                                 inv0_1
                                             n \in \mathbb{N}
                                 inv0 2
                                             n < d
                                 inv1 1
                                              a \in \mathbb{N}
                                 inv1 2
                                             b \in \mathbb{N}
                                 inv1 3
                                             CEN
                                 inv1 4
                                              a+b+c=n
                                              a = 0 \lor c = 0
                                 inv1.5
                                             ml tl ∈ COLOUR
                                 inv2 1
                                 inv2 2
                                             il tl ∈ COLOUR
                                 inv2 3
                                             mI_{-}tI = areen \Rightarrow a + b < d \land c = 0
                                 inv2 4
                                              iI_{\perp}tI = areen \Rightarrow b > 0 \land a = 0
                                 inv2 5
                                              ml tl = red \lor il tl = red
            Concrete guards of IL_out
                                             il_tl = green
            Concrete invariant inv2.3
                                            \{ ml_{-}tl = areen \Rightarrow a + (b-1) < d \land (c+1) = 0 \}
with ML_out's effect in the post-state
```

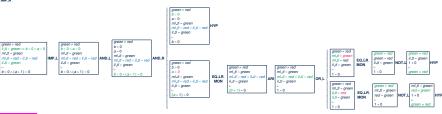
IL_out/inv2_3/INV

Proving ML_out/inv2_4/INV: Second Attempt LASSONDE


```
| d. N | COLOR - (green, red) | green - red | res | red | re
```

MON

IMP B



Proving IL_out/inv2_3/INV: Second Attempt


```
COLOUR - (green, red)
green + red
n < d
a+b+c-n
a-0vc-0
mi_ti < COLOUR
 mi_*ti = areen \Rightarrow a + b < d \land c = 0
il_a tl = green \Rightarrow b > 0 \land a = 0
mi_*ti = red \lor ii_*ti = red
II.tl - green
 ml_*tl = areen \Rightarrow a + (b-1) < d \land (c+1) = 0
MON
ml_*tl = qreen \Rightarrow a + b < d \land c = 0
 mi_ti - red v ii_ti - red
II_tl - green
 ml_*tl = green \Rightarrow a + (b-1) < d \land (c+1) = 0
IMP.B
                                                                                                                                 0 = 0
                                                                                                                                 #_# - green
                                                                                                                                 ml.tl - red \lor ll.tl - red
                                                                                                                                 ml_tl - green
                                                                                                                                 a+(b-1) < d
 ml_{-}tl = areen \rightarrow a + b < d \land c = 0
                                                                                                                                                                                                                                          green + red
II_tI - green
                                             HH = areen
                                                                                     II_tl - green
                                                                                                                                                                                                                                           II_tl - green
                                                                                                                                                                                                                                                                                              red = green
mi_t ti - red \lor ii_t ti - red
                                            ml_{i}f - red \lor il_{i}fl - red
                                                                                                                    AND.R
                                                                                                                                                                                                                                                                      II_tf - green
                                                                                     ml_*tl = red \lor il_*tl = red
                                                                                                                                                                                                                                           mi_ti = red
                                                                                                                                                                                                                                                           EQ.LR.
mi_ti - green
                                             ml_tf = green
                                                                                                                                 green + red
                                                                                                                                                                                                                                                                      red - green NOT.
                                                                                     ml_tl - green
                                                                                                                                                                                                                                           mLtf - green
                                                                                                                                                                                                                                                           MON
                                                                                                                                 a+b<d
a + (b-1) < d \wedge (c+1) = 0
                                             a+(b-1) < d \land (c+1) = 0
                                                                                                                                                                       II_II - green
                                                                                                                                                                                                       II_tf - green
                                                                                      a+(b-1)<d \( (c+1) = 0
                                                                                                                                 ILI - green
                                                                                                                                                            FOIR
                                                                                                                                                                       ml_itl = red \lor il_itl = red
                                                                                                                                 ml_itl - red \lor ll_itl - red
                                                                                                                                                            MON
                                                                                                                                                                       ml_tl - green
                                                                                                                                                                                                      ml_ti - green
                                                                                                                                 ml_tl - green
                                                                                                                                                                                                                                                                      green + red
                                                                                                                                                                        (0 + 1) = 0
                                                                                                                                                                                                                                                                      green = red
                                                                                                                                                                                                                                                                                                ml_tl - green
                                                                                                                                                                                                                                           ii_ti - red
                                                                                                                                                                                                                                                           EQ,LR.
                                                                                                                                 (c+1) = 0
                                                                                                                                                                                                                                                                       ml_tl - green NOT_L
                                                                                                                                                                                                                                                                                                               нүр
                                                                                                                                                                                                                                           mi_ti = green
                                                                                                                                                                                                                                                           MON
```


Fixing m_2 : Adding Actions

• Recall that an *invariant* was added to m_2 :

```
invariants:
inv2.5: ml_tl = red \( \tilde{ il_tl} = red \)
```

- Additional 6 x 1 sequents to be generated due to this new invariant:
 - e.g., ML_tl_green/inv2_5/INVe.g., IL_tl_green/inv2_5/INV

[for *ML_tl_green* to preserve inv2_5]
[for *IL_tl_green* to preserve inv2_5]

For the above sequents to be provable, we need to revise the two events:

```
ML_tl_green
when
ml_tl = red
a + b < d
c = 0
then
ml_tl := green
il_tl := red
end
```

```
IL_tl_green
    when
    il_tl = red
    b > 0
    a = 0
    then
    il_tl := green
    ml_tl := red
end
```

Exercise: Specify and prove ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV.


