What is a Safety-Critical System (SCS)?

LASSONDE

A *safety-critical system (SCS)* is a system whose *failure* or *malfunction* has one (or more) of the following consequences:

- death or serious injury to people
- loss or severe damage to equipment/property
- harm to the environment

EECS3342 Z: System Specification and Refinement Winter 2022

Introduction MEB: Prologue, Chapter 1

Chen-Wei Wang

Rof 11

Learning Outcomes

This module is designed to help you understand:

- What a *safety-critical* system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,
 - 1. *fairness* and *loyalty* to the practitioner's associates, employers, clients, subordinates and employees;
 - 2. *fidelity* to public needs;
 - 3. devotion to high ideals of personal honour and professional integrity;
 - **4.** *knowledge* of developments in the area of professional engineering relevant to any services that are undertaken; and
 - 5. *competence* in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
 - suspension or termination of professional licenses
 - civil law suits

Source: PEO's Code of Ethics

Developing Safety-Critical Systems

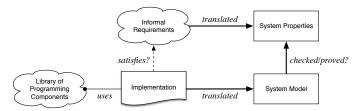
LASSONDE

Industrial standards in various domains list *acceptance criteria* for mission- or safety-critical systems that practitioners need to comply with: e.g.,

- **Aviation** Domain: **RTCA DO-178C** "Software Considerations in Airborne Systems and Equipment Certification"
- **Nuclear** Domain: **IEEE 7-4.3.2** "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"
- Two important criteria are:
- 1. System *requirements* are precise and complete
- 2. System implementation conforms to the requirements
- But how do we accomplish these criteria?

5 of 11

Verification: Building the Product Right?



- Implementation built via reusable programming components.
- Goal : Implementation Satisfies Intended Requirements
- To verify this, we *formalize* them as a *system model* and a set of (e.g., safety) *properties*, using the specification language of a <u>theorem prover</u> (EECS3342) or a <u>model checker</u> (EECS4315).
- Two Verification Issues:
 - 1. Library components may not behave as intended.
- 2. Successful checks/proofs ensure that we *built the product right*, with respect to the <u>informal</u> requirements. But...

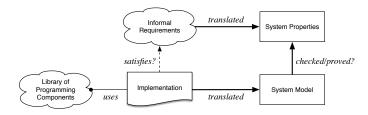
Using Formal Methods for Certification

- A formal method (FM) is a mathematically rigorous technique for the specification, development, and verification of software and hardware systems.
- DO-333 "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods:

The use of **formal methods** is motivated by the expectation that, as in other engineering disciplines, performing appropriate **mathematical analyses** can contribute to establishing the **correctness** and **robustness** of a design.

- FMs, because of their mathematical basis, are capable of:
 - Unambiguously describing software system requirements.
 - Enabling precise communication between engineers.
 - Providing *verification evidence* of:
 - A *formal* representation of the system being *healthy*.
- A *formal* representation of the system *satisfying* safety properties

Validation: Building the Right Product?



- Successful checks/proofs \Rightarrow We *built the right product*.
- The target of our checks/proofs may not be valid:

The requirements may be *ambiguous*, *incomplete*, or *contradictory*.

- <u>Solution</u>: *Precise Documentation*
- [EECS4312]

Model-Based System Development

- *Modelling* and *formal reasoning* should be performed <u>before</u> implementing/coding a system.
 - A system's *model* is its *abstraction*, filtering irrelevant details. A system *model* means as much to a software engineer as a *blueprint* means to an architect.
 - A system may have a list of *models*, "sorted" by **accuracy**: $\langle m_0, m_1, \dots, [m_i], [m_j], \dots, m_n \rangle$
 - The list starts by the most *abstract* model with least details.
 - A more *abstract* model m_i is said to be *refined by* its subsequent, more *concrete* model m_i.
 - The list ends with the most *concrete/refined* model with most details.
 - It is far easier to reason about:
 - a system's *abstract* models (rather than its full *implementation*)
 - refinement steps between subsequent models
- The final product is *correct by construction*.
- 9 of 11

Index (1)

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

- Using Formal Methods to for Certification
- Verification: Building the Product Right?

Validation: Building the Right Product?

Model-Based System Development

Learning through Case Studies

11 of 11

Learning through Case Studies

- We will study example *models of programs/codes*, as well as *proofs* on them, drawn from various application domains:
 - SEQUENTIAL Programs

• **REACTIVE Systems**

- [single thread of control]
- CONCURRENT Programs
 DISTRIBUTED Systems
- [interleaving processes] [(geographically) distributed parties]
 - [sensors vs. actuators]
- The Rodin Platform will be used to:
 - Construct system models using the Even-B notation.
 - Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.

YORK UNIVERSITÉ EECS3342 Z: System Specification and Refinement Winter 2022

Review of Math MEB: Chapter 9 LASSONDE

Chen-Wei Wang

Learning Outcomes of this Lecture

LASSONDE

This module is designed to help you **review**:

- Propositional Logic
- Predicate Logic

2 of 41

· Sets, Relations, and Functions

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$
- [pronounced as "p implies q"]
- We call p the antecedent, assumption, or premise.
- We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
- consequence/conclusion $q \approx$ obligations
- When the promised terms are met, then the contract is:
 - *honoured* if the obligations fulfilled. $[(true \Rightarrow true) \iff true]$
 - *breached* if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

4 of 41

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Unary logical operator: negation (\neg)

0	· /
р	$\neg p$
true	false
false	true

• Binary logical operators: conjunction (\wedge), disjunction (\vee), implication (\Rightarrow), equivalence (\equiv), and if-and-only-if (\iff).

р	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

Propositional Logic: Implication (2)

1111	
-1741	
LASSO	NDE

LASSONDE

[e.g., duties]

- There are alternative, equivalent ways to expressing $p \Rightarrow q$: $\circ q i f p$ *q* is *true* if *p* is *true* $\circ p$ only if a If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$. *Note.* To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"): • p if q $[q \Rightarrow p]$ • p only if q $[p \Rightarrow q]$ • p is sufficient for q For *q* to be *true*, it is sufficient to have *p* being *true*. • q is **necessary** for p [similar to p only if q] If *p* is *true*, then it is necessarily the case that *q* is also *true*. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$. [When is $p \Rightarrow q$ true?]
- \circ *q* unless $\neg p$
 - If *q* is *true*, then $p \Rightarrow q$ *true* regardless of *p*.
- If q is false, then $p \Rightarrow q$ cannot be true unless p is false. 5 of 41

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- Inverse: $\neg p \Rightarrow \neg q$
- [negate antecedent and consequence]
- Converse: $q \Rightarrow p$ [swap antecedent and consequence]
- Contrapositive: $\neg q \Rightarrow \neg p$

[inverse of converse]

LASSONDE

LASSONDE

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers $[-\infty, \ldots, -1, 0, 1, \ldots, +\infty]$ $[0, 1, \ldots, +\infty]$
 - \mathbb{N} : the set of natural numbers
- Variable(s) in a predicate may be *quantified*:
 - Universal quantification :

All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• *Existential quantification* :

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

8 of 41

Propositional Logic (2)

• Axiom: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

- **Theorem**: Identity of ⇒
 - true $\Rightarrow p \equiv p$
- **Theorem**: Zero of \Rightarrow

false
$$\Rightarrow p \equiv true$$

• Axiom: De Morgan

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

p

Predicate Logic (2.1): Universal Q. (∀) LASSONDE • A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$ • X is a comma-separated list of variable names • *R* is a *constraint on types/ranges* of the listed variables • P is a property to be satisfied • For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied. $\circ \forall i \bullet i \in \mathbb{N} \Rightarrow i > 0$ [true] $\circ \quad \forall i \bullet i \in \mathbb{Z} \Rightarrow i \ge 0$ [false] $\circ \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$ [false] Proof Strategies **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*? • **Hint.** When is $R \Rightarrow P$ true? [true \Rightarrow true, false \Rightarrow _] • Show that for all instances of $x \in X$ s.t. R(x), P(x) holds. • Show that for all instances of $x \in X$ it is the case $\neg R(x)$. **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ false? • Hint. When is $R \Rightarrow P$ false? [$true \Rightarrow false$] • Give a witness/counterexample of $x \in X$ s.t. R(x), $\neg P(x)$ holds. 9 of 41

7 of 41

Predicate Logic (2.2): Existential Q. (∃)

- An *existential quantification* has the form $(\exists X \bullet R \land P)$
 - \circ X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - *P* is a *property* to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.
 - $\circ \exists i \bullet i \in \mathbb{N} \land i \ge 0 \qquad [true]$ $\circ \exists i \bullet i \in \mathbb{Z} \land i \ge 0 \qquad [true]$
 - $\circ \exists i, j \bullet i \in \mathbb{Z} \land i < j \lor i > j \qquad [tue]$
- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is $R \wedge P$ true?
 - Give a witness of $x \in X$ s.t. R(x), P(x) holds.
 - **2.** How to prove $(\exists X \bullet R \land P)$ false?
 - <u>Hint</u>. When is $R \land P$ false? [true \land false, false $\land _$]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (4): Switching Quantifications

Conversions between \forall and \exists :

$(\forall X \bullet R \Rightarrow P) \iff$	$\neg(\exists X \bullet R \land \neg P)$
$(\exists X \bullet R \land P) \iff -$	$\neg(\forall X \bullet R \Rightarrow \neg P)$

12 of 41

Predicate Logic (3): Exercises

[$true \wedge true$]

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is <u>not</u> greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are *not* greater than 10.

Sets: Definitions and Membership

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - Order in which elements are arranged does not matter.
 - An element can appear *at most once* in the set.
- We may define a set using:
 - **Set Enumeration**: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.
 - e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
- An empty set (denoted as $\{\}$ or $\varnothing)$ has no members.
- We may check if an element is a *member* of a set:
 e.g., 5 ∈ {1,3,5,7,9}
 - e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$
- The number of elements in a set is called its *cardinality*.

LASSOND

[true]

[true]

e.g., $|\emptyset| = 0$, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

 $S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$

• S_1 and S_2 are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

 $S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$

14 of 41

Set Relations: Exercises

? ⊆ S always holds	[$arnothing$ and $oldsymbol{S}$]
? ⊂ S always fails	[S]
? ⊂ <i>S</i> holds for some <i>S</i> and fails for some <i>S</i>	[Ø]
$S_1 = S_2 \Rightarrow S_1 \subseteq S_2?$	[Yes]
$S_1 \subseteq S_2 \Rightarrow S_1 = S_2?$	[No]

Set Operations

LASSONDE

LASSONDE

Given two sets S_1 and S_2 :

• Union of S_1 and S_2 is a set whose members are in either.

 $S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• **Difference** of S₁ and S₂ is a set whose members are in S₁ but not S₂.

$$S_1 \smallsetminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

Power Sets

16 of 41

The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

 $\mathbb{P}(S) = \{s \mid s \subseteq S\}$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

 $\left\{\begin{array}{l} \varnothing, \\ \{1\}, \{2\}, \{3\}, \\ \{1,2\}, \{2,3\}, \{3,1\}, \\ \{1,2,3\} \end{array}\right\}$

Exercise: What is $\mathbb{P}(\{1, 2, 3, 4, 5\}) \setminus \mathbb{P}(\{1, 2, 3\})$?

17 of 41

LASSONE

Set of Tuples

Given *n* sets S_1, S_2, \ldots, S_n , a cross/Cartesian product of theses sets is a set of *n*-tuples.

Each *n*-tuple (e_1, e_2, \ldots, e_n) contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples:

$$\{a, b\} \times \{2, 4\} \times \{\$, \&\}$$

$$= \left\{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \right\}$$

$$= \left\{ (a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), \\ (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&) \right\}$$

$$(b,2,\$), (b,2,\&), (b,4,\$), (b,4,\&)$$

LASSONDE

LASSOND

• We use the power set operator to express the set of *all possible relations* on *S* and *T*:

 $\mathbb{P}(S \times T)$

Each member in $\mathbb{P}(S \times T)$ is a relation.

• To declare a relation variable r, we use the colon (:) symbol to mean set membership:

 $r: \mathbb{P}(S \times T)$

• Or alternatively, we write:

$$r: S \leftrightarrow 7$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

20 of 41

Relations (1): Constructing a Relation

A *relation* is a set of mappings, each being an *ordered pair* that maps a member of set S to a member of set T.

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$

- $\circ \emptyset$ is an empty relation.
- \circ | $S \times T$ | is the *maximum* relation (say r_1) between S and T. mapping from each member of S to each member in T:

 $\{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

• $\{(x, y) \mid (x, y) \in S \times T \land x \neq 1\}$ is a relation (say r_2) that maps only some members in *S* to every member in *T*:

 $\{(2, a), (2, b), (3, a), (3, b)\}$

Relations (2.2): Exercise

Enumerate $\{a, b\} \leftrightarrow \{1, 2, 3\}$.

- Hints:
 - You may enumerate all relations in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$ via their *cardinalities*: 0, 1, ..., $|\{a, b\} \times \{1, 2, 3\}|$.
 - What's the *maximum* relation in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$?

$$\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

- The answer is a set containing *all* of the following relations:
 - Relation with cardinality 0: Ø
 - $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{1} = 6\right]$ • How many relations with cardinality 1?
 - How many relations with cardinality 2? $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{2}\right] = \frac{6\times5}{2!} = 15$
 - Relation with cardinality $|\{a, b\} \times \{1, 2, 3\}|$:

 $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

21 of 41

. . .

