Specifying & Refining a File Transfer Protocol

MEB: Chapter 4

EECS3342 Z: System Specification and Refinement Winter 2022

CHEN-WEI WANG

A Different Application Domain

- The bridge controller we *specified*, *refined*, and *proved* exemplifies a *reactive system*, working with the physical world via:
 - sensors
 actuators

[a,b,c,ml_p	ass,il_pas	s]
	[ml_tl,il_t	11

- We now study an example exemplifying a *distributed program* :
 - A *protocol* followed by two *agents*, residing on <u>distinct</u> geographical locations, on a computer <u>network</u>
 - Each file is transmitted *asynchronously*: bytes of the file do <u>not</u> arrive at the *receiver* all at one go.
 - Language of *predicates*, *sets*, and *relations* required
 - The **<u>same</u>** principles of generating *proof obligations* apply.

3 of 28

This module is designed to help you review:

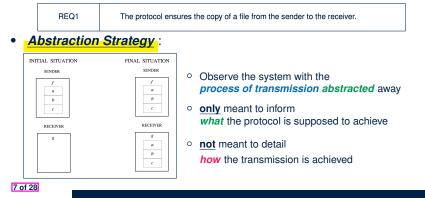
- What a *Requirement Document (RD)* is
- What a *refinement* is
- Writing *formal specifications*
 - (Static) contexts: constants, axioms, theorems
 - (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system properties
- Applying inference rules of the sequent calculus

Requirements Document: File Transfer Protocol (FTP)

You are required to implement a system for transmitting files between *agents* over a computer network.

Page Source: https://www.venafi.com

Requirements Document: R-Descriptions


LASSONDE

Each *R-Description* is an atomic specification of an intended *functionality* or a desired *property* of the working system.

REQ1	The protocol ensures the copy of a file from the sender to the receiver.
REQ2	The file is supposed to be made of a sequence of items.
REQ3	The file is sent piece by piece between the two sites.
REQ3	The file is sent piece by piece between the two sites.

Model *m*₀: Abstraction

- In this most *abstract* perception of the protocol, we do **not** consider the *sender* and *receiver*:
 - residing in geographically distinct locations
 - · communicating via message exchanges
- Instead, we focus on this single requirement:

5 of 28

Refinement Strategy

- LASSONDE
- Recall the design strategy of progressive refinements.
 - **0.** *initial model* (*m*₀): a file is transmitted from the *sender* to the *receiver*. [**REQ1**] However, at this most abstract model:
 - file transmitted from sender to receiver synchronously & instantaneously
 - transmission process abstracted away
 - **1.** 1st refinement $(m_1 \text{ refining } m_0)$: transmission is done asynchronously [REQ2, REQ3] However, at this more concrete model:
 - no communication between sender and receiver
 - exchanges of messages and acknowledgements abstracted away
 - **2.** 2nd refinement $(m_2 \text{ refining } m_1)$: communication mechanism elaborated [REQ2, REQ3] **3.** *final, 3rd refinement* (*m*₃ *refining m*₂): communication mechanism optimized [REQ2, REQ3]
- Recall *Correct by Construction* :

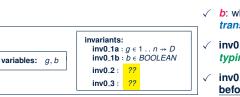
From each *model* to its *refinement*, only a manageable amount of details are added, making it *feasible* to conduct analysis and proofs.

Math Background Review

LASSONDE

Refer to LECTURE 1 for reviewing:

- Predicates
- Sets
- Relations and Operations
- Functions


[e.g., ∀]

Model *m*₀: Abstract State Space

- 1. The <u>static</u> part formulates the *file* (from the *sender*'s end)
 - as a sequence of data items:

2. The dynamic part of the state consists of two variables:

- \checkmark g: file from the *receiver*'s end
- ✓ b: whether or not the transmission is completed
- inv0_1a and inv0_1b are *typing* constraints.
- ✓ inv0_2 specifies what happens before the transmission
- ✓ inv0_3 specifies what happens <u>after</u> the transmission

9 of 28

PO of Invariant Establishment

• How many *sequents* to be proved?