```
axm0_1
                                               d \in \mathbb{N}
                                axm0 2
                                               d > 0
                                axm2 1
                                               COLOUR = {green, red}
                                axm2 2
                                               areen + red
                                  inv0 1
                                               n \in \mathbb{N}
                                  inv<sub>0</sub> 2
                                               n < d
                                  inv1 1
                                               a \in \mathbb{N}
                                  inv1_2
                                               b \in \mathbb{N}
                                  inv1 3 √
                                               C \in \mathbb{N}
                                  inv1 4 √
                                               a+b+c=n
                                  inv1 5 { a = 0 \lor c = 0
                                  inv2_1 { ml_tl ∈ COLOUR
                                  inv2 2 { il tl ∈ COLOUR
                                  inv2_3 \{ ml\_tl = green \Rightarrow a+b < d \land c = 0 \}
                                  inv2 4 {
                                               iI_{-}tI = qreen \Rightarrow b > 0 \land a = 0
                                  inv2 5
                                               ml tl = red \lor il tl = red
           Concrete guards of ML_out
                                               ml_{t}l = green
            Concrete invariant inv2_3
                                              \{ml\_tl = qreen \Rightarrow (a+1) + b < d \land c = 0\}
with ML_out's effect in the post-state
```

ML_out/inv2_3/INV

a+b<d

Proving ML_out/inv2_3/INV: First Attempt

```
d \in \mathbb{N}
d > 0
COLOUR = { green, red}
green + red
n \in \mathbb{N}
n < d
a c N
b \in \mathbb{N}
CEN
a+b+c=n
a = 0 \lor c = 0
ml tl c COLOUR
il tl c COLOUR
mI_{t}I = green \Rightarrow a + b < d \land c = 0
iI_{a}tI = green \Rightarrow b > 0 \land a = 0
ml_tl = red \lor il_tl = red
ml_tl = green
ml_{a}tl = green \Rightarrow (a+1) + b < d \land c = 0
```

MON

```
c = 0
                                                                                                                                                                            ml_{-}tl = areen ??
                                                                                                                                      a+b< d
                                                    ml_{-}tl = areen \Rightarrow a + b < d \land c = 0
ml_t = green \Rightarrow a + b < d \land c = 0
                                                                                                                                     c = 0
                                                                                                                                                                            (a+1)+b < d
                                                                                         IMP R | ml_tl = green
                                                    ml_tl = areen
                                          IMP R
                                                                                                                            AND_L ml_tl = green
                                                                                                                                                               AND R
ml\_tl = green \Rightarrow (a+1) + b < d \land c = 0
                                                                                                                                                                            a+b< d
                                                    (a+1) + b < d \land c = 0
                                                                                                   (a+1) + b < d \land c = 0
                                                                                                                                      (a+1) + b < d \land c = 0
                                                                                                                                                                            c = 0
                                                                                                                                                                            ml_tl = green HYP
```

Failed: ML out/inv2 3/INV

 Our first attempt of proving ML_out/inv2_3/INV failed the 1st case (resulted from applying IR AND_R):

$$a + b < d \land c = 0 \land ml_tl = green \vdash (a + 1) + b < d$$

- This unprovable sequent gave us a good hint:
 - Goal (a+1)+b < d specifies the *capacity requirement*.
 - Hypothesis $|c| = 0 \land ml_t t = qreen$ assumes that it's safe to exit the ML.
 - Hypothesis |a+b| < d is **not** strong enough to entail (a+1) + b < d. [(a+1)+b < d evaluates to **true**]

e.g.,
$$d = 3$$
, $b = 0$, $a = 0$
e.g., $d = 3$, $b = 1$, $a = 0$

$$[(a+1)+b < d$$
 evaluates to **true**] $[(a+1)+b < d$ evaluates to **true**]

e.g.,
$$d = 3$$
, $b = 1$, $a = 0$
e.g., $d = 3$, $b = 0$, $a = 1$

$$[(a+1)+b<$$

$$[(a+1)+b < d \text{ evaluates to false }]$$

e.g.,
$$d = 3$$
, $b = 0$, $a = 2$
e.g., $d = 3$, $b = 1$, $a = 1$

$$[(a+1)+b < d$$
 evaluates to **false** $]$

$$[(a+1)+b < d$$
 evaluates to **false** $]$

e.g.,
$$d = 3$$
, $b = 2$, $a = 0$

• Therefore, a + b < d (allowing one more car to exit ML) should be split: $a + b + 1 \neq d$ [more later cars may exit ML, *ml_tl* remains *green*]

$$a + b + 1 = d$$

[no more later cars may exit ML, ml_tl turns red]

Fixing m_2 : Splitting ML-out and IL-out

- Recall that *ML_out/inv2_3/INV* failed : two cases not handled separately:
 - $a+b+1\neq d$ [more later cars may exit ML, ml_tl remains green] a+b+1=d [no more later cars may exit ML, ml_tl turns red]
- Similarly, IL_out/inv2_4/INV would fail : two cases not handled separately:

```
b-1 \neq 0 [more later cars may exit IL, il_tl remains green]

b-1=0 [no more later cars may exit IL, il_tl turns red]
```

Accordingly, we split ML_out and IL_out into two with corresponding guards.