Relations (3.1): Domain, Range, Inverse

Given a relation

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- *domain* of *r* : set of first-elements from *r*
 - Definition: dom $(r) = \{ d \mid (d, r') \in r \}$
 - e.g., $dom(r) = \{a, b, c, d, e, f\}$
 - ASCII syntax: dom(r)
- *range* of *r* : set of second-elements from *r*
 - Definition: $\operatorname{ran}(r) = \{ r' \mid (d, r') \in r \}$
 - e.g., ran(r) = {1,2,3,4,5,6}
 - ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - e.g., $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
- ASCII syntax: r~

22 of 41

Relations (3.3): Restrictions

LASSOND

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- **domain restriction** of r over set ds : sub-relation of r with domain ds.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
 - e.g., $\{a, b\} \lhd r = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
 - ASCII syntax: ds <| r
- *range restriction* of *r* over set *rs* : sub-relation of *r* with range *rs*.
- Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
- e.g., $r \triangleright \{1,2\} = \{(a,1), (b,2), (d,1), (e,2)\}$
- ASCII syntax: r |> rs

24 of 41

Relations (3.2): Image

Relations (3.4): Subtractions

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- *domain subtraction* of *r* over set *ds* : sub-relation of *r* with domain <u>not</u> *ds*.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a, b\} \triangleleft r = \{(\mathbf{c}, 3), (\mathbf{c}, 6), (\mathbf{d}, 1), (\mathbf{e}, 2), (\mathbf{f}, 3)\}$
 - ASCII syntax: ds <<| r
- *range subtraction* of *r* over set *rs* : sub-relation of *r* with range <u>not</u> *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
- e.g., $r \triangleright \{1,2\} = \{\{(c,3), (a,4), (b,5), (c,6), (f,3)\}\}$
- ASCII syntax: r |>> rs

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

relational image of r over set s : sub-range of r mapped by s.

• Definition: $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$

- e.g., $r[\{a, b\}] = \{1, 2, 4, 5\}$
- ASCII syntax: r[s]

Relations (3.5): Overriding

LASSONDE

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

overriding of *r* with relation *t*: a relation which agrees with *t* within dom(t), and agrees with *r* outside dom(t)

- Definition: $r \Leftrightarrow t = \{ (d, r') \mid (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}$ • e.g.,
 - $r
 ightarrow \{(a,3),(c,4)\}$
 - $= \underbrace{\{(a,3), (c,4)\}}_{(b,2), (b,5), (d,1), (e,2), (f,3)\}}$

 $\{(d,r')|(d,r')\in t\} \qquad \{(d,r')|(d,r')\in r\wedge d\notin \operatorname{dom}(t)\}$

 $= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$

• ASCII syntax: r <+ t

26 of 41

Functions (1): Functional Property

LASSONDE

• A *relation* r on sets S and T (i.e., $r \in S \leftrightarrow T$) is also a *function* if it satisfies the *functional property*:

isFunctional(**r**)

 \iff

 $\forall s, t_1, t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2)$

- That is, in a *function*, it is <u>forbidden</u> for a member of *S* to map to <u>more than one</u> members of *T*.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say *S* = {1,2,3} and *T* = {*a*,*b*}, which of the following *relations* satisfy the above *functional property*?
- $\circ S \times T$ [No] <u>Witness 1</u>: (1, a), (1, b); <u>Witness 2</u>: (2, a), (2, b); <u>Witness 3</u>: (3, a), (3, b). $\circ (S \times T) \setminus \{(x, y) \mid (x, y) \in S \times T \land x = 1\}$ [No] <u>Witness 1</u>: (2, a), (2, b); <u>Witness 2</u>: (3, a), (3, b) $\circ \{(1, a), (2, b), (3, a)\}$ [Yes] $\circ \{(1, a), (2, b)\}$ [Yes]

Relations (4): Exercises

c

1. Define r[s] in terms of other relational operations. <u>Answer</u>: $r[s] = ran(s \triangleleft r)$ e.g., $r[\{a,b\}] = ran(\{(a,1), (b,2), (a,4), (b,5)\}) = \{1,2,4,5\}$

2. Define $r \triangleleft t$ in terms of other relational operators. <u>Answer</u>: $r \triangleleft t = t \cup (\text{dom}(t) \triangleleft r)$

e.g.,

 $r \Leftrightarrow \{(a,3), (c,4)\}$

$$\underbrace{\{(a,3), (c,4)\}}_{t} \cup \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\substack{dom(t) \preccurlyeq r\\ \{a,c\}}}$$

Functions (2.1): Total vs. Partial

Given a **relation** $r \in S \leftrightarrow T$

• *r* is a *partial function* if it satisfies the *functional property*:

 $|r \in S \nrightarrow T| \iff (\text{isFunctional}(r) \land \operatorname{dom}(r) \subseteq S)$

<u>Remark</u>. $r \in S \Rightarrow T$ means there <u>may (or may not) be</u> $s \in S$ s.t. r(s) is *undefined*.

- e.g., { {(**2**, *a*), (**1**, *b*)}, {(**2**, *a*), (**3**, *a*), (**1**, *b*)} } ⊆ {1,2,3} {*a*, *b*} ASCII syntax: r : +->
- *r* is a *total function* if there is a mapping for each $s \in S$:

 $\begin{array}{c} \hline r \in S \rightarrow T \end{array} \iff (\texttt{isFunctional}(\texttt{r}) \land \texttt{dom}(r) = S) \\ \hline \textbf{Remark.} \ r \in S \rightarrow T \ \texttt{implies} \ r \in S \not\Rightarrow T, \ \texttt{but} \ \underline{\texttt{not}} \ \texttt{vice} \ \texttt{versa.} \ \texttt{Why?} \\ \circ \ \texttt{e.g.}, \ \{(\textbf{2}, a), (\textbf{3}, a), (\textbf{1}, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\} \\ \circ \ \texttt{e.g.}, \ \{(\textbf{2}, a), (\textbf{1}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\} \end{array}$

LASSONDE

Functions (2.2): **Relation Image vs. Function Application**

• Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.

• Say we have a *partial function* $f \in \{1, 2, 3\} \Rightarrow \{a, b\}$: $f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$

• With f wearing the *relation* hat, we can invoke *relational images* :

$$f[{3}] = {a \\ f[{1}] = {b \\ f[{2}] = \emptyset}$$

Remark. Given that the inputs are **singleton** sets (e.g., {3}), so are the output sets (e.g., $\{a\}$). \therefore Each member in the domain is mappe to at most one member in the range.

• With f wearing the *function* hat, we can invoke *functional applications* :

30 of 41

Functions (3.1): Injective Functions

Given a *function f* (either partial or total):

 f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T. isInjective(f)

 $\forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)$

- If f is a *partial injection*, we write: $f \in S \Rightarrow T$ • e.g., $\{ \emptyset, \{(1, \mathbf{a})\}, \{(2, \mathbf{a}), (3, \mathbf{b})\} \} \subseteq \{1, 2, 3\} \Rightarrow \{a, b\}$
 - e.g., $\{(1, \mathbf{b}), (2, a), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}$
 - e.g., $\{(1, \mathbf{b}), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}$

[total, not inj.] [partial, not inj.]

- If *f* is a *total injection*, we write: $f \in S \rightarrow T$
 - e.g., $\{1, 2, 3\} \rightarrow \{a, b\} = \emptyset$

• ASCII syntax: f : >+>

 \Leftrightarrow

32 of 41

- e.g., $\{(2,d), (1,a), (3,c)\} \in \{1,2,3\} \rightarrow \{a,b,c,d\}$
- e.g., $\{(2, d), (1, c)\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$
- e.g., $\{(2, \mathbf{d}), (1, c), (3, \mathbf{d})\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$ • ASCII syntax: f : >->

[not total, inj.] [total, not inj.]

LASSONDE

Functions (2.3): Modelling Decision

An organization has a system for keeping track of its employees as to where they are on the premises (e.g., `'Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- *Employee* denotes the **set** of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.
- **1.** Is it appropriate to *model/formalize* such a **track** functionality as a *relation* (i.e., where_is \in Employee \leftrightarrow Location)? **Answer**. No – an employee cannot be at distinct locations simultaneously. e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- **2.** How about a *total function* (i.e., *where_is* \in *Employee* \rightarrow *Location*)? Answer. No - in reality, not necessarily all employees show up. e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
- **3.** How about a *partial function* (i.e., *where_is* ∈ *Employee* → *Location*)? **Answer**. Yes – this addresses the inflexibility of the total function.

Given a *function* f (either partial or total):

• f is surjective/onto/a surjection if f maps to all members of T.

 $isSurjective(f) \iff ran(f) = T$

- If f is a *partial surjection*, we write: $f \in S \nleftrightarrow T$
 - e.g., $\{\{(1, \mathbf{b}), (2, \mathbf{a})\}, \{(1, \mathbf{b}), (2, \mathbf{a}), (3, \mathbf{b})\}\} \subseteq \{1, 2, 3\} \nleftrightarrow \{a, b\}$
 - e.g., $\{(2, \mathbf{a}), (1, \mathbf{a}), (3, \mathbf{a})\} \notin \{1, 2, 3\} \nrightarrow \{a, b\}$ • e.g., $\{(2, \mathbf{b}), (1, \mathbf{b})\} \notin \{1, 2, 3\} \not\rightarrow \{a, b\}$

[total, not sur.] [partial, not sur.]

• ASCII syntax: f : +->>

- If f is a **total surjection**, we write: $f \in S \twoheadrightarrow T$
 - e.g., $\{\{(2,a), (1,b), (3,a)\}, \{(2,b), (1,a), (3,b)\}\} \subseteq \{1,2,3\} \twoheadrightarrow \{a,b\}$ • e.g., $\{(\mathbf{2}, a), (\mathbf{3}, b)\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$
 - [not total, sur.]
 - e.g., $\{(2, \mathbf{a}), (3, \mathbf{a}), (1, \mathbf{a})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [total., not sur]
 - ASCII syntax: f : -->>

Functions (3.3): Bijective Functions

Given a function f:

- f is **bijective**/a bijection/one-to-one correspondence if f is total, injective, and surjective.
- e.g., {1,2,3} → {a,b} = ∅ • e.g., $\{\{(1,a), (2,b), (3,c)\}, \{(2,a), (3,b), (1,c)\}\} \subseteq \{1,2,3\} \rightarrow \{a,b,c\}$ • e.g., $\{(\mathbf{2}, b), (\mathbf{3}, c), (\mathbf{4}, a)\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$
- [not total, inj., sur.] • e.g., $\{(1, \mathbf{a}), (2, b), (3, c), (4, \mathbf{a})\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$
 - [total, not inj., sur.]
- e.g., $\{(1, \mathbf{a}), (2, \mathbf{c})\} \notin \{1, 2\} \rightarrow \{a, b, c\}$

• ASCII syntax: f : >->>

[total, inj., not sur.]

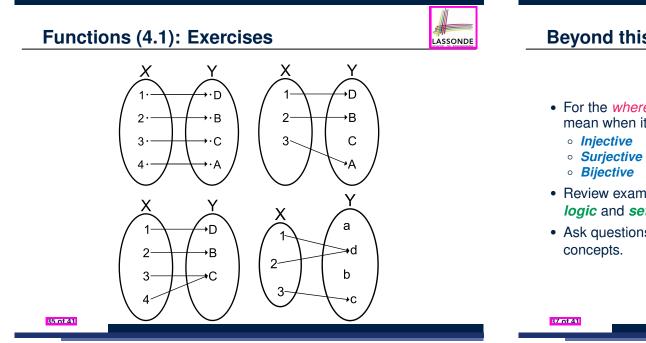
Functions (4.2): Modelling Decisions

LASSONDE

- 1. Should an array a declared as "String[] a" be modelled/formalized as a *partial* function (i.e., $a \in \mathbb{Z} \rightarrow String$) or a *total* function (i.e., $a \in \mathbb{Z} \rightarrow String$)? **Answer**. $a \in \mathbb{Z} \rightarrow String$ is not appropriate as:
 - Indices are non-negative (i.e., *a*(*i*), where *i* < 0, is *undefined*).
 - Each array size is finite: not all positive integers are valid indices.
- 2. What does it mean if an **array** is *modelled/formalized* as a partial *injection* (i.e., $a \in \mathbb{Z} \xrightarrow{} String$)? Answer. It means that the array does not contain any duplicates.
- **3.** Can an integer array "int[] a" be modelled/formalized as a partial *surjection* (i.e., $a \in \mathbb{Z} \twoheadrightarrow \mathbb{Z}$)? **Answer**. Yes, if a stores all 2^{32} integers (i.e., $[-2^{31}, 2^{31} - 1]$).
- **4.** Can a string array "String[] a" be *modelled/formalized* as a partial *surjection* (i.e., $a \in \mathbb{Z} \twoheadrightarrow String$)? **Answer**. No \therefore # possible strings is ∞ .
- 5. Can an integer array "int []" storing all 2³² values be *modelled/formalized* as a *bijection* (i.e., $a \in \mathbb{Z} \rightarrow \mathbb{Z}$)?

Answer. No, because it cannot be total (as discussed earlier). 36 of 41

84 of 41



Beyond this lecture

- For the where_is ∈ Employee → Location model, what does it mean when it is:
 - Injective
 - Bijective

- [where_is ∈ Employee → Location] [where_is \in Employee +>> Location]
- [where_is ∈ Employee →→ Location]
- · Review examples discussed in your earlier math courses on *logic* and *set theory*.
- Ask questions in the Q&A sessions to clarify the reviewed

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (V)

Predicate Logic (2.2): Existential Q. (3)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

40 of 41

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

89 of 41

Index (4)

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...

Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System Specification and Refinement Winter 2022

Chen-Wei Wang

Recall: Correct by Construction

- Directly reasoning about <u>source code</u> (written in a programming language) is <u>too</u> complicated to be feasible.
- Instead, given a *requirements document*, prior to <u>implementation</u>, we develop *models* through a series of *refinement* steps:
 - Each model formalizes an external observer's perception of the system.
 - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
 - The *first model*, though the most *abstract*, can <u>already</u> be proved satisfying <u>some</u> *requirements*.
 - Starting from the *second model*, each model is analyzed and proved *correct* relative to two criteria:
 - 1. <u>Some</u> *requirements* (i.e., R-descriptions)
 - Proof Obligations (POs) related to the preceding model being refined by the <u>current</u> model (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

8 of 124

Learning Outcomes

This module is designed to help you understand:

- What a *Requirement Document (RD)* is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

State Space of a Model

- A model's state space is the set of all configurations:
 - Each *configuration* assigns values to constants & variables, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - *invariant* properties/theorems
 - Say an initial model of a bank system with two constants and a variable:

 $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String
ightarrow \mathbb{Z}$

```
/* typing constraint */
```

 $\forall id \bullet id \in \text{dom}(accounts) \Rightarrow -c \leq accounts(id) \leq L \quad /^* \text{ desired property } */$

- Q. What is the state space of this initial model?
- A. All valid combinations of *c*, *L*, and *accounts*.
- Configuration 1: (*c* = 1,000, *L* = 500,000, *b* = ∅)
- Configuration 2: (*c* = 2,375, *L* = 700,000, *b* = {("*id*1",500), ("*id*2", 1,250)})
 - [Challenge: Combinatorial Explosion]
- Model Concreteness $\uparrow \Rightarrow$ (State Space $\uparrow \land$ Verification Difficulty \uparrow)
- A model's *complexity* should be guided by those properties intended to be <u>verified</u> against that model.
 - \Rightarrow *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.
 - \Rightarrow *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.
- 4 of 124

Roadmap of this Module

 We will walk through the *development process* of constructing *models* of a control system regulating cars on a bridge. Such controllers exemplify a *reactive system*.