[# invariants]

LASSONDE

LASSONDE

• We have <u>four</u> sequents generated for event init of model m_0 :

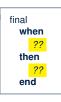
1.	$ \begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{ TRUE, FALSE \} \\ \vdash \\ \varnothing \in 1 \dots n \not \Rightarrow D \end{array} $	init/inv0_1a/INV
2.	$ \begin{array}{l} n > 0 \\ f \in 1 \ \ n \rightarrow D \\ BOOLEAN = \{ TRUE, FALSE \} \\ \vdash \\ FALSE \in BOOLEAN \end{array} $	init/inv0_1b/INV
3.	$\begin{array}{l} n > 0 \\ f \in 1 \ \ n \to D \\ BOOLEAN = \{TRUE, FALSE\} \\ \vdash \\ FALSE = FALSE \Rightarrow \varnothing = \varnothing \end{array}$	init/inv0_2/INV
4.	$\begin{array}{l} n > 0 \\ f \in 1 \dots n \rightarrow D \\ BOOLEAN = \{TRUE, FALSE\} \\ \vdash \\ FALSE = TRUE \Rightarrow \varnothing = f \end{array}$	init/inv0_3/INV
_		

• Exercises: Prove the above sequents related to *invariant establishment*.

11 of 28

12 of 28

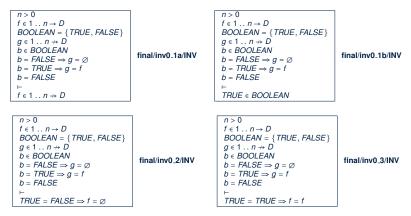
Model *m*₀: State Transitions via Events


LASSONDE

- The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Initially, <u>before</u> the transmission:

• Nothing has been transmitted to the *receiver*.

- The transmission process has not been completed.
- Finally, after the transmission:

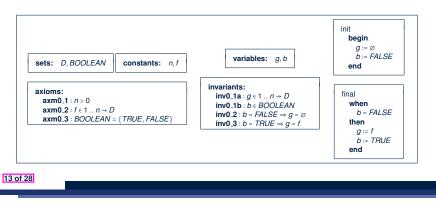

- The entire file *f* has been transmitted to the *receiver*.
- The *transmission* process has been completed.
- In this abstract model:
 - Think of the transmission being instantaneous.
 - A later **refinement** specifies how f is transmitted **asynchronously**.

PO of Invariant Preservation

• How many *sequents* to be proved?

[# non-init events × # invariants]

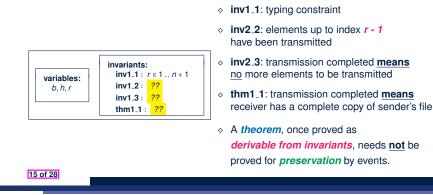
• We have <u>four</u> sequents generated for event final of model m_0 :


• Exercises: Prove the above sequents related to invariant preservation.

Initial Model: Summary


[EXERCISE]

- Our *initial model* m₀ is *provably correct* w.r.t.:
 - Establishment of Invariants
 - Preservation of Invariants
 - Deadlock Freedom
- Here is the **specification** of m_0 :