```
ML_out_1
when
ml_tl = green
a + b + 1 ≠ d
then
a := a + 1
end
```

```
ML_out_2

when

ml_tl = green

a + b + 1 = d

then

a := a + 1

ml_tl := red

end
```



```
IL_out_2
when
il_tl = green
b = 1
then
b := b - 1
c := c + 1
il_tl := red
end
```

Exercise: Specify and prove ML_out/inv2_3/INV & IL_out/inv2_4/INV.

Exercise: Given the latest m_2 , how many sequents to prove for *invariant preservation*?

Exercise: Each split event (e.g., ML_out_1) refines its abstract counterpart (e.g., $ML_out)$?

m₂ Livelocks: New Events Diverging

- Recall that a system may *livelock* if the new events diverge.
- Current m₂'s two new events ML_tl_green and IL_tl_green may diverge:

```
ML_tl_green
when
ml_tl = red
a + b < d
c = 0
then
ml_tt := green
il_tt := red
end
```


ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

(init	,	ML_tl_green	ML_out_1 ,	<u>IL_in</u>	, <u>IL_tI_green</u> ,	ML_tl_green ,	IL_tl_green ,
	d = 2		d = 2	d = 2	d = 2	d = 2	d = 2	d = 2
	a' = 0		a' = 0	a' = 1	a'=0	a'=0	a' = 0	a' = 0
	b' = 0		b' = 0	b' = 0	b' = 1	b' = 1	b' = 1	b' = 1
	c' = 0		c'=0	c'=0	c'=0	c'=0	c'=0	c'=0
	nl_tl = <mark>red</mark>		ml_tl' = green	ml_tl' = green	ml₋tl′ = green	$ml_tl' = red$	ml_tl' = green	$ml_t l' = red$
	il_tl = red		$iI_{-}tI' = red$	$il_{\perp}tl' = red$	$il_{-}tl' = red$	il_tl' = green	$il_t tl' = red$	il_tl' = green

- ⇒ Two traffic lights keep changing colors so rapidly that **no** drivers can ever pass!
- <u>Solution</u>: Allow color changes between traffic lights in a disciplined way.

Fixing m_2 : Regulating Traffic Light Changes LASSONDE

We introduce two variables/flags for regulating traffic light changes:

- ml_pass is 1 if, since ml_tl was last turned green, at least one car exited the ML onto the bridge. Otherwise, ml_pass is 0.
- iI.pass is 1 if, since iI.tl was last turned green, at least one car exited the IL onto the bridge. Otherwise, iI.pass is 0.

variables: ml_pass, il_pass

invariants: inv2.6: $ml.pass \in \{0,1\}$ inv2.7: $il.pass \in \{0,1\}$ inv2.8: $ml.tl = red \Rightarrow ml.pass = 1$ inv2.9: $il.tl = red \Rightarrow il.pass = 1$ ML_out_1 when ml_tl = green a + b + 1 ≠ d then a := a + 1 ml_pass := 1 end

ML_out.2 when ml.tl = green a + b + 1 = d then a := a + 1 ml.tl := red ml.pass := 1 end IL.out.2

when

ii.tl = green

b = 1

then

b := b - 1

c := c + 1

ii.tl := red

ii.ngss := 1

IL out 1

when

then

end

end

 $b \pm 1$

 $iI_{t}I = areen$

b := b - 1

c := c + 1

 $il_pass := 1$

ML_tl_green when ml_tl = red a + b < d c = 0 il_pass = 1 then ml_tl := green il_tl := red ml_pass := 0 end

Fixing m_2 : Measuring Traffic Light Changes LASSONDE

- Recall:
 - Interleaving of new events charactered as an integer expression: variant.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - In the latest m_2 , let's try | **variants** : $ml_pass + il_pass$
- Accordingly, for the <u>new</u> event <u>ML_tl_green</u>:

```
d \in \mathbb{N}
                                           d > 0
COLOUR = {green, red}
                                           green ≠ red
n \in \mathbb{N}
                                           n < d
a \in \mathbb{N}
                                           b \in \mathbb{N}
                                                                                 c \in \mathbb{N}
a+b+c=n
                                      a = 0 \lor c = 0
ml tl ∈ COLOUR
                                        il tl ∈ COLOUR
ml_{-}tl = green \Rightarrow a + b < d \land c = 0 il_{-}tl = green \Rightarrow b > 0 \land a = 0
ml \ tl = red \lor il \ tl = red
ml_pass ∈ {0, 1}
                                       il_pass ∈ {0, 1}
ml\_tl = red \Rightarrow ml\_pass = 1 il\_tl = red \Rightarrow il\_pass = 1
                                           a+b < d
ml tl = red
                                                                                 c = 0
il_pass = 1
0 + il_pass < ml_pass + il_pass
```

ML_tl_green/VAR

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/VAR.

DI F

PO Rule: Relative Deadlock Freedom of m_2

