Specifying \& Refining a Bridge Controller

MEB: Chapter 2

EECS3342 Z: System
Specification and Refinement Winter 2022

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:

- What a Requirement Document (RD) is
- What a refinement is
- Writing formal specifications
- (Static) contexts: constants, axioms, theorems
- (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
- refinements
- system properties
- Applying inference rules of the sequent calculus

Recall: Correct by Construction

- Directly reasoning about source code (written in a programming language) is too complicated to be feasible.
- Instead, given a requirements document, prior to implementation, we develop models through a series of refinement steps:
- Each model formalizes an external observer's perception of the system.
- Models are "sorted" with increasing levels of accuracy w.r.t. the system.
- The first model, though the most abstract, can already be proved satisfying some requirements.
- Starting from the second model, each model is analyzed and proved correct relative to two criteria:

1. Some requirements (i.e., R-descriptions)
2. Proof Obligations (POs) related to the preceding model being refined by the current model (via "extra" state variables and events).

- The last model (which is correct by construction) should be sufficiently close to be transformed into a working program (e.g., in C).

State Space of a Model

- A model's state space is the set of all configurations:
- Each configuration assigns values to constants \& variables, subject to:
- axiom (e.g., typing constraints, assumptions)
- invariant properties/theorems
- Say an initial model of a bank system with two constants and a variable: $c \in \mathbb{N} 1 \wedge L \in \mathbb{N} 1 \wedge$ accounts \in String $\rightarrow \mathbb{Z} \quad$ /* typing constraint */ * $\forall i d \bullet i d \in \operatorname{dom}($ accounts $) \Rightarrow-c \leq$ accounts (id) $\leq L \quad$ /* desired property */
Q. What is the state space of this initial model?
A. All valid combinations of c, L, and accounts.
- Configuration 1: $(c=1,000, L=500,000, b=\varnothing)$
- Configuration 2: $\left(c=2,375, L=700,000, b=\left\{(" i d 1 ", 500),\left(" i d 2^{\prime \prime}, 1,250\right)\right\}\right)$

> [Challenge: Combinatorial Explosion]

- Model Concreteness $\uparrow \Rightarrow$ (State Space $\uparrow \wedge$ Verification Difficulty \uparrow)
- A model's complexity should be guided by those properties intended to be verified against that model.
\Rightarrow Infeasible to prove all desired properties on a model.
\Rightarrow Feasible to distribute desired properties over a list of refinements.

Roadmap of this Module

- We will walk through the development process of constructing models of a control system regulating cars on a bridge.

Such controllers exemplify a reactive system.
(with sensors and actuators)

- Always stay on top of the following roadmap:

1. A Requirements Document (RD) of the bridge controller
2. A brief overview of the refinement strategy
3. An initial, the most abstract model
4. A subsequent model representing the 1 st refinement
5. A subsequent model representing the 2 nd refinement
6. A subsequent model representing the 3 rd refinement

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Requirements Document: E-Descriptions

Each E-Description is an atomic specification of a constraint or an assumption of the system's working environment.

ENV1	The system is equipped with two traffic lights with two colors: green and red.
ENV2	The traffic lights control the entrance to the bridge at both ends of it.
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.
ENV4	The system is equipped with four sensors with two states: on or off.
ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.

Requirements Document: R-Descriptions

Each R-Description is an atomic specification of an intended functionality or a desired property of the working system.

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.

REQ2	The number of cars on bridge and island is limited.

REQ3	The bridge is one-way or the other, not both at the same time.

Requirements Document: Visual Summary of Equipment Pieces

Refinement Strategy

- Before diving into details of the models, we first clarify the adopted design strategy of progressive refinements.
0 . The initial model (m_{0}) will address the intended functionality of a limited number of cars on the island and bridge.
[REQ2]

1. A 1st refinement (m_{1} which refines m_{0}) will address the intended functionality of the bridge being one-way.
[REQ1, REQ3]
2. A 2nd refinement (m_{2} which refines m_{1}) will address the environment constraints imposed by traffic lights.
[ENV1, ENV2, ENV3]
3. A final, 3rd refinement (m_{3} which refines m_{2}) will address the environment constraints imposed by sensors and the architecture: controller, environment, communication channels.
[ENV4, ENV5]

- Recall Correct by Construction :

From each model to its refinement, only a manageable amount of details are added, making it feasible to conduct analysis and proofs.