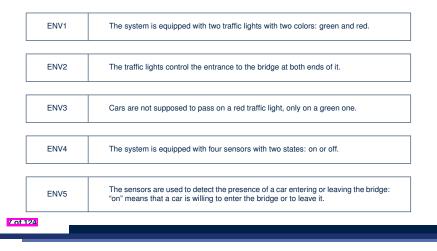
(with sensors and actuators)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
 - 2. A brief overview of the *refinement strategy*
 - 3. An initial, the most *abstract* model
 - 4. A subsequent model representing the 1st refinement
 - 5. A subsequent model representing the 2nd refinement
 - 6. A subsequent model representing the 3rd refinement

Requirements Document: E-Descriptions

LASSONDE

Each *E-Description* is an <u>atomic specification</u> of a *constraint* or an *assumption* of the system's working environment.



Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

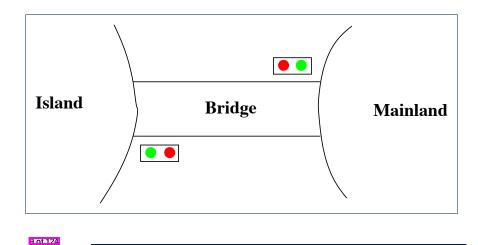
Page Source: https://soldbyshane.com/area/toronto-islands/

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic specification</u> of an intended *functionality* or a desired *property* of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ2	The number of cars on bridge and island is limited.
[
REQ3	The bridge is one-way or the other, not both at the same time.

Requirements Document: Visual Summary of Equipment Pieces



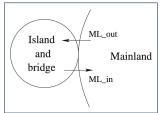
Model *m*₀: Abstraction

- In this <u>most</u> abstract perception of the bridge controller, we do <u>not</u> even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

Analogies:

11 of 124

 Observe the system from the sky: island and bridge appear only as a compound.



• "Zoom in" on the system as refinements are introduced.

Refinement Strategy

- LASSONDE
- Before diving into details of the *models*, we first clarify the adopted <u>design</u> strategy of progressive <u>refinements</u>.
 - **0.** The *initial model* (m_0) will address the intended functionality of a <u>limited</u> number of cars on the island and bridge.

[REQ2]

- A 1st refinement (m₁ which refines m₀) will address the intended functionality of the bridge being one-way.
- **2.** A *2nd refinement* (*m*₂ which *refines m*₁) will address the environment constraints imposed by *traffic lights*.

[ENV1, ENV2, ENV3]

[REQ1, REQ3]

3. A *final, 3rd refinement* (*m*₃ which *refines m*₂) will address the environment constraints imposed by *sensors* and the *architecture*: controller, environment, communication channels.

[ENV4, ENV5]

• Recall *Correct by Construction* :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it <u>feasible</u> to conduct **analysis** and **proofs**.

Model *m*₀: State Space

LASSONDE

The static part is fixed and may be seen/imported.
 A constant d denotes the maximum number of cars allowed to be on the island-bridge compound at any time.

(whereas cars on the mainland is unbounded)

constants: d

Remark. Axioms are assumed true and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

Model *m*₀: State Transitions via Events

 The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.

- At any given *state* (a valid *configuration* of constants/variables):
 - An event is said to be *enabled* if its guard evaluates to *true*.
 - An event is said to be *disabled* if its guard evaluates to *false*.
 - An <u>enabled</u> event makes a state transition if it occurs and its actions take effect.
- <u>1st</u> event: A car exits mainland (and enters the island-bridge compound).

ML_out	
begin	C
<i>n</i> := <i>n</i> + 1	W
end	

Correct Specification? Say *d* = 2. <u>Witness</u>: Event Trace (init, ML_in)

• <u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).

Design of Events: Invariant Preservation

Our design of the two events

LASSONDE

ML_out
begin
n := n + 1
endML_in
begin
n := n - 1
end

only specifies how the *variable n* should be updated.

Remember, *invariants* are conditions that should <u>never</u> be *violated*!

By simulating the system as an ASM, we discover witnesses

 (i.e., event traces) of the invariants not being preserved all the time.

 $\exists s \bullet s \in \mathsf{STATE SPACE} \Rightarrow \neg invariants(s)$

We formulate such a commitment to preserving *invariants* as a *proof* obligation (PO) rule (a.k.a. a verification condition (VC) rule).

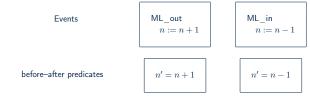
Model m_0 : Actions vs. Before-After Predicates on Decision of the second states of the sec

- When an enabled event e occurs there are two notions of state:
 - Before-/Pre-State: Configuration just before e's actions take effect
 - · After-/Post-State: Configuration just after e's actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the

pre-state to the post-state.

• As examples, consider *actions* of *m*₀'s two events:



- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The *before-after predicate* (*BAP*) "n' = n + 1" expresses that

n' (the **post-state** value of n) is one more than n (the **pre-state** value of n).

• When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*.

Sequents: Syntax and Semantics

LASSONDE

• We formulate each *PO/VC* rule as a (horizontal or vertical) *sequent*:

$$\vdash G$$
 H
 \vdash G

- The symbol ⊢ is called the *turnstile*.
- *H* is a <u>set</u> of predicates forming the *hypotheses/assumptions*.

[assumed as *true*]

false ⊢ G

?1

• G is a <u>set</u> of predicates forming the *goal/conclusion*.

Н

[claimed to be *provable* from *H*]

• Informally:

Α.

16 of 124

0

15 of 124

- $H \vdash G$ is *true* if G can be proved by assuming H.
 - [i.e., We say "H entails G" or "H yields G"]

=

⊢G

• $H \vdash G$ is *false* if G cannot be proved by assuming H.

true ⊢ G

• Formally: $H \vdash G \iff (H \Rightarrow G)$

⊢ G

Q. What does it mean when *H* is empty (i.e., no hypotheses)?

[Why not

PO of Invariant Preservation: Sketch

- LASSONDE
- Here is a sketch of the PO/VC rule for *invariant preservation*:

Axioms	
Invariants Satisfied at Pre-State	
Guards of the Event	INV
F	
Invariants Satisfied at Post-State	

 Informally, this is what the above PO/VC requires to prove : Assuming all <u>axioms</u>, <u>invariants</u>, and the event's <u>guards</u> hold at the pre-state, after the state transition is made by the event,

all invariants hold at the *post-state*.

17 of 124

 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the *PO/VC Rule of Invariant Preservation*:

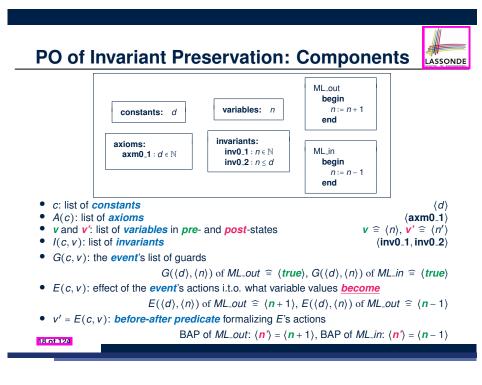
A(c)		
<i>l</i> (<i>c</i> , <i>v</i>)		
$G(c, \mathbf{v})$	INV	where I_i denotes a single invariant condition
F		, i i i i i i i i i i i i i i i i i i i
<i>l_i</i> (<i>c</i> , <i>E(c, v)</i>)		

- Accordingly, how many *sequents* to be proved? [# events × # invariants]
- We have two sequents generated for event ML_out of model m₀:

$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ \vdash	ML_out/inv0_1/INV	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ \vdash	ML_out/inv0_2/INV
<i>n</i> + 1 ∈ ℕ		<i>n</i> + 1 ≤ <i>d</i>	

Exercise. Write the **POs of invariant preservation** for event *ML_in*.

 Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all *POs*</u> must be <u>proved/discharged</u>.



Inference Rules: Syntax and Semantics

- An *inference rule (IR)* has the following form:
 - $\frac{A}{C}$ L

20 of 124

Formally: $A \Rightarrow C$ is an <u>axiom</u>.

Informally: To prove *C*, it is <u>sufficient</u> to prove *A* instead.

Informally: *C* is the case, assuming that *A* is the case.

- *L* is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a <u>set</u> of sequents known as *antecedents* of rule L.
- **C** is a **single** sequent known as **consequent** of rule *L*.
- Let's consider inference rules (IRs) with two different flavours:

• IR **MON**: To prove $H1, H2 \vdash G$, it <u>suffices</u> to prove $H1 \vdash G$ instead. • IR **P2**: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an **axiom**.

[proved automatically without further justifications]

LASSONDE

Proof of Sequent: Steps and Structure

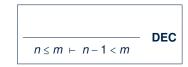
• To prove the following sequent (related to *invariant preservation*):

- 1. Apply a *inference rule*, which *transforms* some "outstanding" sequent to <u>one</u> or <u>more</u> other sequents to be proved instead.
- Keep applying *inference rules* until <u>all</u> *transformed* sequents are axioms that do <u>not</u> require any further justifications.

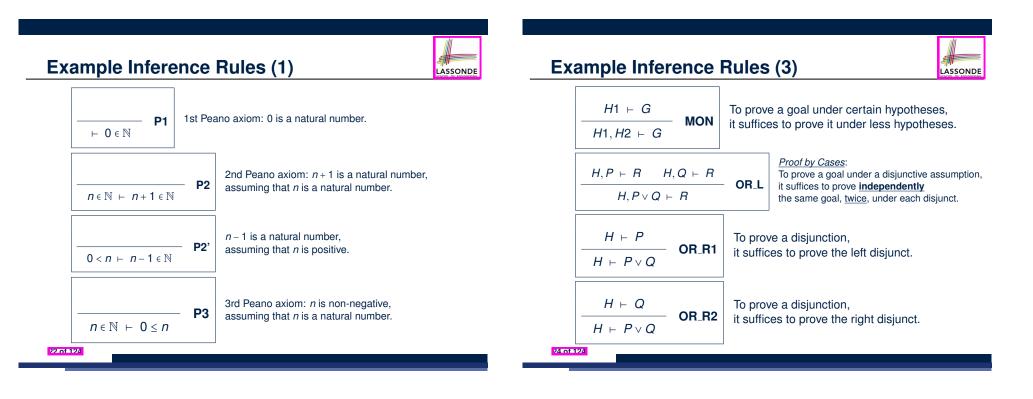
21 of 124

• Here is a *formal proof* of ML_out/inv0_1/INV, by applying IRs MON and P2:

Example Inference Rules (2)



n-1 is strictly less than m, assuming that n is less than or equal to m.



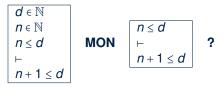
Revisiting Design of Events: *ML_out*

LASSONDE

LASSONDE

• Recall that we already proved PO ML_out/inv0_1/INV :

- .: *ML_out/inv0_1/INV* succeeds in being discharged.
- How about the other **PO** ML_out/inv0_2/INV for the same event?



... ML_out/inv0_2/INV fails to be discharged.

25 of 124

Fixing the Design of Events

LASSONDE

- Proofs of <u>ML_out/inv0_2/INV</u> and <u>ML_in/inv0_1/INV</u> fail due to the two events being <u>enabled when they should not</u>.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:

ML_out when	ML₋in when
n < d	n > 0
then	then
<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> − 1
end	end

- Having changed both events, <u>updated</u> sequents will be generated for the PO/VC rule of *invariant preservation*.
- <u>All sequents</u> ({*ML_out*, *ML_in*} × {**inv0_1**, **inv0_2**}) now *provable*?

Revisiting Design of Events: *ML_in*

• How about the *PO* ML_in/inv0_1/INV for *ML_in*:



- ∴ *ML_in/inv0_1/INV* fails to be discharged.
- How about the other *PO* ML_in/inv0_2/INV for the same event?

.: *ML_in/inv0_2/INV* succeeds in being discharged.

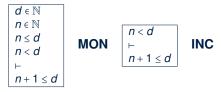
Revisiting Fixed Design of Events: *ML_out*

• How about the **PO** ML_out/**inv0_1**/INV for *ML_out*:

27 of 124

28 of 124

- .: *ML_out/inv0_1/INV* still <u>succeeds</u> in being discharged!
- How about the other *PO* ML_out/inv0_2/INV for the same event?

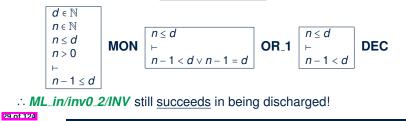


.: ML_out/inv0_2/INV now succeeds in being discharged!

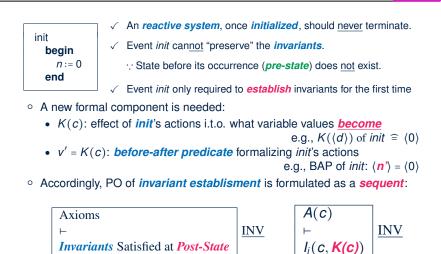
Revisiting Fixed Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:

- .: ML_in/inv0_1/INV now succeeds in being discharged!
- How about the other **PO** ML_in/inv0_2/INV for the same event?