```
axm0 1
                                     d \in \mathbb{N}
                       axm0 2
                                     d > 0
                       aym2 1
                                     COLOUR = { areen, red}
                       aym2 2
                                     areen + red
                         inv0 1
                                     n \in \mathbb{N}
                         inv0 2
                                     n < d
                         inv1 1
                                     a \in \mathbb{N}
                         inv1 2
                                     b \in \mathbb{N}
                         inv13
                                     CEN
                         inv1 4
                                     a+b+c=n
                                     a = 0 \lor c = 0
                         inv1_5
                         inv2 1
                                     ml tl ∈ COLOUR
                         inv2 2
                                     il tl ∈ COLOUR
                         inv2 3
                                     ml_t t = green \Rightarrow a + b < d \land c = 0
                         inv2 4
                                     iI_{-}tI = areen \Rightarrow b > 0 \land a = 0
                         inv2 5
                                     ml\_tl = red \lor il\_tl = red
                                     ml_pass ∈ {0, 1}
                         inv2 6
                         inv2_7
                                     il_pass ∈ {0, 1}
                         inv2 8
                                     ml_tl = red \Rightarrow ml_pass = 1
                         inv2 9
                                     il\_tl = red \Rightarrow il\_pass = 1
                                           a+b<d\wedge c=0
                                                                  quards of ML_out in m1
                                                                  quards of ML in in ma
                                                       c > 0
Disjunction of abstract guards
                                                                  guards of // in in ma
                                                       a > 0
                                               b > 0 \land a = 0
                                                                 quards of IL_out in m1
                                           ml \ tl = red \land a + b < d \land c = 0 \land il \ pass = 1
                                                                                                guards of ML_tl_green in mo
                                               il\_tl = red \land b > 0 \land a = 0 \land ml\_pass = 1
                                                                                               quards of /L_t/_areen in mo
                                                           ml_{-}tl = areen \wedge a + b + 1 \neq d
                                                                                               quards of ML_out_1 in mo
                                                           ml_{-}tl = areen \wedge a + b + 1 = d
                                                                                               quards of ML out 2 in mo
Disjunction of concrete guards
                                                                     iI_{-}tI = green \land b \neq 1
                                                                                               quards of /L_out_1 in m2
                                                                     iI_{-}tI = green \land b = 1
                                                                                               quards of IL_out_2 in m2
                                                                                     a > 0
                                                                                               quards of ML_in in mo
                                                                                               quards of IL_in in mo
                                                                                     c > 0
```


Proving Refinement: DLF of *m*₂

```
d > 0
COLOUR = { areen, red}
areen ± red
n e N
n < d
aeN
b c N
CEN
0+h+c-n
a = 0 \times c = 0
ml tl c COLOUR
il_tl ∈ COLOUR
ml_{-}tl = areen \Rightarrow a + b < d \land c = 0
iI_{-}tI = areen \Rightarrow b > 0 \land a = 0
ml_t tl = red \lor il_t tl = red
ml_pass ∈ {0, 1}
il_pass ∈ {0, 1}
ml_{-}tl = red \Rightarrow ml_{-}pass = 1
iI_{-}tI = red \Rightarrow iI_{-}pass = 1
    a+b < d \land c = 0
 v c>0
 v a>0
 v h>0 x a = 0
     ml\_tl = red \land a + b < d \land c = 0 \land il\_pass = 1
 \forall il\_tl = red \land b > 0 \land a = 0 \land ml\_pass = 1
 v ml_tl = areen
 v il_tl = green
 v a>0
 v c>0
```

```
d \in \mathbb{N}
d > 0
                                                      0 < h
b \in \mathbb{N}
                                                      b \in \mathbb{N}
ml.tl = red
                                                      ml.tl = red
il_tl = red
                                                      il.tl = red
ml.tl = red \Rightarrow ml.pass = 1
                                                      ml_pass = 1
il.tl = red \Rightarrow il.pass = 1
                                                      il_pass = 1
     b < d \land ml.pass = 1 \land il.pass = 1
                                                           b < d \land ml.pass = 1 \land il.pass = 1
 y b > 0 ∧ ml_pass = 1 ∧ il_pass = 1