Model m_{0} : Abstraction

- In this most abstract perception of the bridge controller, we do not even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

REQ2	The number of cars on bridge and island is limited.

- Analogies:
- Observe the system from the sky: island and bridge appear only as a compound.

- "Zoom in" on the system as refinements are introduced.

Model m_{0} : State Space

1. The static part is fixed and may be seen/imported.

A constant d denotes the maximum number of cars allowed to be on the island-bridge compound at any time.
(whereas cars on the mainland is unbounded)

constants: d	axioms: axm0_1 : $d \in \mathbb{N}$

Remark. Axioms are assumed true and may be used to prove theorems.
2. The dynamic part changes as the system evolves.

A variable n denotes the actual number of cars, at a given moment, in the island-bridge compound.
variables: n

invariants:

inv0_1: $n \in \mathbb{N}$
inv0_2: $n \leq d$

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

Model m_{0} : State Transitions via Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- At any given state (a valid configuration of constants/variables):
- An event is said to be enabled if its guard evaluates to true.
- An event is said to be disabled if its guard evaluates to false.
- An enabled event makes a state transition if it occurs and its actions take effect.
- 1st event: A car exits mainland (and enters the island-bridge compound).

```
ML_out
    begin
    n:= n+1
    end
```

- 2nd event: A car enters mainland (and exits the island-bridge compound).

$\begin{aligned} & \text { ML_in } \\ & \text { begin } \\ & n:=n-1 \\ & \text { end } \end{aligned}$	Correct Specification? Say $d=2$. Witness: Event Trace 〈init, ML_out, ML_out,ML_out)

Model m_{0} : Actions vs. Before-After Predicatesonos

- When an enabled event e occurs there are two notions of state:
- Before-/Pre-State: Configuration just before e's actions take effect
- After-/Post-State: Configuration just after e's actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the pre-state to the post-state.

- As examples, consider actions of m_{0} 's two events:

- An event action " $n:=n+1$ " is not a variable assignment; instead, it is a specification: " n becomes $n+1$ (when the state transition completes)".
- The before-after predicate (BAP) " n ' $=n+1$ " expresses that n^{\prime} (the post-state value of n) is one more than n (the pre-state value of n).
- When we express proof obligations (POs) associated with events, we use BAP.

Design of Events: Invariant Preservation

- Our design of the two events

ML_out
begin
$n:=n+1$
end

$$
\begin{aligned}
& \text { ML_in } \\
& \text { begin } \\
& n:=n-1 \\
& \text { end }
\end{aligned}
$$

only specifies how the variable n should be updated.

- Remember, invariants are conditions that should never be violated!

```
invariants:
    inv0_1:n\in\mathbb{N}
    inv0_2: n\leqd
```

- By simulating the system as an ASM, we discover witnesses (i.e., event traces) of the invariants not being preserved all the time. $\exists s \bullet s \in$ State SPACE $\Rightarrow \neg$ invariants (s)
- We formulate such a commitment to preserving invariants as a proof obligation (PO) rule (a.k.a. a verification condition (VC) rule).

Sequents: Syntax and Semantics

- We formulate each PO/VC rule as a (horizontal or vertical) sequent:

$$
H \vdash G
$$

- The symbol \vdash is called the turnstile.
- H is a set of predicates forming the hypotheses/assumptions.
[assumed as true]
- G is a set of predicates forming the goal/conclusion.
[claimed to be provable from H]
- Informally:
- $H \vdash G$ is true if G can be proved by assuming H.
[i.e., We say "H entails G" or "H yields G"]
- $H \vdash G$ is false if G cannot be proved by assuming H.
- Formally: $H \vdash G \Longleftrightarrow(H \Rightarrow G)$
Q. What does it mean when H is empty (i.e., no hypotheses)?
A. $\vdash G \equiv$ true $\vdash G$
[Why not $\vdash G \equiv$ false $\vdash G$?]