PO of Invariant Establishment



R1 of 124

LASSONDE

Initializing the Abstract System m_0

- Discharging the <u>four</u> sequents proved that <u>both</u> invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the *invariants established* in the first place?
 <u>Analogy</u>. Proving *P* via *mathematical induction*, two cases to prove:
 - P(1), P(2), ...• $P(n) \Rightarrow P(n+1)$

begin

end

n := 0

init

- [base cases ≈ establishing inv.] [inductive cases ≈ preserving inv.]
- Therefore, we specify how the **ASM**'s *initial state* looks like:
 - fore, we specify now the **ASW**'s **Initial state** looks like:
 - \checkmark The IB compound, once *initialized*, has <u>no</u> cars.
 - \checkmark Initialization always possible: guard is *true*.

✓ There is no *pre-state* for *init*.

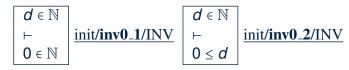
- \therefore The <u>RHS</u> of := must <u>not</u> involve variables.
- \therefore The <u>RHS</u> of := may <u>only</u> involve constants.
- \checkmark There is only the **post-state** for *init*.
 - : Before-*After Predicate*: n' = 0

Discharging PO of Invariant Establishment

[# invariants]

LASSONDE

• We have two sequents generated for event init of model m_0 :



• Can we discharge the **PO** init/inv0_1/INV ?

• How many sequents to be proved?

• Can we discharge the **PO** init/inv0_2/INV ?

 $d \in \mathbb{N}$

 $0 \leq d$

 \vdash

System Property: Deadlock Freedom

LASSONDE

 $\langle d \rangle$

 $\langle axm0_1 \rangle$

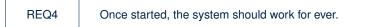
 $\mathbf{v} \cong \langle n \rangle, \mathbf{v}' \cong \langle n' \rangle$

 $(inv0_1, inv0_2)$

- So far we have proved that our initial model m₀ is s.t. <u>all invariant</u> conditions are:
 - Established when system is first initialized via init
 - Preserved whenevner there is a *state transition*

(via an enabled event: ML_out or ML_in)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
 - A state where guards of all events evaluate to false
 - When a *deadlock* happens, <u>none</u> of the *events* is *enabled*.
 - \Rightarrow The system is blocked and \underline{not} reactive anymore!
- We express this *non-blocking* property as a new requirement:



33 of 124

PO of Deadlock Freedom (2)

- Deadlock freedom is not necessarily a desired property.
 ⇒ When it is (like m₀), then the generated sequents must be discharged.
- Applying the PO of *deadlock freedom* to the initial model *m*₀:

Our bridge controller being *deadlock-free* means that cars can *always* <u>enter</u> (via *ML_out*) or <u>*leave*</u> (via *ML_in*) the island-bridge compound.

• Can we formally discharge this PO for our initial model m₀?

85 of 124

PO of Deadlock Freedom (1)

- Recall some of the formal components we discussed:
 - c: list of constants
 - A(c): list of **axioms**
 - *v* and *v*': list of *variables* in *pre* and *post*-states
 - l(c, v): list of *invariants*
 - G(c, v): the event's list of *guards*

 $G(\langle d \rangle, \langle n \rangle) \text{ of } \textit{ML_out} \ \widehat{=} \ \langle n < d \rangle, \ G(\langle d \rangle, \langle n \rangle) \text{ of } \textit{ML_in} \ \widehat{=} \ \langle n > 0 \rangle$

A system is *deadlock-free* if <u>at least one</u> of its *events* is *enabled*:

To prove about deadlock freedom

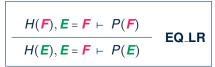
- An event's effect of state transition is not relevant.
- Instead, the evaluation of <u>all</u> events' *guards* at the *pre-state* is relevant.

Example Inference Rules (4)			
HYP	A goal is proved if it can be assumed.		
$ P FALSE_L$	Assuming <i>false</i> (⊥), anything can be proved.		
$ TRUE_R$	<i>true</i> (T) is proved, regardless of the assumption.		
	An expression being equal to itself is proved, regardless of the assumption.		
36 of 124			

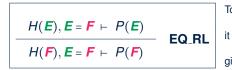
Example Inference Rules (5)

Discharging PO of DLF: First Attempt

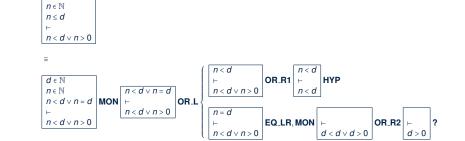
LASSONDE



To prove a goal P(E) assuming H(E), where both P and H depend on expression E, it <u>suffices</u> to prove P(F) assuming H(F), where both P and H depend on expression F, given that E is equal to F.



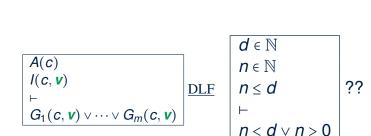
To prove a goal P(F) assuming H(F), where both P and H depend on expression F, it <u>suffices</u> to prove P(E) assuming H(E), where both P and H depend on expression E, given that E is equal to F.



89 of 124

d ∈ ℕ

Discharging PO of DLF: Exercise



Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This *unprovable* sequent gave us a good hint:
 - For the model under consideration (*m*₀) to be *deadlock-free*, it is required that *d* > 0. [≥ 1 car allowed in the IB compound]
 - But current *specification* of *m*₀ *not* strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given **axm0_1** : *d* ∈ ℕ
 - \Rightarrow *d* = 0 is allowed by *m*₀ which causes a *deadlock*.
- Recall the *init* event and the two *guarded* events:

init	ML₋out when	ML₋in when
begin	n < d	<i>n</i> > 0
<i>n</i> := 0	then	then
end	<i>n</i> := <i>n</i> + 1	<i>n</i> := <i>n</i> – 1
	end	end
	end	end

When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$ \Rightarrow As soon as the system is initialized, it *deadlocks immediately*

as no car can either enter or leave the IR compound!!

88 of 124

Fixing the Context of Initial Model

LASSONDE

• Having understood the <u>failed</u> proof, we add a proper **axiom** to m₀:

• We have effectively elaborated on REQ2:

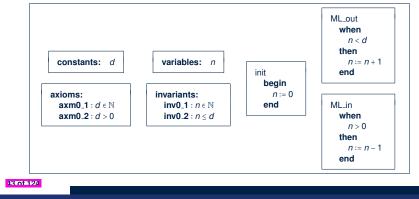
REQ2	The number of cars on bridge and island is limited but positive.
------	--

- Having changed the context, an <u>updated</u> *sequent* will be generated for the PO/VC rule of *deadlock freedom*.
- Is this new sequent now provable?

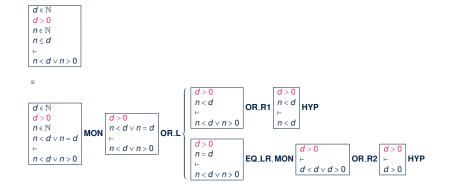
41 of 124

Initial Model: Summary

- The final version of our *initial model* m₀ is *provably correct* w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the <u>final</u> **specification** of m_0 :

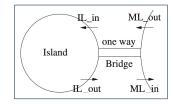


Discharging PO of DLF: Second Attempt



Model *m*₁: "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
 We "zoom in" by observing the system from closer to the ground,
 - so that the island-bridge <u>compound</u> is split into:
 - the island
 - the (one-way) bridge



LASSONDE

LASSONDE

- Nonetheless, traffic lights and sensors remain *abstracted* away!
- That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

We are obliged to prove this added concreteness is consistent with m₀.

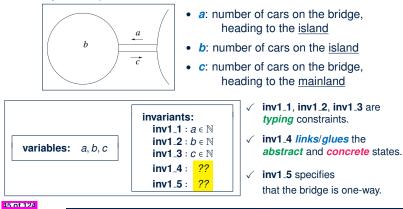
Model *m*₁: Refined State Space

- **1.** The **<u>static</u>** part is the same as m_0 's: **constants**: *d*
- axioms: axm0_1 : d ∈ ℕ axm0_2 : d > 0

LASSONDE

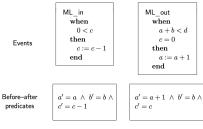
LASSONDE

2. The dynamic part of the concrete state consists of three variables:



Model *m*₁: Actions vs. Before-After Predicates

Consider the concrete/refined version of actions of m₀'s two events:



- An event's *actions* are a **specification**: "c becomes c 1 after the transition".
- The *before-after predicate* (*BAP*) "c' = c 1" expresses that
- c' (the **post-state** value of c) is one less than c (the **pre-state** value of c).
- Given that the *concrete state* consists of <u>three</u> variables:
 - An event's <u>actions only</u> specify those <u>changing</u> from <u>pre</u>-state to <u>post</u>-state.
 [e.g., c' = c 1]
 - Other <u>unmentioned</u> variables have their *post*-state values remain <u>unchanged</u>. [e.g., $a' = a \land b' = b$]

• When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*.

Model *m*₁: State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" *events* already existing in m₀.
- Concrete/Refined version of event ML_out:

ML_c wh	out nen	
	??	
the	ən	
a:= a + 1		
end		

- Meaning of *ML_out* is *refined*: a car <u>exits</u> mainland (getting on the bridge).
 - *ML_out* enabled only when:
 - the bridge's current traffic flows to the island
 - number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

Meaning of *ML_in* is *refined*:

 a car <u>enters</u> mainland (getting off the bridge).

 ML_in enabled only when:

there is some car on the bridge heading to the mainland.

States & Invariants: Abstract vs. Concrete

- *m*₀ <u>refines</u> *m*₁ by introducing more *variables*:
 - *Abstract* State (of *m*₀ being <u>refined</u>):
 - **Concrete** State (of the refinement model m_1):

variables: *n* variables: *a*, *b*, *c* LASSONDE

- Accordingly, *invariants* may involve different states:
 - Abstract Invariants

 (involving the abstract state only):
 - Concrete Invariants (involving <u>at least</u> the concrete state):

invariants:		
inv1₋1 : <u>a</u> ∈ ℕ		
inv1_2 : <mark>b</mark> ∈ ℕ		
inv1_3 :		
inv1_4 : a + b + c = n		
inv1_5 : a = 0 ∨ c = 0		

0

Events: Abstract vs. Concrete

- When an *event* exists in both models m_0 and m_1 , there are two versions of it:
 - The *abstract* version modifies the *abstract* state.

(abstract_)ML_out when	(abstract_)ML_in when
n < d	<i>n</i> > 0
then	then
a := n := n + 1	<i>n</i> := <i>n</i> − 1
end	end

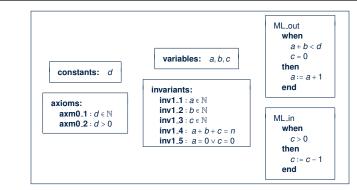
• The *concrete* version modifies the *concrete* state.

(concrete_)ML_out when <i>a</i> + <i>b</i> < <i>d</i> <i>c</i> = 0 then <i>a</i> := <i>a</i> + 1 end	(concrete_)ML_in when c > 0 then c := c - 1 end

• A <u>new event</u> may <u>only</u> exist in *m*₁ (the *concrete* model): we will deal with this kind of events later, separately from "redefined/overridden" events.

49 of 124

LASSONDE



• *G*(*c*, *v*): list of guards of the *abstract event*

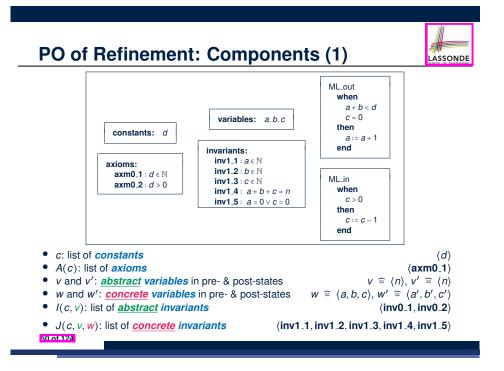
 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n < d \rangle$, G(c, v) of $ML_in \cong \langle n > 0 \rangle$

• *H*(*c*, *w*): list of guards of the *concrete event*

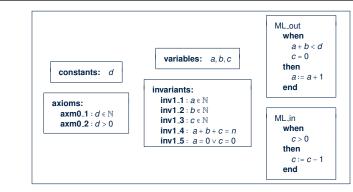
51 of 124

52 of 124

 $H(\langle d \rangle, \langle a, b, c \rangle)$ of $ML_out \cong \langle a + b < d, c = 0 \rangle$, H(c, w) of $ML_in \cong \langle c > 0 \rangle$



PO of Refinement: Components (3)



• E(c, v): effect of the **abstract event**'s actions i.t.o. what variable values **become**

 $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of *ML_out* $\cong \langle n-1 \rangle$

• F(c, w): effect of the *concrete event*'s actions i.t.o. what variable values **become**

F(c, v) of $ML_out \cong \langle a + 1, b, c \rangle$, F(c, w) of $ML_out \cong \langle a, b, c - 1 \rangle$

Sketching PO of Refinement

The PO/VC rule for a *proper refinement* consists of two parts:

1. Guard Strengthening

2. Invariant Preservation

• A concrete event is enabled if its abstract counterpart is enabled.

LASSONDE

LASSONDE

- A concrete transition always has an abstract counterpart.
- A concrete event performs a transition on concrete states.
- This concrete state transition must be consistent with how its abstract counterpart performs a corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable to events that might be *enabled* after the system is launched.

The special, <u>non-guarded</u> init event will be discussed separately later.