∨ b > 0 ∧ ml_pass = 1 ∧ il_pass = 1
```


OR R1 HYP $0 < d \lor 0 > 0$ 0 < d

[init]

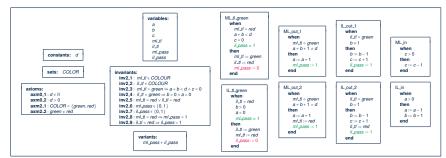
[old & new events]

[old events]

[new events]

Second Refinement: Summary

- The final version of our **second refinement** m_2 is **provably correct** w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants
 - o Strengthening of guards
 - Convergence (a.k.a. livelock freedom, non-divergence)
 - Relative **Deadlock** Freedom
- Here is the final specification of m_2 :



Index (1)

Learning Outcomes

Recall: Correct by Construction

State Space of a Model

Roadmap of this Module

Requirements Document: Mainland, Island

Requirements Document: E-Descriptions

Requirements Document: R-Descriptions

Requirements Document:

Visual Summary of Equipment Pieces

Refinement Strategy

Model m_0 : Abstraction

Index (2)

Model m_0 : State Space

Model m_0 : State Transitions via Events

Model m_0 : Actions vs. Before-After Predicates

Design of Events: Invariant Preservation

Sequents: Syntax and Semantics

PO of Invariant Preservation: Sketch

PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

Index (3)

Example Inference Rules (2)

Example Inference Rules (3)

Revisiting Design of Events: ML_out

Revisiting Design of Events: ML_in

Fixing the Design of Events

Revisiting Fixed Design of Events: ML_out

Revisiting Fixed Design of Events: ML_in

Initializing the Abstract System m_0

PO of Invariant Establishment

Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

Index (4)

PO of Deadlock Freedom (1)

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

Index (5)

Model m_1 : Refined State Space

Model m₁: State Transitions via Events

Model m_1 : Actions vs. Before-After Predicates

States & Invariants: Abstract vs. Concrete

Events: Abstract vs. Concrete

PO of Refinement: Components (1)

PO of Refinement: Components (2)

PO of Refinement: Components (3)

Sketching PO of Refinement

Refinement Rule: Guard Strengthening

PO Rule: Guard Strengthening of ML_out

Index (6)

PO Rule: Guard Strengthening of ML_in

Proving Refinement: ML_out/GRD

Proving Refinement: ML_in/GRD

Refinement Rule: Invariant Preservation

Visualizing Inv. Preservation in Refinement

INV PO of m_1 : ML_out/inv1_4/INV

INV PO of m_1 : ML_in/inv1_5/INV

Proving Refinement: ML_out/inv1_4/INV

Proving Refinement: ML_in/inv1_5/INV

Initializing the Refined System m₁

PO of m₁ Concrete Invariant Establishment

Index (7)

Discharging PO of m₁

Concrete Invariant Establishment

Model m_1 : New, Concrete Events

Model m_1 : BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

Refinement Rule: Invariant Preservation

INV PO of m_1 : IL_in/inv1_4/INV

INV PO of m_1 : IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

Livelock Caused by New Events Diverging

Index (8)

PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m_1

Example Inference Rules (6)

Proving Refinement: DLF of m₁

Proving Refinement: DLF of m_1 (continued)

First Refinement: Summary

Model m₂: "More Concrete" Abstraction

Index (9)

Model m_2 : Refined, Concrete State Space

Model m₂: Refining Old, Abstract Events

Model m_2 : New, Concrete Events

Invariant Preservation in Refinement m₂

INV PO of m_2 : ML_out/inv2_4/INV

INV PO of m_2 : IL_out/inv2_3/INV

Example Inference Rules (7)

Proving ML_out/inv2_4/INV: First Attempt

Proving IL_out/inv2_3/INV: First Attempt

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

Fixing m_2 : Adding an Invariant

Index (10)

INV PO of m_2 : ML_out/inv2_4/INV – Updated

INV PO of m_2 : IL_out/inv2_3/INV – Updated

Proving ML_out/inv2_4/INV: Second Attempt

Proving IL_out/inv2_3/INV: Second Attempt

Fixing m_2 : Adding Actions

INV PO of m_2 : ML_out/inv2_3/INV

Proving ML_out/inv2_3/INV: First Attempt

Failed: ML out/inv2 3/INV

Fixing m₂: Splitting ML_out and IL_out

m₂ Livelocks: New Events Diverging

Fixing m_2 : Regulating Traffic Light Changes

Index (11)

Fixing m_2 : Measuring Traffic Light Changes

PO Rule: Relative Deadlock Freedom of m_2

Proving Refinement: DLF of m₂

Second Refinement: Summary

Specifying & Refining a File Transfer Protocol

MEB: Chapter 4

EECS3342 Z: System Specification and Refinement Winter 2022

Learning Outcomes

This module is designed to help you review:

- What a Requirement Document (RD) is
- What a refinement is
- Writing <u>formal</u> specifications
 - o (Static) contexts: constants, axioms, theorems
 - o (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

A Different Application Domain

- The bridge controller we specified, refined, and proved exemplifies
 a reactive system, working with the physical world via:
 - sensorsactuators[a, b, c, ml_pass, il_pass][ml_tl, il_tl]
- We now study an example exemplifying a distributed program:
 - A protocol followed by two agents, residing on distinct geographical locations, on a computer network
 - Each file is transmitted asynchronously:
 bytes of the file do not arrive at the receiver all at one go.
 - Language of predicates, sets, and relations required
 - The <u>same</u> principles of generating *proof obligations* apply.

Requirements Document: File Transfer Protocol (FTP)

You are required to implement a system for transmitting files between *agents* over a computer network.

Page Source: https://www.venafi.com

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

REQ1	The protocol ensures the copy of a file from the sender to the receiver.			
REQ2	The file is supposed to be made of a sequence of items.			
REQ3	The file is sent piece by piece between the two sites.			

Refinement Strategy

- Recall the <u>design</u> strategy of progressive <u>refinements</u>.
 - <u>initial model</u> (m₀): a file is transmitted from the <u>sender</u> to the <u>receiver</u>. [REQ1] However, at this <u>most abstract</u> model:
 - file transmitted from sender to receiver synchronously & instantaneously
 - transmission process abstracted away
 - 1. 1st refinement $(m_1 \text{ refining } m_0)$:

transmission is done asynchronously

[REQ2, REQ3]

However, at this more concrete model:

- no communication between sender and receiver
- exchanges of *messages* and *acknowledgements abstracted* away
- **2. 2nd refinement** (m_2 **refining** m_1): communication mechanism elaborated

[REQ2, REQ3]

3. <u>final</u>, 3rd refinement (m₃ refining m₂): communication mechanism optimized

[REQ2, REQ3]

• Recall *Correct by Construction*:

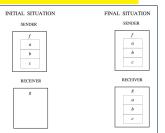
From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it *feasible* to conduct **analysis** and **proofs**.

Model m_0 : Abstraction

- In this most abstract perception of the protocol, we do not consider the sender and receiver:
 - residing in geographically distinct locations
 - communicating via message exchanges
- Instead, we focus on this single requirement:

REQ1 The protocol ensures the copy of a file from the sender to the receiver.

Abstraction Strategy:



- Observe the system with the process of transmission abstracted away
- <u>only</u> meant to inform what the protocol is supposed to achieve
- <u>not</u> meant to detail <u>how</u> the transmission is achieved

Math Background Review

Refer to LECTURE 1 for reviewing:

- Predicates
- Sets
- Relations and Operations
- Functions

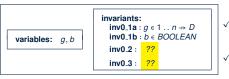
[e.g., ∀]

Model m_0 : Abstract State Space

 The <u>static</u> part formulates the *file* (from the *sender*'s end) as a sequence of data items:

```
sets: D,BOOLEAN constants: n,f axioms: axm0.1: n>0 axm0.2: f \in 1... n \rightarrow D axm0.3: BOOLEAN = {TRUE, FALSE}
```

2. The **dynamic** part of the state consists of two **variables**:



- √ g: file from the receiver's end
- √ b: whether or not the transmission is completed
- ✓ inv0_1a and inv0_1b are typing constraints.
- √ inv0_2 specifies what happens before the transmission
- ✓ inv0_3 specifies what happens after the transmission

Model m_0 : State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as actions of <u>enabled</u> events change values of variables, subject to <u>invariants</u>.
- Initially, before the transmission:

- Nothing has been transmitted to the *receiver*.
- The transmission process has not been completed.
- Finally, <u>after</u> the transmission:

- The entire file f has been transmitted to the receiver.
- The *transmission* process has been completed.
- o In this abstract model:
 - Think of the transmission being <u>instantaneous</u>.
 - A later refinement specifies how f is transmitted asynchronously.

PO of Invariant Establishment

How many sequents to be proved?

- [# invariants]
- We have <u>four</u> **sequents** generated for **event** init of model m_0 :

```
n > 0
       f \in 1 \dots n \rightarrow D
       BOOLEAN = { TRUE, FALSE }
                                                init/inv0 1a/INV
1.
       \emptyset \in 1 ... n \rightarrow D
      n > 0
       f \in 1 ... n \rightarrow D
2.
       BOOLEAN = {TRUE, FALSE}
                                                init/inv0_1b/INV
       FALSE ∈ BOOLEAN
       n > 0
       f \in 1 \dots n \rightarrow D
3.
       BOOLEAN = {TRUE, FALSE}
                                                init/inv0_2/INV
       FALSE = FALSE \Rightarrow \emptyset = \emptyset
      n > 0
       f \in 1 n \rightarrow D
       BOOLEAN = {TRUE, FALSE}
                                                init/inv0 3/INV
       FALSE = TRUE \Rightarrow \emptyset = f
```

<u>Exercises</u>: Prove the above sequents related to *invariant establishment*.

PO of Invariant Preservation

- How many **sequents** to be proved? [# non-init events × # invariants]
- We have four sequents generated for event final of model m₀:

```
n > 0
f \in 1 n \rightarrow D
BOOLEAN = {TRUE, FALSE}
q \in 1 ... n \rightarrow D
b ∈ BOOLEAN
b = FALSE \Rightarrow a = \emptyset
b = TRUE \Rightarrow q = f
b = FALSE
f \in 1 ... n \rightarrow D
```

final/inv0 1a/INV

```
n > 0
f \in 1 n \rightarrow D
BOOLEAN = { TRUE, FALSE}
a \in 1 ... n \rightarrow D
b ∈ BOOLEAN
b = FALSE \Rightarrow a = \emptyset
b = TRUE \Rightarrow q = f
b = FALSE
TRUE ∈ BOOLEAN
```

final/inv0 1b/INV

```
n > 0
f \in 1 ... n \rightarrow D
BOOLEAN = {TRUE, FALSE}
a \in 1... n \rightarrow D
b ∈ BOOLEAN
b = FALSE \Rightarrow a = \emptyset
b = TRUE \Rightarrow a = f
b = FALSE
TRUE = FALSE \Rightarrow f = \emptyset
```

final/inv0_2/INV

```
n > 0
f \in 1 ... n \rightarrow D
BOOLEAN = { TRUE, FALSE }
a \in 1...n \rightarrow D
b ∈ BOOLEAN
b = FALSE \Rightarrow a = \emptyset
b = TRUE \Rightarrow a = f
b = FALSE
TRIJF = TRIJF \Rightarrow f = f
```

final/inv0_3/INV

Exercises: Prove the above sequents related to *invariant preservation*.

- Our *initial model m*₀ is *provably correct* w.r.t.:
 - Establishment of *Invariants*
 - Preservation of *Invariants*
 - o Deadlock Freedom
- Here is the **specification** of m_0 :

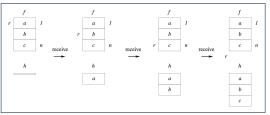
[EXERCISE]