PO of Invariant Preservation: Sketch

- Here is a sketch of the PO/VC rule for invariant preservation :

```
Axioms
Invariants Satisfied at Pre-State
Guards of the Event
    INV
\vdash
Invariants Satisfied at Post-State
```

- Informally, this is what the above PO/VC requires to prove:

Assuming all axioms, invariants, and the event's guards hold at the pre-state, after the state transition is made by the event, all invariants hold at the post-state.

PO of Invariant Preservation: Components

axioms:

$$
\text { axm0_1:d } d \in \mathbb{N}
$$

ML_in

```
invariants:
```

invariants:
inv0_1: n\in\mathbb{N}
inv0_1: n\in\mathbb{N}
inv0_2: n\leqd
inv0_2: n\leqd
begin
$n:=n-1$
end

- c : list of constants
- $A(c)$: list of axioms
- v and v^{\prime} : list of variables in pre- and post-states
- $I(c, v)$: list of invariants
- $G(c, v)$: the event's list of guards

$$
\left.G(\langle d\rangle,\langle n\rangle) \text { of } M L_{-} \text {out } \widehat{\equiv} \text { true }\right\rangle, G(\langle d\rangle,\langle n\rangle) \text { of } M L \text { in } \widehat{\equiv}\langle\text { true }\rangle
$$

- $E(c, v)$: effect of the event's actions i.t.o. what variable values become

$$
E(\langle d\rangle,\langle n\rangle) \text { of } M L_{-} \text {out } \leqq\langle n+1\rangle, E(\langle d\rangle,\langle n\rangle) \text { of } M L_{-} \text {out } \widehat{\equiv}\langle n-1\rangle
$$

- $v^{\prime}=E(c, v)$: before-after predicate formalizing E^{\prime} 's actions

$$
\text { BAP of } M L \text { out: }\left\langle n^{\prime}\right\rangle=\langle n+1\rangle \text {, BAP of } M L \text { in: }\left\langle n^{\prime}\right\rangle=\langle n-1\rangle
$$

Rule of Invariant Preservation: Sequents

- Based on the components $(c, A(c), v, I(c, v), E(c, v))$, we are able to formally state the PO/VC Rule of Invariant Preservation:

$A(c)$
$I(c, v)$
$G(c, v)$
\vdash
$l_{i}(c, E(c, v))$

- Accordingly, how many sequents to be proved? [\# events \times \# invariants]
- We have two sequents generated for event ML_out of model m_{0} :

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \in \mathbb{N}$

n \in \mathbb{N}

n \leq d

\vdash

n+1 \leq d\end{array}\right|\) ML_out/inv0_2/INV

Exercise. Write the POs of invariant preservation for event ML_in.

- Before claiming that a model is correct, outstanding sequents associated with all POs must be proved/discharged.

Inference Rules: Syntax and Semantics

- An inference rule (IR) has the following form:

Formally: $A \Rightarrow C$ is an axiom.
Informally: To prove C, it is sufficient to prove A instead.
Informally: C is the case, assuming that A is the case.
$\circ L$ is a name label for referencing the inference rule in proofs.

- A is a set of sequents known as antecedents of rule L .
- C is a single sequent known as consequent of rule L.
- Let's consider inference rules (IRs) with two different flavours:

- IR MON: To prove $H 1, H 2 \vdash G$, it suffices to prove $H 1 \vdash G$ instead.
- IR P2: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an axiom.
[proved automatically without further justifications]

Proof of Sequent: Steps and Structure

- To prove the following sequent (related to invariant preservation):

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \in \mathbb{N}$

1. Apply a inference rule, which transforms some "outstanding" sequent to one or more other sequents to be proved instead.
2. Keep applying inference rules until all transformed sequents are axioms that do not require any further justifications.