PO Rule: Guard Strengthening of *ML_out*

LASSONDE

axm0_1	{ <i>d</i> ∈ ℕ	
axm0_2	{ <i>d</i> > 0	
inv0_1	$\{ n \in \mathbb{N} \}$	
inv0_2	{ <i>n</i> ≤ <i>d</i>	
inv1_1	{ a ∈ ℕ	
inv1_2	{ <i>b</i> ∈ ℕ	
inv1_3	{ <i>c</i> ∈ ℕ	ML_out/GRD
inv1_4	ia + b + c = n	
inv1_5	$a = 0 \lor c = 0$	
Comments guards of ML out	∫ a+b <d< th=""><th></th></d<>	
<i>Concrete</i> guards of <i>ML_OUt</i>	$\int c = 0$	
	F	
Abstract guards of ML_out	{ <i>n</i> < <i>d</i>	
		1

55 of 124

Refinement Rule: Guard Strengthening

 Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

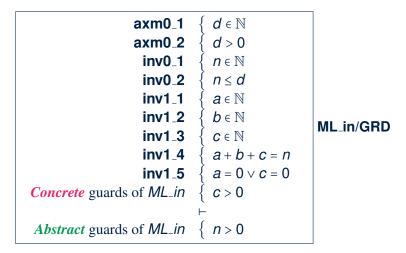
A(c) $I(c, \mathbf{v})$ $J(c, \mathbf{v}, \mathbf{w})$ where G_i denotes a single guard condition GRD $H(c, \mathbf{W})$ of the *abstract* event $G_i(c, \mathbf{v})$

- How many *sequents* to be proved?
- [# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

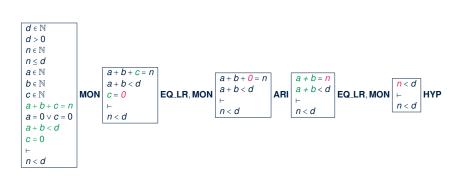
 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $b \in \mathbb{N}$ $c \in \mathbb{N}$ a+b+c=n $a=0 \lor c=0$ *a* ∈ ℕ ML_out/GRD a+b < d = 0n < d

• Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of *ML_in*



Proving Refinement: ML_out/GRD



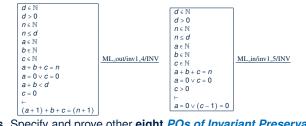
Refinement Rule: Invariant Preservation

 Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

$ \begin{array}{l} A(c) \\ I(c, v) \\ J(c, v, w) \\ H(c, w) \end{array} $	INV	where J_i denotes a single concrete invarian
⊢		
$J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$		

LASSONDE

- How many *sequents* to be proved? [# *concrete* evts × # *concrete* invariants]
- Here are two (of the ten) sequents generated:



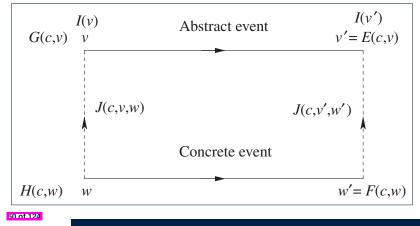
• Exercises. Specify and prove other eight POs of Invariant Preservation.

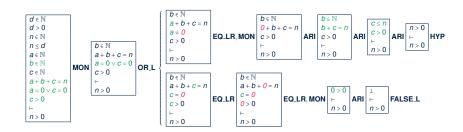
57 of 124

LASSONDE

Each *concrete* event (*w* to *w*') is *simulated by* an *abstract* event (*v* to *v*'):

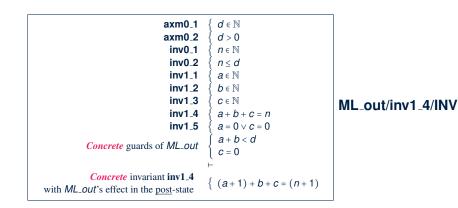
- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')

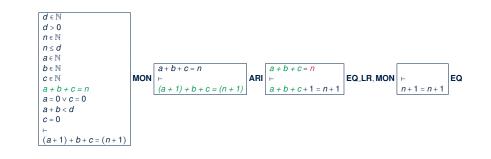




INV PO of *m*₁: ML_out/inv1_4/INV

Proving Refinement: ML_out/inv1_4/INV



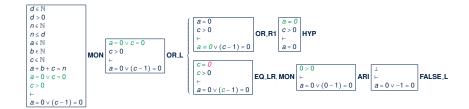


51 of 124

53 of 124

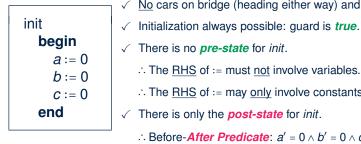
Proving Refinement: ML_in/inv1_5/INV

ML_in/inv1_5/INV



Initializing the Refined System m₁

- Discharging the twelve sequents proved that:
 - concrete invariants preserved by ML_out & ML_in
 - concrete guards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM**'s *initial state* looks like:



- \checkmark No cars on bridge (heading either way) and island
- .: The RHS of := must not involve variables.
- .: The RHS of := may only involve constants.
- \therefore Before-After Predicate: $a' = 0 \land b' = 0 \land c' = 0$

65 of 124

Discharging PO of m_1 **Concrete Invariant Establishment**

- How many *sequents* to be proved? [# concrete invariants]
- Two (of the five) sequents generated for concrete init of m₁:

⊢ Т

• Can we discharge the **PO** init/inv1_4/INV ?

∴ init/inv1_4/INV succeeds in being discharged.

LASSONDE

LASSONDE

• Can we discharge the PO init/inv1_5/INV ?

ARI. MON

PO of *m*₁ **Concrete Invariant Establishment**

- Some (new) formal components are needed:
 - *K*(*c*): effect of *abstract init*'s actions:
 - e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0 \rangle$ • v' = K(c): **before-after predicate** formalizing **abstract** init's actions e.g., BAP of *init*: $\langle \mathbf{n}' \rangle = \langle 0 \rangle$
 - L(c): effect of concrete init's actions:
 - e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0, 0, 0 \rangle$
 - w' = L(c): **before-after predicate** formalizing **concrete** init's actions e.g., BAP of *init*: $\langle \boldsymbol{a}', \boldsymbol{b}', \boldsymbol{c}' \rangle = \langle 0, 0, 0 \rangle$
- Accordingly, PO of *invariant establisment* is formulated as a sequent:

Axioms]	A(c)	
F	INV	⊢ –	INV
<i>Concrete Invariants</i> Satisfied at <u>Post</u> -State		$J_i(\boldsymbol{c},\boldsymbol{K(c)},\boldsymbol{L(c)})$	

Model *m*₁: New, Concrete Events

TRUE_R

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in m₀: ML_out & ML_in
- New event IL_in:

 $d \in \mathbb{N}$

d > 0

67 of 124

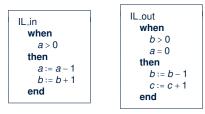
 $0 = 0 \lor 0 = 0$

- *IL_in* denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
 - The bridge's current traffic flows to the island.
 - **Q**. Limited number of cars on the bridge and the island?
 - A. Ensured when the earlier *ML_out* (of same car) occurred
- New event IL_out:
 - IL_out when ?? then end

- IL_out denotes a car exiting the island (getting on the bridge).
- IL_out enabled only when:
 - There is some car on the island.
 - · The bridge's current traffic flows to the mainland.

Model *m*₁: BA Predicates of Multiple Actions

Consider *actions* of *m*₁'s two *new* events:



• What is the **BAP** of *ML_in*'s actions?

$$a' = a - 1 \land b' = b + 1 \land c' = c$$

• What is the **BAP** of *ML_in*'s actions?

$$a' = a \wedge b' = b - 1 \wedge c' = c + 1$$

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do not exist in **m**₀, but:
 - They **exist** in **m**₁ and may impact upon the *concrete* state space.
 - They *preserve* the *concrete invariants*, just as *ML_out* & *ML_in* do.
- Recall the *PO/VC Rule of <u>Invariant Preservation</u> for <u>Refinement</u>:*

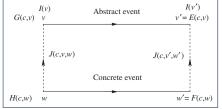
- How many *sequents* to be proved? [# *new* evts × # *concrete* invariants]
- Here are two (of the ten) sequents generated:

• Exercises. Specify and prove other eight POs of Invariant Preservation.

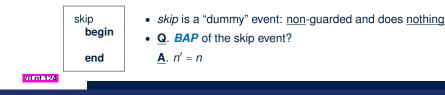
69 of 124

Visualizing Inv. Preservation in Refinement

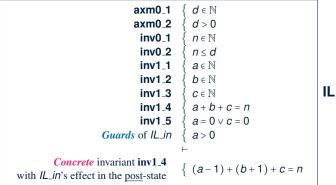
Recall how a concrete event is simulated by its abstract counterpart:



- For each *new* event:
 - Strictly speaking, it does not have an abstract counterpart.
 - It is **simulated by** a special **abstract** event (transforming v to v'):



INV PO of *m*₁: IL_in/inv1_4/INV

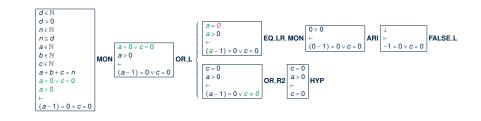


IL_in/inv1_4/INV

INV PO of *m*₁: IL_in/inv1_5/INV

		1
axm0_1	{ <i>d</i> ∈ ℕ	
axm0_2	{ d > 0	
inv0_1	{ <i>n</i> ∈ ℕ	
inv0_2	{ n ≤ d	
inv1_1	{ a ∈ ℕ	
inv1_2	{ b ∈ ℕ	
inv1_3	{ <i>c</i> ∈ ℕ	IL_in/inv1_5/INV
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	
inv1_5	$a = 0 \lor c = 0$	
Guards of IL_in	{ <i>a</i> > 0	
	μ.	
<i>Concrete</i> invariant inv1_5 with <i>IL_in</i> 's effect in the <u>post</u> -state	$\{ (a-1) = 0 \lor c = 0 \}$	

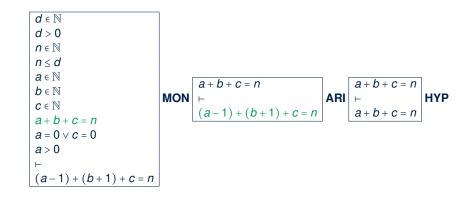
Proving Refinement: IL_in/inv1_5/INV

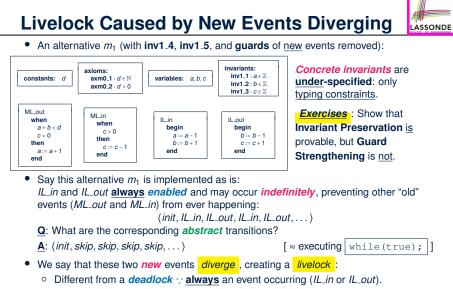


75 of 124

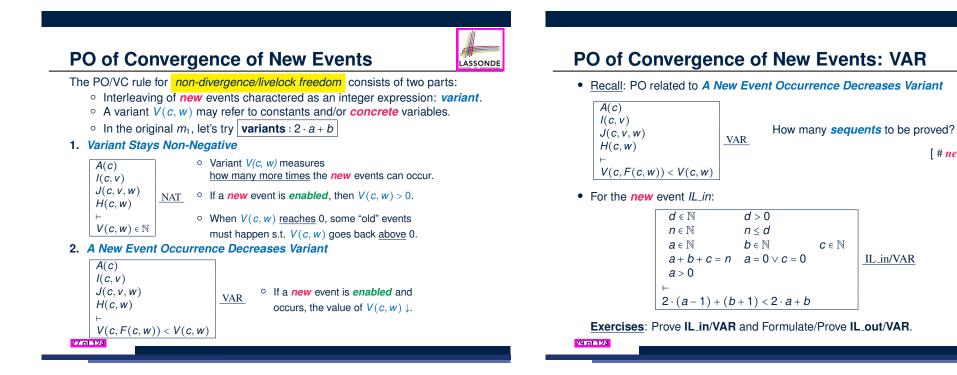
73 of 124

Proving Refinement: IL_in/inv1_4/INV

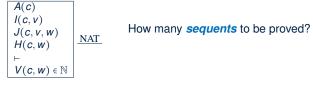




• But their indefinite occurrences contribute nothing useful.



- LASSONDE
- Recall: PO related to Variant Stays Non-Negative:



[# *new* events]

• For the **new** event *IL_in*:

	$d \in \mathbb{N}$	<i>d</i> > 0		
	<i>n</i> ∈ ℕ	n ≤ d		
	<i>a</i> ∈ ℕ	$b \in \mathbb{N}$	$c \in \mathbb{N}$	
	a+b+c=n	$a = 0 \lor c = 0$		IL_in/NAT
	<i>a</i> > 0			
Ì	F			
	2 · <i>a</i> + <i>b</i> ∈ ℕ			

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

Convergence of New Events: Exercise

LASSONDE

[# new events]

IL_in/VAR

Given the original **m**₁, what if the following *variant* expression is used:

variants : a + b

Are the formulated sequents still provable?

PO of Refinement: Deadlock Freedom

• Recall:

- We proved that the initial model m_0 is deadlock free (see **DLF**).
- We proved, according to *guard strengthening*, that if a *concrete* event is <u>enabled</u>, then its *abstract* counterpart is <u>enabled</u>.
- PO of *relative deadlock freedom* for a *refinement* model:



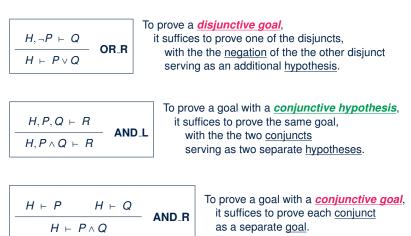
If an *abstract* state does <u>not</u> *deadlock* $\underbrace{\text{DLF}}_{\text{i.e., }G_1(c, v) \lor \cdots \lor G_m(c, v)}, \text{ then}$ its *concrete* counterpart does <u>not</u> *deadlock* (i.e., $H_1(c, w) \lor \cdots \lor H_n(c, w)).$

• Another way to think of the above PO:

The *refinement* does <u>not</u> introduce, in the *concrete*, any "new" *deadlock* scenarios <u>not</u> existing in the *abstract* state.