```
init
                                                                                                      begin
                                                                                                         a := \emptyset
                                                                variables: g, b
                                                                                                         b := FALSE
sets: D. BOOLEAN
                            constants: n.f
                                                                                                      end
                                                        invariants:
axioms:
                                                           inv0_1a: q \in 1..n \Rightarrow D
                                                                                                    final
  axm0.1: n > 0
                                                                                                      when
                                                           inv0 1b: b & BOOLEAN
  axm0 2: f \in 1...n \rightarrow D
                                                                                                         b = FALSE
                                                           inv0_2: b = FALSE \Rightarrow q = \emptyset
  axm0_3: BOOLEAN = {TRUE, FALSE}
                                                                                                      then
                                                           inv0_3: b = TRUE \Rightarrow g = f
                                                                                                         q := f
                                                                                                         h := TRUF
                                                                                                      end
```

Model m_1 : "More Concrete" Abstraction

- In m_0 , the transmission (evt. final) is **synchronous** and **instantaneous**.
- The 1st *refinement* has a more *concrete* perception of the file transmission:
 - The sender's file is coped gradually, *element by element*, to the receiver.
 - → Such progress is denoted by occurrences of a *new event* receive.

h: elements transmitted so far
r: index of element to be sent
abstract variable g is replaced
by concrete variables h and r.



- Nonetheless, communication between two agents remain abstracted away!
- That is, we focus on these two intended functionalities:

REQ2	The file is supposed to be made of a sequence of items.	
REQ3	The file is sent piece by piece between the two sites.	

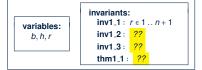
• We are **obliged to prove** this **added concreteness** is **consistent** with m_0 .

Model m_1 : Refined, Concrete State Space

1. The **static** part remains the same as m_0 :

```
sets: D,BOOLEAN constants: n,f axioms: axm0.1: n > 0 axm0.2: f \in 1... n \rightarrow D axm0.3: BOOLEAN = {TRUE, FALSE}
```

- 2. The **dynamic** part formulates the **gradual** transmission process:
 - ♦ inv1_1: typing constraint
 - inv2_2: elements up to index r 1 have been transmitted



- inv2.3: transmission completed <u>means</u> <u>no</u> more elements to be transmitted
- thm1_1: transmission completed <u>means</u> receiver has a complete copy of sender's file
- A theorem, once proved as derivable from invariants, needs <u>not</u> be proved for preservation by events.

Model m_1 : Property Provable from Invariants LASSONDE

To prove that a theorem can be derived from the invariants:

variables: b, h, r

invariants:

*inv1*_{_1}: $r \in 1 ... n + 1$ *inv1*_{_2}: $h = (1 ... r - 1) \triangleleft f$ *inv1*_{_3}: $b = TRUE \Rightarrow r = n + 1$ *thm1*_{_1}: $b = TRUE \Rightarrow h = f$

We need to prove the following sequent:

$$r \in 1 ... n + 1$$

 $h = (1 ... r - 1) \lhd f$
 $b = TRUE \Rightarrow r = n + 1$
 \vdash
 $b = TRUE \Rightarrow h = f$

Exercise: Prove the above sequent.

Initially, before the transmission:

- ♦ The *transmission* process has not been completed.
- ♦ Nothing has been transmitted to the *receiver*.
- ⋄ First file element is available for transmission.
- While the transmission is <u>ongoing</u>:

- While sender has more file elements available for transmission:
 - Next file element is received and accumulated to the receiver's copy.
 - Sender's next available file element is updated.
- ♦ In this concrete model:
 - Receiver having access to sender's private variable r is <u>unrealistic</u>.
 - A later refinement specifies how two agents communicate.
- Finally, <u>after</u> the transmission:

- When sender has no more file element available for transmission:
 - The transmission process is marked as completed.

PO of Invariant Establishment

How many sequents to be proved?

- [# invariants]
- We have three **sequents** generated for **event** init of model m_1 :

$$\begin{array}{c} n > 0 \\ f \in 1 \dots n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ \vdash \\ 1 \in 1 \dots n + 1 \\ \hline n > 0 \end{array}$$

init/inv1_1/INV

2. $| f \in 1 ... n \rightarrow D$ $BOOLEAN = \{TRUE, FALSE\}$ $\vdash \\ \emptyset \in (1 ... 1 - 1) \triangleleft f$

init/inv1_2/INV

n > 0 $f \in 1 ... n \rightarrow D$ $BOOLEAN = \{TRUE, FALSE\}$ $FALSE = TRUE \Rightarrow 1 = n + 1$

init/inv1_3/INV

• Exercises: Prove the above sequents related to invariant establishment.

PO of Invariant Preservation - final

- We have three **sequents** generated for **old event** final of model m_1 .
- Here is one of the sequents:

```
n > 0
f \in 1 ... n \rightarrow D
BOOLEAN = {TRUE, FALSE}
g \in 1 ... n \rightarrow D
b ∈ BOOLEAN
b = FALSE \Rightarrow g = \emptyset
b = TRUE \Rightarrow q = f
r \in 1...n + 1
h = (1 ... r - 1) \triangleleft f
b = TRUE \Rightarrow r = n + 1
b = FALSE
r = n + 1
r \in 1 \dots n+1
```

final/inv1_1/INV

• Exercises: Formulate & prove other sequents of *invariant preservation*.

PO of Invariant Preservation - receive

• We have three **sequents** generated for **new event** receive of model m_1 :

receive/inv1_1/INV

$\begin{array}{l} r>0 \\ f\in 1... n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g\in 1... n \rightarrow D \\ b\in BOOLEAN \\ b=FALSE \Rightarrow g=\varnothing \\ b=TRUE \Rightarrow g=f \\ r\in 1... r+1 \\ h=(1... r-1) \lhd f \\ b=TRUE \Rightarrow r=n+1 \\ r\leq n \\ \vdash (r+1) \in 1... r+1 \\ \end{array}$

receive/inv1_2/INV