- Here is a formal proof of ML_out/inv0_1/INV, by applying IRs MON and P2:

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \in \mathbb{N}$

Example Inference Rules (1)

1st Peano axiom: 0 is a natural number.

2nd Peano axiom: $n+1$ is a natural number, assuming that n is a natural number.

$n-1$ is a natural number, assuming that n is positive.
\square
P3

$$
n \in \mathbb{N} \vdash 0 \leq n
$$

3rd Peano axiom: n is non-negative, assuming that n is a natural number.

Example Inference Rules (2)

$n+1$ is less than or equal to m, assuming that n is strictly less than m.

$n-1$ is strictly less than m, assuming that n is less than or equal to m.

Example Inference Rules (3)

$\frac{\frac{H 1 \vdash G}{H 1, H 2 \vdash G} \quad \text { MON }}{\frac{H, P \vdash R \quad H, Q \vdash R}{H, P \vee Q \vdash R} \text { OR prove }}$

Proof by Cases:

To prove a goal under a disjunctive assumption, it suffices to prove independently the same goal, twice, under each disjunct.

$$
H \vdash P \vee Q
$$

OR_R1

$$
H \vdash Q
$$

$$
H \vdash P \vee Q
$$

OR_R2

To prove a disjunction, it suffices to prove the left disjunct.

To prove a disjunction, it suffices to prove the right disjunct.

Revisiting Design of Events: ML_out

- Recall that we already proved PO ML_out/inv0_1/INV:

$\mid d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \in \mathbb{N}$

MON	$n \in \mathbb{N}$
\vdash	
$n+1 \in \mathbb{N}$	

$\therefore M L$ out/inv0_1/INV succeeds in being discharged.

- How about the other PO ML_out/inv0_2/INV for the same event?

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n+1 \leq d$

$$
\begin{array}{|l|}
\hline n \leq d \\
\vdash \\
n+1 \leq d
\end{array} \quad ?
$$

$\therefore M L$ out/inv0_2/INV fails to be discharged.

Revisiting Design of Events: ML_in

- How about the PO ML_in/inv0_1/INV for ML_in:

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n-1 \in \mathbb{N}$
:---
\vdash
$n-1 \in \mathbb{N}$

$\therefore M L$ in/invO_1/INV fails to be discharged.

- How about the other PO ML_in/inv0_2/INV for the same event?

$$
\begin{array}{|l|l|l}
\hline d \in \mathbb{N} \\
n \in \mathbb{N} \\
n \leq d \\
\vdash \\
n-1 \leq d
\end{array} \quad \text { MON } \begin{array}{|l}
n \leq d \\
\vdash \\
n-1<d \vee n-1=d
\end{array} \quad \text { OR_1 } \begin{aligned}
& n \leq d \\
& \vdash \\
& n-1<d
\end{aligned} \text { DEC }
$$

\therefore ML_in/inv0_2/INV succeeds in being discharged.

Fixing the Design of Events

- Proofs of ML_out/inv0_2/INV and ML_in/inv0_1/INV fail due to the two events being enabled when they should not.
- Having this feedback, we add proper guards to ML_out and ML_in:

ML_out
when
$n<d$
then
$n:=n+1$
end
:---
when
$n>0$
then
$n:=n-1$
end

- Having changed both events, updated sequents will be generated for the PO/VC rule of invariant preservation.
- All sequents ($\{$ ML_out, ML_in $\} \times\{$ inv0_1, inv0_2 $\}$) now provable?

Revisiting Fixed Design of Events: ML_out

- How about the PO ML_out/inv0_1/INV for ML_out:

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
$n<d$
\vdash
$n+1 \in \mathbb{N}$

MON | $n \in \mathbb{N}$ |
| :--- |
| \vdash |
| $n+1 \in \mathbb{N}$ |

\therefore ML_out/inv0_1/INV still succeeds in being discharged!