81 of 124

Example Inference Rules (6)



83 of 124

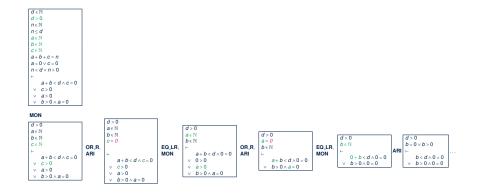
84 of 124

PO Rule: Relative Deadlock Freedom *m*₁

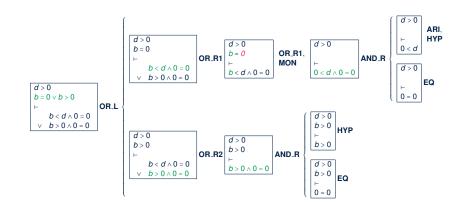
axm0₋1 axm0_2 inv0_1 inv0_2	$\begin{cases} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \leq d \end{cases}$	
inv1_1	{ <i>a</i> ∈ ℕ	
inv1_2	$b \in \mathbb{N}$	
inv1_3	$c \in \mathbb{N}$	
inv1_4	a+b+c=n	DLF
inv1_5	$a = 0 \lor c = 0$	
Disjunction of <i>abstract</i> guards	$ \left\{ \begin{array}{c} n < d \\ \forall n > 0 \end{array} \right\} \begin{array}{l} \textbf{guards of } ML_out \textbf{ in } m_0 \\ \textbf{guards of } ML_in \textbf{ in } m_0 \end{array} $	
Disjunction of <i>concrete</i> guards	$\begin{cases} a+b < d \land c = 0 \\ \lor & c > 0 \\ \lor & a > 0 \\ \lor & a > 0 \\ \lor & b > 0 \land a = 0 \end{cases}$ guards of <i>ML_out</i> in <i>m</i> ₁ guards of <i>ML_in</i> in <i>m</i> ₁ guards of <i>IL_in</i> in <i>m</i> ₁ guards of <i>IL_out</i> in <i>m</i> ₁	

Proving Refinement: DLF of *m*₁

LASSONDE



Proving Refinement: DLF of *m*₁ (continued)



85 of 124

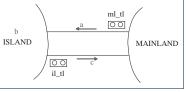
Model *m*₂: "More Concrete" Abstraction

LASSONDE

- <u>2nd</u> refinement has even more concrete perception of the bridge controller:
 - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML *il_tl*: a traffic light for exiting the IL

<u>**abstract</u>** variables a, b, c from m_1 still used (instead of being replaced)</u>



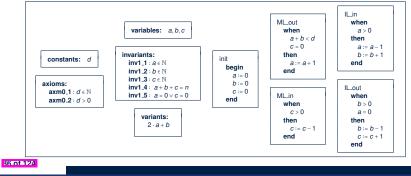
- Nonetheless, sensors remain *abstracted* away!
- That is, we focus on these three environment constraints:

	ENV1	The system is equipped with two traffic lights with two colors: green and red.		
	ENV2	The traffic lights control the entrance to the bridge at both ends of it.		
	ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.		
We	We are obliged to prove this added concreteness is consistent with m			

• We are **obliged to prove** this **added concreteness** is **consistent** with m₁.

First Refinement: Summary

- The final version of our *first refinement* m₁ is **provably correct** w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - Convergence (a.k.a. livelock freedom, non-divergence) [new events]
 - Relative *Deadlock* Freedom
- Here is the <u>final</u> specification of *m*₁:

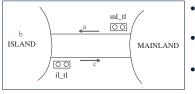


Model *m*₂: Refined, Concrete State Space

1. The static part introduces the notion of traffic light colours:

			axioms:
sets: COLOR	constants:	red, green	axm2_1 : COLOR = {green, red}
			axm2_2 : green ≠ red

2. The dynamic part shows the superposition refinement scheme:



invariants:

inv2_3 : ??

inv2_4 : ??

inv2_1 : $ml_tl \in COLOUR$

inv2_2 : *il_tl* ∈ COLOUR

- *Abstract* variables *a*, *b*, *c* from *m*₁ are <u>still</u> in use in <u>m_2</u>.
- Two new, concrete variables are introduced: ml_tl and il_tl
- <u>Constrast</u>: In *m*₁, *abstract* variable *n* is replaced by *concrete* variables *a*, *b*, *c*.
 - ◊ inv2_1 & inv2_2: typing constraints
 - ◊ inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
 - inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

88 of 124

variables:

a, b, c

ml_tl

il_tl

LASSONDE

[init]

[old & new events]

[old events]

- The system acts as an **ABSTRACT STATE MACHINE (ASM)** : it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out:

IL_out

when

end

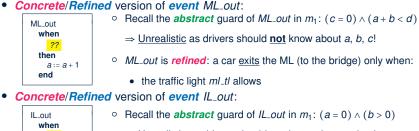
end

90 of 124

89 of 124

?? then

> b := b - 1 c := c + 1



 \Rightarrow Unrealistic as drivers should **not** know about *a*, *b*, *c*!

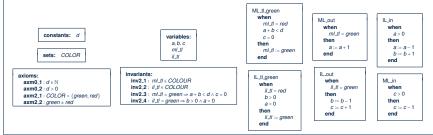
- *IL_out* is *refined*: a car exits the IL (to the bridge) only when:
 - the traffic light *il_tl* allows
- Q1. How about the other two "old" events IL_in and ML_in?
- A1. No need to *refine* as already *quarded* by *ML_out* and *IL_out*. Q2. What if the driver disobeys *ml_tl* or *il_tl*?

[A2. ENV3]

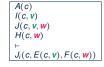
LASSONDE

LASSONDE

Invariant Preservation in Refinement m₂



Recall the PO/VC Rule of Invariant Preservation for Refinement:



INV where J_i denotes a single *concrete invariant*

- How many sequents to be proved? [# concrete evts \times # concrete invariants = 6 \times 4]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV

Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation. 91 of 124

Model *m*₂: New, Concrete Events

- The system acts as an **ABSTRACT STATE MACHINE (ASM)**: it *evolves* as actions of enabled events change values of variables, subject to invariants.
- Considered events already existing in m₁: • ML_out & IL_out [REFINED] ○ IL_in & ML_in [UNCHANGED] • New event ML_tl_green: • *ML_tl_green* denotes the traffic light *ml_tl* turning green. ML_tl_green • *ML_tl_green* enabled only when: when the traffic light not already green 22 · limited number of cars on the bridge and the island then ml_tl := areen No opposite traffic end $[\Rightarrow ML_out's abstract guard in m_1]$ New event IL_tl_green: • *IL_tl_green* denotes the traffic light *il_tl* turning green. IL_tl_green • IL_tl_green enabled only when: when the traffic light not already green ?? then some cars on the island (i.e., island not empty) il_tl := green No opposite traffic
 - $[\Rightarrow IL_out's abstract guard in m_1]$

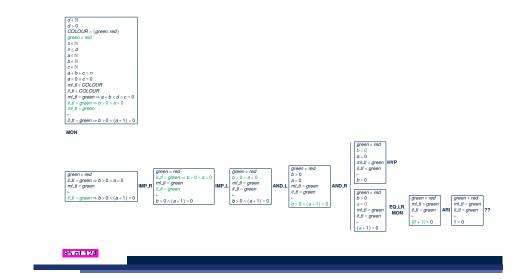
INV PO of m₂: ML_out/inv2_4/INV

axm0.1 { axm0.2 { axm2.1 { axm2.2 { inv0.1 { inv0.4 { inv1.3 { inv1.4 { inv1.5 { inv2.2 { inv2.3 { inv2.4 { Concrete guards of ML.out { Concrete invariant inv2.4 { with ML.out's effect in the post-state { } }	$ \begin{cases} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \\ n \in \mathbb{N} \\ n \leq d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml_{-}tl \in COLOUR \\ il_{-}tl \in COLOUR \\ il_{-}tl = green \Rightarrow a + b < d \land c = 0 \\ il_{-}tl = green \Rightarrow b > 0 \land a = 0 \\ ml_{-}tl = green \Rightarrow b > 0 \land (a + 1) = 0 \end{cases} $	ML_out/inv2_4/INV
--	---	-------------------

INV PO of m₂: IL_out/inv2_3/INV

Proving ML_out/inv2_4/INV: First Attempt

axm0.1 axm0.2 axm2.2 inv0.1 inv0.2 inv1.1 inv1.2 inv1.3 inv1.4 inv1.5 inv2.1 inv2.2 inv2.3 inv2.4 <i>Concrete</i> guards of <i>IL_out</i> <i>Concrete</i> invariant inv2.3 with <i>ML_out</i> 's effect in the post-state	$\left\{\begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \\ n \leq \mathbb{N} \\ d \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml.tl \in COLOUR \\ il.tl \in COLOUR \\ ml.tl = green \Rightarrow a + b < d \land c = 0 \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ il.tl = green \Rightarrow b + (b - 1) < d \land (c + 1) = 0 \end{array}\right.$	IL₋out/inv2_3/INV
---	--	-------------------



93 of 124

$$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} \quad \text{IMP_L}$$

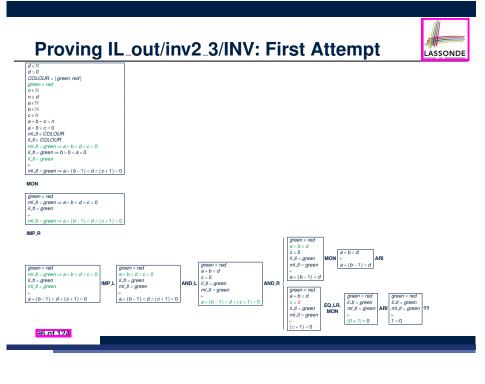
If a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis* $P \Rightarrow Q$, then the <u>conclusion</u> *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathbf{IMP}_{-}\mathbf{R}$$

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

 $\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \mathsf{NOT}_{-}\mathsf{L}$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the <u>negated</u> hypothesis $\neg(\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new <u>hypothesis</u>.



Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

 Our first attempts of proving <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> both failed the <u>2nd case</u> (resulted from applying IR AND_R):

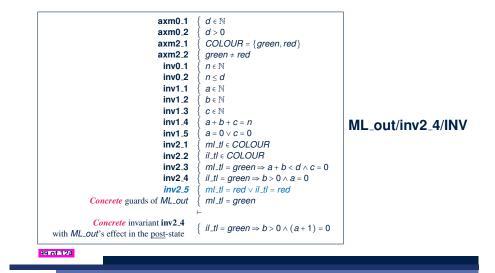
green \neq red \wedge il_tl = green \wedge ml_tl = green \vdash 1 = 0

- This unprovable sequent gave us a good hint:
 - Goal 1 = 0 = false suggests that the *safety requirements* a = 0 (for inv2_4) and c = 0 (for inv2_3) *contradict* with the current m_2 .
 - Hyp. *il_tl = green = ml_tl* suggests a *possible, dangerous state* of *m*₂, where two cars heading <u>different</u> directions are on the <u>one-way</u> bridge:

(init	,	ML_tl_green	, <u>ML_out</u> ,	<u>IL_in</u>	, <u>IL_tI_green</u> ,	IL_out ,	ML_out >
	d = 2		d = 2	<i>d</i> = 2	d = 2	d = 2	<i>d</i> = 2	d = 2
	<i>a</i> ′ = 0		<i>a</i> ′ = 0	a' = 1	a' = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	a' = 1
	b' = 0		b' = 0	b' = 0	b' = 1	<i>b</i> ′ = 1	b' = 0	b' = 0
	<i>c</i> ′ = 0		<i>c</i> ′ = 0	<i>c</i> ′ = 0	c' = 0	<i>c</i> ′ = 0	c' = 1	<i>c</i> ′ = 1
r	nl_tl' = rea	1	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl′ = green	ml_tl' = green
	il_tl' = red		il tl' - red	$iI_tI' = red$	$iI_{t}t' = red$	il tl' – green	il_tl' = areen	$iI_tI' = areen$

97 of 124

INV PO of m₂: ML_out/inv2_4/INV – Updated



• Having understood the <u>failed</u> proofs, we add a proper *invariant* to *m*₂:

invariants:

inv2_5 : *ml_tl* = *red* ∨ *il_tl* = *red*

• We have effectively resulted in an improved *m*₂ more faithful w.r.t. **REQ3**:

REQ3

The bridge is one-way or the other, not both at the same time.

- Having added this new invariant inv2_5:
 - Original 6 × 4 generated sequents to be <u>updated</u>: inv2.5 a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now provable?
 - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are *ML_tl_green/inv2_5/INV* and *IL_tl_green/inv2_5/INV provable*?

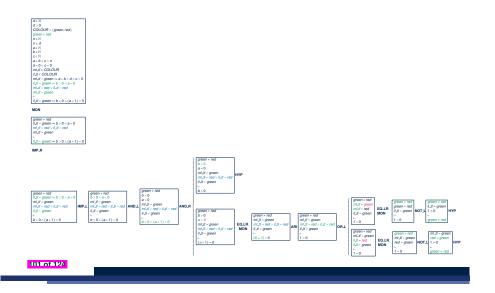
axm0_1 axm0 2	$\begin{cases} d \in \mathbb{N} \\ d \in \mathbb{Q} \end{cases}$	
	$\begin{cases} d > 0 \\ (col OUB) (groop red) \end{cases}$	
axm2_1	{ COLOUR = {green, red}	
axm2_2	{ green ≠ red	
inv0_1	$\{ n \in \mathbb{N} \}$	
inv0_2	{ n ≤ d	
inv1_1	{ a∈ N	
inv1_2	{ <i>b</i> ∈ ℕ	
inv1_3	{ <i>c</i> ∈ ℕ	
inv1_4	$\begin{cases} a+b+c=n \end{cases}$	IL_out/inv2
inv1_5	$a = 0 \lor c = 0$	
inv2_1	{ ml_tl ∈ COLOUR	
inv2_2	{ il_tl ∈ COLOUR	
inv2_3	$\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$	
inv2_4	$il_t = green \Rightarrow b > 0 \land a = 0$	
inv2_5	$\begin{cases} m_{t} = red \lor i_{t} = red \end{cases}$	
Concrete guards of IL_OUT	{ il_tl = green	
5		
<i>Concrete</i> invariant inv2_3 with <i>ML_out</i> 's effect in the <u>post</u> -state	$\left\{ ml_{-}tl = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0 \right.$	

3/INV

100 of 124

LASSONDE

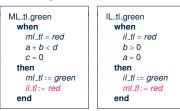
Proving ML_out/inv2_4/INV: Second Attempt



Fixing m₂: Adding Actions

• Recall that an *invariant* was added to *m*₂:

- Additional 6 × 1 sequents to be generated due to this new invariant:
 - e.g., *ML_tl_green*/inv2_5/INV
 e.g., *IL_tl_green*/inv2_5/INV
- [for *ML_tl_green* to preserve inv2_5] [for *IL_tl_green* to preserve inv2_5]
- For the above *sequents* to be *provable*, we need to revise the two events:



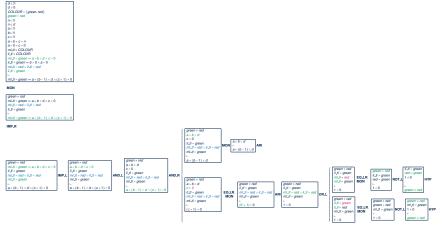
Exercise: Specify and prove *ML_tl_green*/inv2_5/INV & *IL_tl_green*/inv2_5/INV.