Model *m*₁: Refined, Concrete State Space

1. The <u>static</u> part remains the same as m_0 :

LASSONDE


2. The dynamic part formulates the gradual transmission process:

Model *m*₁: "More Concrete" Abstraction

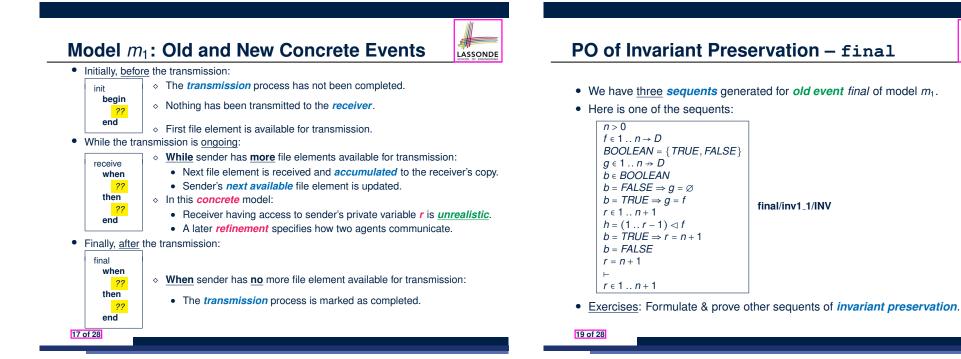
- In m_0 , the transmission (evt. final) is synchronous and instantaneous.
- The <u>1st refinement</u> has a <u>more concrete</u> perception of the file transmission:
 The sender's file is coped <u>gradually</u>, *element by element*, to the receiver.
 → Such progress is denoted by occurrences of a *new event* receive.

 h: elements transmitted so far r: index of element to be sent <u>abstract</u> variable g is replaced by <u>concrete</u> variables h and r. 	f r a l c n receive h	f r b c n receive h a	f a I b n r c n h b	f a 1 b c n r h a b c
 Nonetheless, communicati That is, we focus on these 		0		ay!

• We are *obliged to prove* this *added concreteness* is *consistent* with *m*₀.

Model *m*₁: Property Provable from Invariants

• To prove that a *theorem* can be derived from the *invariants*:

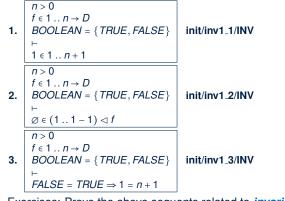

variables: b, h, r	invariants: $inv1_1: r \in 1 n + 1$ $inv1_2: h = (1 r - 1) \triangleleft f$ $inv1_3: b = TRUE \Rightarrow r = n + 1$ $thm1_1: b = TRUE \Rightarrow h = f$
-----------------------	---

• We need to prove the following *sequent*:

 $r \in 1 \dots n+1$ $h = (1 \dots r-1) \triangleleft f$ $b = TRUE \Rightarrow r = n+1$ \vdash $b = TRUE \Rightarrow h = f$

• Exercise: Prove the above sequent.

```
16 of 28
```



PO of Invariant Establishment

• How many sequents to be proved?

[# invariants]

LASSONDE

• We have three sequents generated for event init of model m₁:

- Exercises: Prove the above sequents related to invariant establishment.

18 of 28

PO of Invariant Preservation - receive

We have three sequents generated for new event receive of model m₁:

LASSONDE

LASSONDE

receive/inv1_3/INV

BOOLEAN = {TRUE, FALSE}

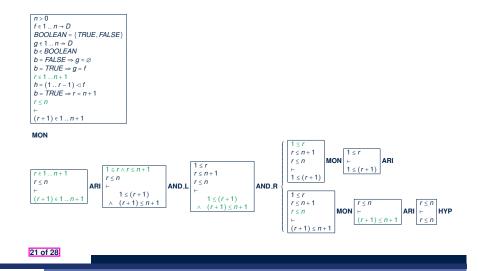
n > 0

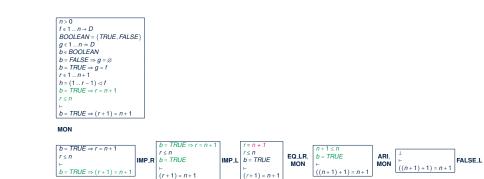
 $f \in 1 \dots n \rightarrow D$

receive/inv1_1/INV receive/inv1_2/INV n > 0 $f \in 1 \dots n \rightarrow D$ BOOLEAN = {TRUE, FALSE} BOOLEAN = { TRUE, FALSE }