- How about the other PO ML_out/inv0_2/INV for the same event?
\therefore ML_out/inv0_2/INV now succeeds in being discharged!

Revisiting Fixed Design of Events: ML_in

- How about the PO ML_in/inv0_1/INV for ML_in:

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
$n>0$
\vdash
$n-1 \in \mathbb{N}$

\therefore ML_in/inv0_1/INV now succeeds in being discharged!

- How about the other PO ML_in/inv0_2/INV for the same event?

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
$n>0$
\vdash
$n-1 \leq d$

MON \begin{tabular}{|l|l}

$n \leq d$
\vdash
$n-1<d \vee n-1=d$

\hline

$n \leq d$

\vdash

$n-1<d$
\end{tabular} DEC

\therefore ML_in/inv0_2/INV still succeeds in being discharged!

Initializing the Abstract System m_{0}

- Discharging the four sequents proved that both invariant conditions are preserved between occurrences/interleavings of events ML_out and ML_in.
- But how are the invariants established in the first place? Analogy. Proving P via mathematical induction, two cases to prove:

```
\circ P(1),P(2),\ldots
- P(n)=>P(n+1)
```

[base cases \approx establishing inv.]
[inductive cases \approx preserving inv.]

- Therefore, we specify how the ASM 's initial state looks like:
\checkmark The IB compound, once initialized, has no cars.
\checkmark Initialization always possible: guard is true.
init
begin
$n:=0$
end

There is no pre-state for init.
\therefore The RHS of $:=$ must not involve variables.
\therefore The RHS of := may only involve constants.
\checkmark There is only the post-state for init.
\therefore Before-After Predicate: $n^{\prime}=0$

PO of Invariant Establishment

init begin $n:=0$ end
\checkmark An reactive system, once initialized, should never terminate.
\checkmark Event init cannot "preserve" the invariants.
\because State before its occurrence (pre-state) does not exist.
\checkmark Event init only required to establish invariants for the first time

- A new formal component is needed:
- K(c): effect of init's actions i.t.o. what variable values become

$$
\text { e.g., } K(\langle d\rangle) \text { of init } \widehat{\equiv}\langle 0\rangle
$$

- $v^{\prime}=K(c)$: before-after predicate formalizing init's actions

$$
\text { e.g., BAP of init: }\left\langle n^{\prime}\right\rangle=\langle 0\rangle
$$

- Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms \vdash Invariants Satisfied at Post-State

$\left.\begin{array}{|l|}\hline A(c) \\ \vdash \\ I_{i}(c, K(c))\end{array}\right] \underline{I N V}$

Discharging PO of Invariant Establishment

- How many sequents to be proved?
- We have two sequents generated for event init of model m_{0} :

$$
\begin{array}{|l|l}
\hline d \in \mathbb{N} \\
\vdash \\
0 \in \mathbb{N}
\end{array} \text { init/inv0_1/INV} \left\lvert\, \begin{aligned}
& d \in \mathbb{N} \\
& \vdash \\
& 0 \leq d
\end{aligned}\right. \text { init/inv0_2/INV }
$$

- Can we discharge the $P O$ init/inv0_1/INV?

$$
\begin{array}{|l|l|l}
\hline d \in \mathbb{N} \\
\vdash \\
0 \in \mathbb{N}
\end{array} \quad \text { MON } \quad \begin{array}{ll}
\\
\vdash \\
0 \in \mathbb{N}
\end{array} \quad \text { P1 } \quad \begin{aligned}
& \therefore \text { init/inv0_1/INV } \\
& \text { succeeds in being discharged. }
\end{aligned}
$$

- Can we discharge the $P O$ init/inv0_2/INV ?

$$
d \in \mathbb{N}
$$

$$
\begin{array}{l|l}
\vdash & \mathrm{P} 3 \\
\hline
\end{array}
$$

$$
\therefore \text { init/invo_2/INV }
$$

succeeds in being discharged.