LASSONDE

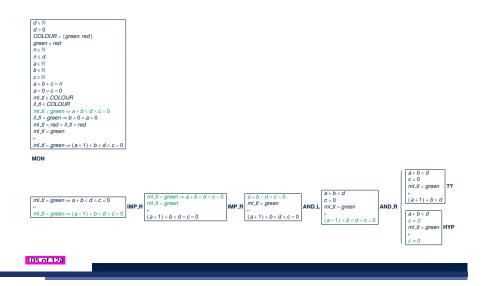
INV PO of *m*₂: ML_out/inv2_3/INV

LASSONDE

LASSONDE



Proving ML_out/inv2_3/INV: First Attempt



Fixing *m*₂: Splitting *ML_out* and *IL_out*

- Recall that *ML_out/inv2_3/INV* failed :: two cases not handled separately:
 - $a+b+1 \neq d$ [more later of a+b+1 = d [no more]

[more later cars may exit ML, *ml_tl* remains *green*] [no more later cars may exit ML, *ml_tl* turns *red*]

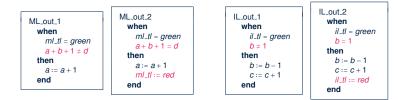
- Similarly, *IL_out/inv2_4/INV* would fail :: two cases not handled separately:
 - $b 1 \neq 0$ b - 1 = 0

LASSONDE

LASSONDE

[more later cars may exit IL, *il_tl* remains *green*] [no more later cars may exit IL, *il_tl* turns *red*]

Accordingly, we split *ML_out* and *IL_out* into two with corresponding guards.



Exercise: Specify and prove ML_out/inv2_3/INV & IL_out/inv2_4/INV.

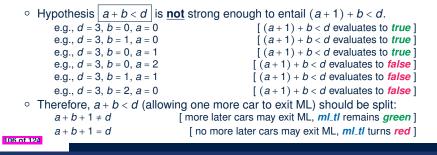
Exercise: Given the latest m_2 , how many sequents to prove for *invariant preservation*? **Exercise**: Each split event (e.g., ML_out_1) refines its **abstract** counterpart (e.g., ML_out)?

Failed: ML_out/inv2_3/INV

 Our first attempt of proving <u>ML_out/inv2_3/INV</u> failed the <u>1st case</u> (resulted from applying IR AND_R):

 $a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$

- This unprovable sequent gave us a good hint:
 - Goal $(\underbrace{a+1}_{a'}) + \underbrace{b}_{b'} < d$ specifies the *capacity requirement*.
 - Hypothesis $c = 0 \land ml_t l = green$ assumes that it's safe to exit the ML.



m₂ Livelocks: New Events Diverging

LASSONDE

- Recall that a system may *livelock* if the <u>new</u> events diverge.
- Current m₂'s two <u>new</u> events ML_tl_green and IL_tl_green may diverge :

ML_tl_green when	IL_tl_green when
$m_{-tl} = red$	il_tl = red
a + b < d	b > 0
<i>c</i> = 0	<i>a</i> = 0
then	then
ml_tl := green	il_tl := green
il_tl := red	ml_tl := red
end	end

 ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

(<u>init</u> ,	ML_tl_green ,	ML_out_1 ,	IL_in ,	IL_tl_green ,	ML_tl_green ,	IL_tl_green ,.)
d = 2	<i>d</i> = 2	d = 2	<i>d</i> = 2	<i>d</i> = 2	d = 2	d = 2	
<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 1	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	<i>a</i> ′ = 0	
b' = 0	b' = 0	b' = 0	<i>b</i> ′ = 1	<i>b</i> ′ = 1	<i>b</i> ′ = 1	<i>b</i> ′ = 1	
c' = 0	c' = 0	c' = 0	c' = 0	<i>c</i> ′ = 0	<i>c</i> ′ = 0	<i>c</i> ′ = 0	
ml_tl = <mark>red</mark>	ml_tl' = green	ml_tl' = green	ml_tl' = green	ml_tl′ = <mark>red</mark>	ml_tl′ = green	ml_tl' = red	
il_tl = red	$il_tl' = red$	$iI_tI' = red$	il_tl' = red	il_tl' = green	$il_tl' = red$	il_tl' = green	

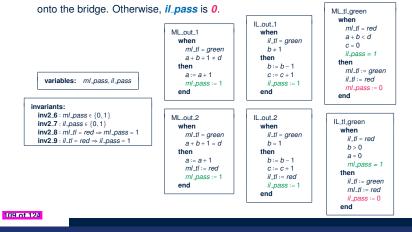
 \Rightarrow Two traffic lights keep changing colors so rapidly that <u>no</u> drivers can ever pass!

• <u>Solution</u>: Allow color changes between traffic lights in a disciplined way.

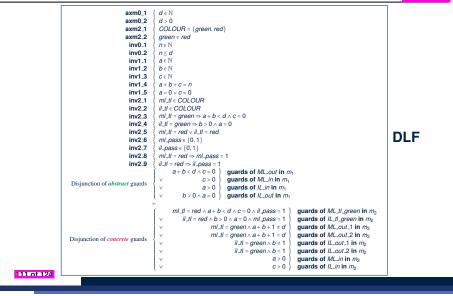
Fixing *m*₂: Regulating Traffic Light Changes

We introduce two variables/flags for regulating traffic light changes:

- *ml_pass* is 1 <u>if</u>, since *ml_tl* was last turned *green*, <u>at least one</u> car exited the <u>ML</u> onto the bridge. Otherwise, *ml_pass* is 0.
- *il_pass* is 1 if, since *il_tl* was last turned green, at least one car exited the IL



PO Rule: Relative Deadlock Freedom of m_2



Fixing *m*₂: Measuring Traffic Light Changes

- Recall:
 - Interleaving of *new* events charactered as an integer expression: *variant*.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - In the latest m_2 , let's try **variants** : m_1 pass + i_1 pass
- Accordingly, for the *new* event *ML_tl_green*:

	$d > 0$ green ≠ red $n \le d$ $b \in \mathbb{N}$ $a = 0 \lor c = 0$ $il_{-}ti \in COLOUR$ $il_{-}ti = green \Rightarrow b > 0 \land a = 0$	<i>C</i> ∈ ℕ	
$\begin{array}{l} ml_tl = red \lor il_tl = red \\ ml_pass \in \{0, 1\} \\ ml_tl = red \Rightarrow ml_pass = 1 \\ ml_tl = red \\ il_pass = 1 \\ \vdash \\ 0 + il_pass < ml_pass + il_pass \end{array}$	$il_pass \in \{0, 1\}$ $il_tl = red \Rightarrow il_pass = 1$ a + b < d	<i>c</i> = 0	<u>ML_tl_green/VAR</u>

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/VAR.

Proving Refinement: DLF of *m*₂ LASSONDE d > 0 COLOUR = {green, red} green \neq red n $\in \mathbb{N}$ n≤d a∈N b∈N $\begin{array}{l} b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml.tl \in COLOUR \\ il.tl \in COLOUR \\ ml.tl = green \Rightarrow a + b < d \land c = 0 \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.nl = red \lor il.tl = red \\ ml cases < (0, 1). \end{array}$ *ml_pass* ∈ {0, 1} *il_pass* ∈ {0, 1} $ml \ tl = red \Rightarrow ml \ nass = 1$ $\begin{array}{l} m_{i} n = rea \Rightarrow m_{i} pass = 1\\ il_{i} tl = red \Rightarrow il_{i} pass = 1\\ a + b < d \land c = 0\\ \lor c > 0\\ \lor a > 0\\ \lor b > 0 \land a = 0 \end{array}$ $ml_t = red \land a + b < d \land c = 0 \land il_pass =$ $iI_tI = red \land b > 0 \land a = 0 \land mI_pass = 1$ ml_tl = green il_tl = green a > 0 c > 0 $d \in \mathbb{N}$ d > 0 $b \in \mathbb{N}$ $ml_t l = red$ $il_t l = red$ ml_tl = red il_tl = red $b < d \lor b > 0$ $b \in \mathbb{N}$ > 0 \vee b = OB I $ml_tl = red \Rightarrow ml_pass = 1$ ml_pass = $il_t l = red \Rightarrow il_pass = 1$ il_pass = 1 $b < d \lor b > 0$ $b < d \lor b > 0$ EQ_LR.MON b < d ^ ml_pass = 1 ^ il_pass = 1 b > 0 ^ ml_pass = 1 ^ il_pass = 1 $b < d \lor b > 0$ 112 of 124

Second Refinement: Summary

[init]

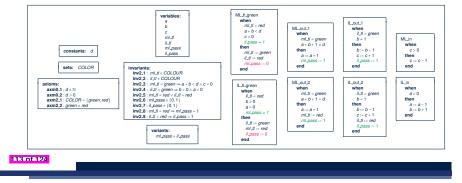
LASSONDE

[old & new events]

[old events]

[new events]

- The final version of our **second refinement** m₂ is **provably correct** w.r.t.:
 - Establishment of *Concrete Invariants*
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - *Convergence* (a.k.a. livelock freedom, non-divergence)
 - Relative Deadlock Freedom
- Here is the final specification of *m*₂:



Index (1)

Learning Outcomes

Recall: Correct by Construction

State Space of a Model

Roadmap of this Module

Requirements Document: Mainland, Island

Requirements Document: E-Descriptions

Requirements Document: R-Descriptions

Requirements Document:

Visual Summary of Equipment Pieces

Refinement Strategy

Model m₀: Abstraction

114 of 124

Index (2)

Model *m*₀: State Space

Model *m*₀: State Transitions via Events

Model m₀: Actions vs. Before-After Predicates

Design of Events: Invariant Preservation

Sequents: Syntax and Semantics

PO of Invariant Preservation: Sketch

PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

115 of 124

Example Inference Rules (2)

Example Inference Rules (3)

Revisiting Design of Events: ML_out

Revisiting Design of Events: ML_in

Fixing the Design of Events

Revisiting Fixed Design of Events: ML_out

Revisiting Fixed Design of Events: ML_in

Initializing the Abstract System m_0

PO of Invariant Establishment

Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

LASSONDE

Index (4)

LASSONDE

PO of Deadlock Freedom (1)

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

117 of 124

118 of 124

Index (6)

PO Rule: Guard Strengthening of ML_in

- Proving Refinement: ML_out/GRD
- Proving Refinement: ML_in/GRD
- **Refinement Rule: Invariant Preservation**
- Visualizing Inv. Preservation in Refinement
- INV PO of m₁: ML_out/inv1_4/INV
- INV PO of m1: ML_in/inv1_5/INV

Proving Refinement: ML_out/inv1_4/INV

Proving Refinement: ML_in/inv1_5/INV

Initializing the Refined System m₁

PO of m₁ Concrete Invariant Establishment

119 of 124

Index (5)

Model *m*₁: Refined State Space

Model m₁: State Transitions via Events

Model *m*₁: Actions vs. Before-After Predicates

States & Invariants: Abstract vs. Concrete

Events: Abstract vs. Concrete

PO of Refinement: Components (1)

PO of Refinement: Components (2)

PO of Refinement: Components (3)

Sketching PO of Refinement

Refinement Rule: Guard Strengthening

PO Rule: Guard Strengthening of ML_out

Index (7)

Discharging PO of m₁ Concrete Invariant Establishment

Model m1: New, Concrete Events

Model m₁: BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

Refinement Rule: Invariant Preservation

INV PO of m1: IL_in/inv1_4/INV

INV PO of *m*₁: IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

Livelock Caused by New Events Diverging

Index (8)

PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m₁

Example Inference Rules (6)

Proving Refinement: DLF of m₁

Proving Refinement: DLF of m₁ (continued)

First Refinement: Summary

Model m₂: "More Concrete" Abstraction

121 of 124

Index (10)

INV PO of m₂: ML_out/inv2_4/INV – Updated

INV PO of m₂: IL_out/inv2_3/INV – Updated

Proving ML_out/inv2_4/INV: Second Attempt

Proving IL_out/inv2_3/INV: Second Attempt

- Fixing m₂: Adding Actions
- INV PO of m₂: ML_out/inv2_3/INV
- Proving ML_out/inv2_3/INV: First Attempt

Failed: ML out/inv2 3/INV

Fixing m₂: Splitting ML_out and IL_out

m₂ Livelocks: New Events Diverging

Fixing m₂: Regulating Traffic Light Changes

123 of 124

Index (9)

Model m₂: Refined, Concrete State Space

Model m₂: Refining Old, Abstract Events

Model m₂: New, Concrete Events

Invariant Preservation in Refinement m₂

INV PO of m₂: ML_out/inv2_4/INV

INV PO of m₂: IL_out/inv2_3/INV

Example Inference Rules (7)

Proving ML_out/inv2_4/INV: First Attempt

Proving IL_out/inv2_3/INV: First Attempt

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

Fixing m₂: Adding an Invariant

122 of 124

Fixing m₂: Measuring Traffic Light Changes

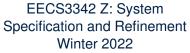
PO Rule: Relative Deadlock Freedom of m₂

Proving Refinement: DLF of m₂

Second Refinement: Summary

ASSOND

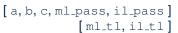
Specifying & Refining a File Transfer Protocol MEB: Chapter 4 • The bridge controll a reactive system • sensors • actuators • We now study an e



CHEN-WEI WANG

A Different Application Domain

• The bridge controller we *specified*, *refined*, and *proved* exemplifies a *reactive system*, working with the physical world via:



LASSONDE

LASSONDE

- We now study an example exemplifying a distributed program :
 - A *protocol* followed by two *agents*, residing on <u>distinct</u> geographical locations, on a computer <u>network</u>
 - Each file is transmitted *asynchronously*: bytes of the file do <u>not</u> arrive at the *receiver* all at one go.
 - Language of *predicates*, *sets*, and *relations* required
 - The **<u>same</u>** principles of generating *proof obligations* apply.