g ∈ 1 n → D	g ∈ 1 n → D	g ∈ 1 n → D
b ∈ BOOLEAN	b ∈ BOOLEAN	b ∈ BOOLEAN
$b = FALSE \Rightarrow g = \emptyset$	$b = FALSE \Rightarrow g = \emptyset$	$b = FALSE \Rightarrow g = \emptyset$
$b = TRUE \Rightarrow g = f$	$b = TRUE \Rightarrow g = f$	$b = TRUE \Rightarrow g = f$
<i>r</i> ∈ 1 <i>n</i> + 1	<i>r</i> ∈ 1 <i>n</i> + 1	<i>r</i> ∈ 1 <i>n</i> + 1
$h = (1 \dots r - 1) \triangleleft f$	$h = (1 \dots r - 1) \triangleleft f$	$h = (1 \dots r - 1) \triangleleft f$
$b = TRUE \Rightarrow r = n + 1$	$b = TRUE \Rightarrow r = n + 1$	$b = TRUE \Rightarrow r = n + 1$
r ≤ n	r ≤ n	r≤n
F	H	+
$(r+1) \in 1 n+1$	$h \cup \{(r, f(r))\} = (1 (r+1) - 1) \triangleleft f$	$b = TRUE \Rightarrow (r+1) = n+1$

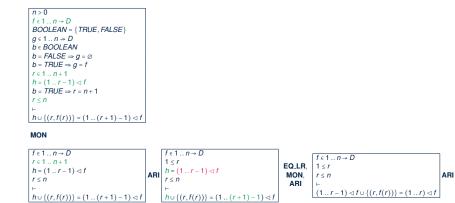
Exercises: Prove the above sequents of *invariant preservation*.


n > 0


 $f \in 1 \dots n \rightarrow D$

Proving Refinement: receive/inv1_1/INV

LASSONDE



Proving Refinement: receive/inv1_3/INV

23 of 28

*m*₁: **PO of Convergence of New Events**

• Recall:

24 of 28

- Interleaving of *new* events charactered as an integer expression: *variant*.
- A variant V(c, w) may refer to constants and/or *concrete* variables.
- For m_1 , let's try **variants** : n + 1 r
- Accordingly, for the new event receive:

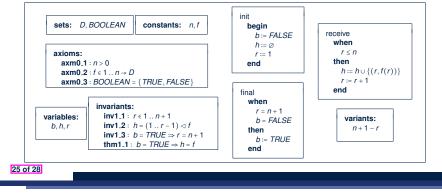
<i>n</i> > 0	
$f \in 1 \dots n \rightarrow D$	
BOOLEAN = {TRUE, FALSE}	
g ∈ 1 n → D	
b ∈ BOOLEAN	
$b = FALSE \Rightarrow g = \emptyset$	
$b = TRUE \Rightarrow g = f$	receive/VAR
<i>r</i> ∈ 1 <i>n</i> + 1	
$h = (1 \dots r - 1) \triangleleft f$	
$b = TRUE \Rightarrow r = n + 1$	
$r \leq n$	
⊢	
n+1-(r+1) < n+1-r	

Exercises: Prove receive/VAR and Formulate/Prove receive/NAT.

LASSONDE

22 of 28

First Refinement: Summary


[init]

[old & new events]

[EXERCISE]

[old events, EXERCISE]

- The *first refinement* m₁ is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of *Concrete Invariants*
 - Strengthening of *guards*
 - Convergence (a.k.a. livelock freedom, non-divergence) [new events, EXERCISE]
 - Relative Deadlock Freedom
- Here is the *specification* of *m*₁:

Index (2)

PO of Invariant Preservation

- Initial Model: Summary
- Model *m*₁: "More Concrete" Abstraction
- Model *m*₁: Refined, Concrete State Space
- Model *m*₁: Property Provable from Invariants
- Model m₁: Old and New Concrete Events
- PO of Invariant Establishment
- PO of Invariant Preservation final
- PO of Invariant Preservation receive
- Proving Refinement: receive/inv1_1/INV
- Proving Refinement: receive/inv1_2/INV

27 of 28

Learning Outcomes

A Different Application Domain

Requirements Document:

File Transfer Protocol (FTP)

Requirements Document: R-Descriptions

Refinement Strategy

Model m₀: Abstraction

Math Background Review

Model m₀: Abstract State Space

Model m₀: State Transitions via Events

PO of Invariant Establishment

26 of 28

LASSONDE

Index (3)
Proving Refinement: receive/inv1_3/INV

*m*₁: **PO of Convergence of New Events**

First Refinement: Summary