```
 \begin{array}{l} n>0 \\ \ell\in 1... n\to D \\ BOOLEAN = \{TRUE, FALSE\} \\ g\in 1... n\to D \\ b\in BOOLEAN \\ b=FALSE \Rightarrow g=\emptyset \\ b=TRUE \Rightarrow g=f \\ r\in 1... n+1 \\ h=(1..r-1) \lhd f \\ b=TRUE \Rightarrow r=n+1 \\ r\leq n \\ \mapsto \cup \{(r,f(r))\} = (1...(r+1)-1) \lhd f \end{array}
```

receive/inv1_3/INV

```
n > 0

f \in 1... n \rightarrow D

BOOLEAN = \{TRUE, FALSE\}

g \in 1... n \rightarrow D

b \in BOOLEAN

b = FALSE \Rightarrow g = \emptyset

b = TRUE \Rightarrow g = f

r \in 1... r + 1

h = (1... r - 1) \lhd f

b = TRUE \Rightarrow r = n + 1

r \le n

h = TRUE \Rightarrow (r + 1) = n + 1
```

Exercises: Prove the above sequents of invariant preservation.

Proving Refinement: receive/inv1_1/INV

```
 \begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \dots n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \Rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ r \in 1 \dots n + 1 \\ h = (1 \dots r - 1) \lhd f \\ b = TRUE \Rightarrow r = n + 1 \\ r \leq n \\ (r + 1) \in 1 \dots n + 1 \\ \end{array}
```

MON

Proving Refinement: receive/inv1_2/INV

```
 \begin{array}{c} n > 0 \\ f \in 1 \dots n \to D \\ f \in 1 \dots n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \dots n \to D \\ b \in BOOLEAN \\ b = FALSE \to g = \emptyset \\ b = TRUE \to g = f \\ r \in 1 \dots n + 1 \\ h = (1 \dots r - 1) \lhd f \\ b = TRUE \to r = n + 1 \\ r \le n \\ \vdash U \cup \{(r, f(r))\} = (1 \dots (r + 1) - 1) \lhd f \\ \end{array}
```

MON

```
\begin{cases} f \in 1 \dots n \to D \\ r \in 1 \dots n+1 \\ h = (1 \dots r-1) \lhd f \\ r \le n \\ \vdash h \cup \{(r,f(r))\} = (1 \dots (r+1)-1) \lhd f \end{cases}
```

```
| f \in 1...n \to D

| 1 \le r

| h = (1...r - 1) \triangleleft f

| r \le n

| h = (f(r, f(r))) = (f(r, f(r))) \triangleleft f(r)
```

EQ_LR, MON, ARI

```
ARI

\begin{cases}
f \in 1 ... n \to D \\
1 \le r \\
r \le n \\
\vdash \\
(1 ... r - 1) \lhd f \cup \{(r, f(r))\} = (1 ... r) \lhd f
\end{cases}
```


Proving Refinement: receive/inv1_3/INV

MON

m_1 : PO of Convergence of New Events

- · Recall:
 - Interleaving of new events charactered as an integer expression: variant.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - For m_1 , let's try **variants** : n + 1 r
- Accordingly, for the <u>new</u> event <u>receive</u>:

```
n > 0

f \in 1 ... n \rightarrow D

BOOLEAN = \{TRUE, FALSE\}

g \in 1 ... n \rightarrow D

b \in BOOLEAN

b = FALSE \Rightarrow g = \emptyset

b = TRUE \Rightarrow g = f

r \in 1 ... n + 1

h = (1 ... r - 1) \lhd f

b = TRUE \Rightarrow r = n + 1

r \le n

h = (r + 1) < n + 1 - r
```

receive/VAR

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.

[init]

First Refinement: Summary

- The *first refinement m*₁ is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants
 - Strengthening of *quards*
 - Convergence (a.k.a. livelock freedom, non-divergence) [new events, EXERCISE]
 - Relative **Deadlock** Freedom

- - [EXERCISE]

[old & new events] [old events, EXERCISE]

Here is the **specification** of m₁:

```
sets: D. BOOLEAN
                                constants: n.f
   axioms:
     axm0.1: n > 0
     axm0 2: f \in 1...n \rightarrow D
     axm0_3: BOOLEAN = {TRUE, FALSE}
                 invariants:
variables:
                   inv1 1: r \in 1...n + 1
                   inv1_2: h = (1...r-1) \triangleleft f
  b.h.r
                   inv1 3: h = TRLIF \Rightarrow r = n + 1
                   thm1 1: b = TRUE \Rightarrow h = f
```

init begin h := FALSE $h := \emptyset$ r := 1end

final when r = n + 1h = FALSE then b := TRUE end

receive when r < nthen $h := h \cup \{(r, f(r))\}$ r := r + 1end

> variants: n + 1 - r

Index (1)

Learning Outcomes

A Different Application Domain

Requirements Document:

File Transfer Protocol (FTP)

Requirements Document: R-Descriptions

Refinement Strategy

Model m_0 : Abstraction

Math Background Review

Model m_0 : Abstract State Space

Model m_0 : State Transitions via Events

PO of Invariant Establishment

26 of 28

Index (2)

PO of Invariant Preservation

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

Model m_1 : Refined, Concrete State Space

Model m_1 : Property Provable from Invariants

Model m_1 : Old and New Concrete Events

PO of Invariant Establishment

PO of Invariant Preservation – final

PO of Invariant Preservation – receive

Proving Refinement: receive/inv1_1/INV

Proving Refinement: receive/inv1_2/INV

27 of 28

Index (3)

Proving Refinement: receive/inv1_3/INV

 m_1 : PO of Convergence of New Events

First Refinement: Summary