3 of 28

 $\mathcal{T} \mathbf{R}$

This module is designed to help you review:

- What a *Requirement Document (RD)* is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

Requirements Document: File Transfer Protocol (FTP)

You are required to implement a system for transmitting files between *agents* over a computer network.

Page Source: https://www.venafi.com

Requirements Document: R-Descriptions

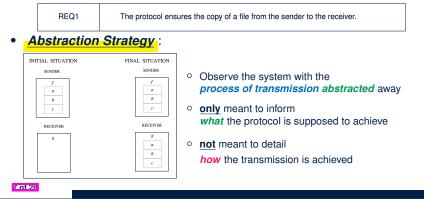
LASSONDE

Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

The protocol ensures the copy of a file from the sender to the receiver.
The file is supposed to be made of a sequence of items.
The file is sent piece by piece between the two sites.

Model *m*₀: Abstraction

- In this most abstract perception of the protocol, we do not consider the sender and receiver:
 - residing in geographically distinct locations
 - communicating via message exchanges
- Instead, we focus on this single requirement:



Refinement Strategy

- Strategy
- Recall the *design* strategy of progressive refinements.
 - **0.** <u>initial model</u> (m₀): a file is transmitted from the *sender* to the *receiver*. [**REQ1**] However, at this *most abstract* model:
 - file transmitted from sender to receiver synchronously & instantaneously
 - transmission process *abstracted* away
 - 1. 1st refinement (m1 refining m0): transmission is done asynchronously
 [REQ2, REQ3]

 However, at this more concrete model:
 - <u>no</u> communication between *sender* and *receiver*
 - exchanges of messages and acknowledgements abstracted away

2. 2nd refinement (m ₂ refining m ₁):	
communication mechanism elaborated	[REQ2, REQ3]
3. <i>final,</i> 3rd refinement (<i>m</i> ₃ refining <i>m</i> ₂):	
communication mechanism optimized	[REQ2, REQ3]

• Recall *Correct by Construction* :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it <u>feasible</u> to conduct **analysis** and **proofs**.

Math Background Review

[e.g., ∀]

LASSONDE

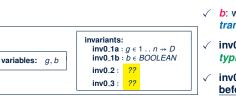
Refer to LECTURE 1 for reviewing:

- Predicates
- Sets
- Relations and Operations
- Functions

Model *m*₀: Abstract State Space

- 1. The <u>static</u> part formulates the *file* (from the *sender*'s end)
 - as a sequence of data items:

2. The dynamic part of the state consists of two variables:



- ✓ g: file from the receiver's end
 ✓ b: whether or not the
 - transmission is completed
 - inv0_1a and inv0_1b are *typing* constraints.
- ✓ inv0_2 specifies what happens before the transmission
- ✓ inv0_3 specifies what happens <u>after</u> the transmission

PO of Invariant Establishment

• How many *sequents* to be proved?

LASSONDE

LASSONDE

• We have <u>four</u> sequents generated for event init of model m_0 :

1.	$ \begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{ TRUE, FALSE \} \\ \vdash \\ \varnothing \in 1 \dots n \not \Rightarrow D \end{array} $	init/inv0_1a/INV
2.	$\begin{array}{l} n > 0 \\ f \in 1 \ \ n \to D \\ BOOLEAN = \{ TRUE, FALSE \} \\ \vdash \\ FALSE \in BOOLEAN \end{array}$	init/inv0_1b/INV
3.	$\begin{array}{l} n > 0 \\ f \in 1 \ \ n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ \vdash \\ FALSE = FALSE \Rightarrow \varnothing = \varnothing \end{array}$	init/inv0_2/INV
4.	$\begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ \vdash \\ FALSE = TRUE \Rightarrow \varnothing = f \end{array}$	init/inv0_3/INV
_		

- Exercises: Prove the above sequents related to *invariant establishment*.
- 11 of 28

12 of 28

Model *m*₀: State Transitions via Events

LASSONDE

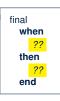
LASSONDE

- The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Initially, <u>before</u> the transmission:

9 of 28

• Nothing has been transmitted to the *receiver*.

- The transmission process has not been completed.
- Finally, after the transmission:



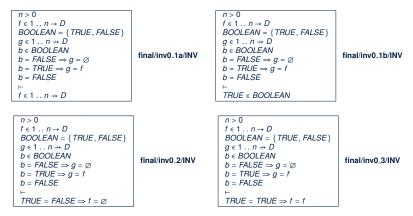
- The entire file *f* has been transmitted to the *receiver*.
- The transmission process has been completed.
- In this abstract model:
 - Think of the transmission being instantaneous.
 - A later **refinement** specifies how f is transmitted **asynchronously**.

PO of Invariant Preservation

• How many *sequents* to be proved?

[# non-init events × # invariants]

• We have <u>four</u> sequents generated for event final of model m_0 :

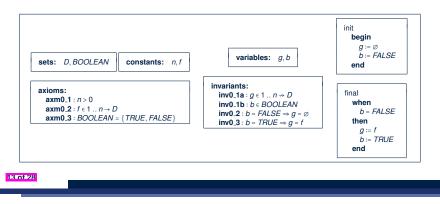


• Exercises: Prove the above sequents related to invariant preservation.

Initial Model: Summary

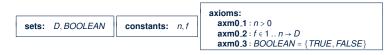
[EXERCISE]

- Our *initial model* m₀ is **provably correct** w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the **specification** of m_0 :



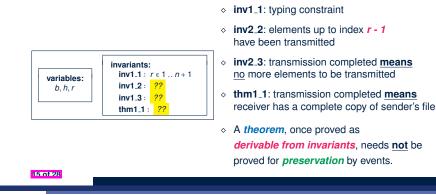
Model *m*₁: Refined, Concrete State Space

1. The **static** part remains the same as **m**₀:



LASSONDE

2. The dynamic part formulates the gradual transmission process:



Model *m*₁: "More Concrete" Abstraction

- LASSONDE
- In m₀, the transmission (evt. final) is synchronous and instantaneous.
- The 1st refinement has a more concrete perception of the file transmission: • The sender's file is coped gradually, *element by element*, to the receiver. → Such progress is denoted by occurrences of a *new event* receive.

<i>h</i> : elements transmitted so far <i>r</i> : index of element to be sent <u>abstract</u> variable <i>g</i> is replaced by <u>concrete</u> variables <i>h</i> and <i>r</i> .	f r a 1 b n receive h	$\begin{array}{c} f \\ a \\ r \\ b \\ c \\ n \\ h \\ a \end{array}$	$ \begin{array}{c} f \\ a \\ b \\ r \\ c \\ n \\ h \\ a \\ b \\ \end{array} $	f a 1 b n r r h a b c
 Nonetheless, communicati That is we focus on these 		0		ay!

I hat is, we focus on these two intended functionalities:

REQ2	The file is supposed to be made of a sequence of items.
REQ3	The file is sent piece by piece between the two sites.

 We are obliged to prove this added concreteness is consistent with m₀. 14 of 28

Model *m*₁: Property Provable from Invariants

• To prove that a *theorem* can be derived from the *invariants*:

variables: b, h, r	invariants: $inv1_1: r \in 1 n + 1$ $inv1_2: h = (1 r - 1) \triangleleft f$ $inv1_3: b = TRUE \Rightarrow r = n + 1$ $thm1_1: b = TRUE \Rightarrow h = f$
-----------------------	---

• We need to prove the following *sequent*:

 $r \in 1 ... n + 1$ $h = (1 \dots r - 1) \triangleleft f$ $b = TRUE \Rightarrow r = n + 1$ $b = TRUE \Rightarrow h = f$

• Exercise: Prove the above sequent.

PO of Invariant Preservation - final

LASSONDE

- We have three sequents generated for old event final of model m1.
- Here is one of the sequents:

•	
<i>n</i> > 0	
$f \in 1 \dots n \to D$	
BOOLEAN = {TRUE, FALSE}	
g ∈ 1 n → D	
b ∈ BOOLEAN	
$b = FALSE \Rightarrow g = \emptyset$	
$b = TRUE \Rightarrow g = f$	final/inv1 1/INV
<i>r</i> ∈ 1 <i>n</i> + 1	
$h = (1 \dots r - 1) \triangleleft f$	
$b = TRUE \Rightarrow r = n + 1$	
b = FALSE	
r = n + 1	
F	
<i>r</i> ∈ 1 <i>n</i> + 1	

Exercises: Formulate & prove other sequents of *invariant preservation*.

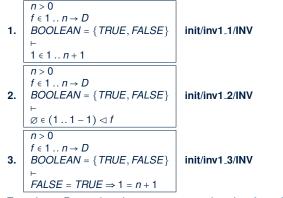
PO of Invariant Establishment

• How many sequents to be proved?

[# invariants]

LASSONDE

• We have three sequents generated for event init of model m₁:



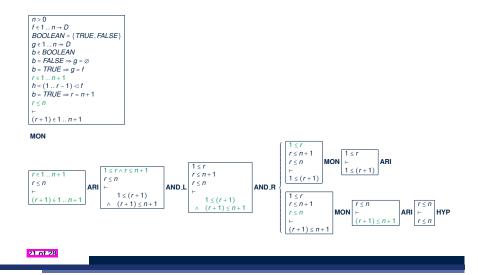
• Exercises: Prove the above sequents related to *invariant establishment*.

- PO of Invariant Preservation receive
- We have three sequents generated for new event receive of model m

We have three sequents generated for new event receive of model m_1 :				
receive/inv1_1/INV	receive/inv1_2/INV	receive/inv1_3/INV		
$ \begin{array}{l} n > 0 \\ f \in 1 n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \Rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ r \in 1 n + 1 \\ h = (1 r - 1) \lhd f \\ b = TRUE \Rightarrow r = n + 1 \\ r \le n \\ \vdash \\ (r + 1) \in 1 n + 1 \end{array} $	$ \begin{array}{l} n > 0 \\ f \in 1 \dots n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \dots n \to D \\ b \in BOOLEAN \\ b = FALSE \Rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ r \in 1 \dots n + 1 \\ h = (1 \dots r - 1) \lhd f \\ b = TRUE \Rightarrow r = n + 1 \\ r \leq n \\ \vdash \\ h \cup \{(r, f(r))\} = (1 \dots (r + 1) - 1) \lhd f \\ \end{array} $	$ \begin{array}{c} n > 0 \\ f \in 1 \ n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ g \in 1 \ n \rightarrow D \\ b \in BOOLEAN \\ b = FALSE \Rightarrow g = \emptyset \\ b = TRUE \Rightarrow g = f \\ r \in 1 \ n + 1 \\ h \in \{1 \ r - 1\} \land f \\ b = TRUE \Rightarrow r = n + 1 \\ r \leq n \\ \vdash \\ b = TRUE \Rightarrow (r + 1) = n + 1 \end{array} $		

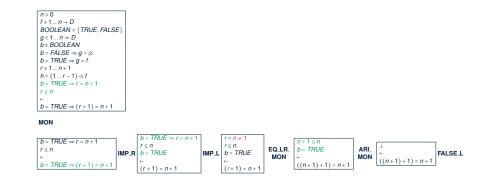
• Exercises: Prove the above sequents of *invariant preservation*.

Proving Refinement: receive/inv1_1/INV



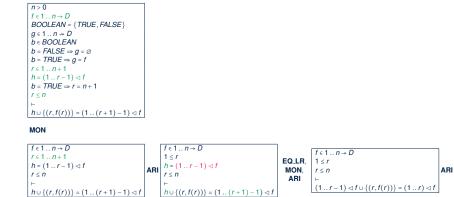
Proving Refinement: receive/inv1_3/INV

LASSONDE



23 of 28

Proving Refinement: receive/inv1_2/INV



*m*₁: **PO of Convergence of New Events**

• Recall:

24 of 28

- Interleaving of *new* events charactered as an integer expression: *variant*.
- A variant V(c, w) may refer to constants and/or *concrete* variables.
- For m_1 , let's try **variants** : n + 1 r
- Accordingly, for the new event receive:

<i>n</i> > 0	
$f \in 1 \dots n \to D$	
BOOLEAN = {TRUE, FALSE}	
g ∈ 1 n → D	
b e BOOLEAN	
$b = FALSE \Rightarrow g = \emptyset$	
$b = TRUE \Rightarrow g = f$	receive/VAR
<i>r</i> ∈ 1 <i>n</i> + 1	
$h = (1 \dots r - 1) \triangleleft f$	
$b = TRUE \Rightarrow r = n + 1$	
$r \leq n$	
H	
n+1-(r+1) < n+1-r	

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.

First Refinement: Summary

[init]

[old & new events]

[EXERCISE]

[old events, EXERCISE]

- The *first refinement* m₁ is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - · Convergence (a.k.a. livelock freedom, non-divergence) [new events, EXERCISE]
 - Relative Deadlock Freedom
- Here is the **specification** of m_1 :



Index (2)

PO of Invariant Preservation

- Initial Model: Summary
- Model m₁: "More Concrete" Abstraction
- Model m₁: Refined, Concrete State Space
- Model m₁: Property Provable from Invariants
- Model m₁: Old and New Concrete Events
- PO of Invariant Establishment
- PO of Invariant Preservation final
- PO of Invariant Preservation receive
- Proving Refinement: receive/inv1_1/INV
- Proving Refinement: receive/inv1_2/INV

27 of 28

Learning Outcomes

A Different Application Domain

Requirements Document:

File Transfer Protocol (FTP)

Requirements Document: R-Descriptions

Refinement Strategy

Model m₀: Abstraction

Math Background Review

Model m₀: Abstract State Space

Model *m*₀: State Transitions via Events

PO of Invariant Establishment

26 of 28

Proving Refinement: receive/inv1_3/INV

m₁: PO of Convergence of New Events

First Refinement: Summary

LASSONDE