System Property: Deadlock Freedom

- So far we have proved that our initial model m_{0} is s.t. all invariant conditions are:
- Established when system is first initialized via init
- Preserved whenevner there is a state transition (via an enabled event: ML_out or ML_in)
- However, whenever event occurrences are conditional (i.e., guards stronger than true), there is a possibility of deadlock :
- A state where guards of all events evaluate to false
- When a deadlock happens, none of the events is enabled.
\Rightarrow The system is blocked and not reactive anymore!
- We express this non-blocking property as a new requirement:

REQ4	Once started, the system should work for ever.

PO of Deadlock Freedom (1)

- Recall some of the formal components we discussed:
- c: list of constants
- $A(c)$: list of axioms
- v and v ': list of variables in pre- and post-states
- $I(c, v)$: list of invariants
- $G(c, v)$: the event's list of guards

$$
G(\langle d\rangle,\langle n\rangle) \text { of } M L \text { _out } \leqq\langle n<d\rangle, G(\langle d\rangle,\langle n\rangle) \text { of } M L \text { in } \leqq\langle n\rangle 0\rangle
$$

- A system is deadlock-free if at least one of its events is enabled:

| Axioms |
| :--- | :--- | :--- | :--- |
| Invariants Satisfied at Pre-State |
| \vdash |
| Disjunction of the guards satisfied at Pre-State |\quad DLF | $A(c)$
 $I(c, v)$
 \vdash
 $G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)$ |
| :--- |

To prove about deadlock freedom

- An event's effect of state transition is not relevant.
- Instead, the evaluation of all events' guards at the pre-state is relevant.

PO of Deadlock Freedom (2)

- Deadlock freedom is not necessarily a desired property.
\Rightarrow When it is (like m_{0}), then the generated sequents must be discharged.
- Applying the PO of deadlock freedom to the initial model m_{0} :

$A(c)$
$I(c, v)$
\vdash
$G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)$
:---
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n<d \vee n>0$

Our bridge controller being deadlock-free means that cars can always enter (via ML_out) or leave (via ML_in) the island-bridge compound.

- Can we formally discharge this PO for our initial model m_{0} ?

Example Inference Rules (4)

true (T) is proved, regardless of the assumption.

An expression being equal to itself is proved, regardless of the assumption.

Example Inference Rules (5)

$$
\frac{H(F), E=F \vdash P(F)}{H(E), E=F \vdash P(E)} \quad \text { EQLLR }
$$

To prove a goal $P(E)$ assuming $H(E)$, where both P and H depend on expression E, it suffices to prove $P(F)$ assuming $H(F)$, where both P and H depend on expresion F, given that E is equal to F.

To prove a goal $P(F)$ assuming $H(F)$, where both P and H depend on expression F, it suffices to prove $P(E)$ assuming $H(E)$, where both P and H depend on expresion E, given that E is equal to F.

Discharging PO of DLF: Exercise

| $A(c)$
 $I(c, v)$
 \vdash
 $G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)$ |
| :--- | :--- |
| $d \in \mathbb{N}$ |
| $n \in \mathbb{N}$ |
| $n \leq d$ |
| \vdash |
| $n<d \vee n>0$ |

Discharging PO of DLF: First Attempt

$d \in \mathbb{N}$
$n \in \mathbb{N}$
$n \leq d$
\vdash
$n<d \vee n>0$

Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d>0$
- This unprovable sequent gave us a good hint:
- For the model under consideration $\left(m_{0}\right)$ to be deadlock-free, it is required that $d>0$.
[≥ 1 car allowed in the IB compound]
- But current specification of m_{0} not strong enough to entail this:
- $\neg(d>0) \equiv d \leq 0$ is possible for the current model
- Given axm0_1: $d \in \mathbb{N}$
$\Rightarrow d=0$ is allowed by m_{0} which causes a deadlock.
- Recall the init event and the two guarded events:

| init |
| :---: | :---: |
| begin |
| $n:=0$ |
| end | | ML_out |
| :---: |
| when |
| $n<d$ |
| then |
| $n:=n+1$ |
| end |\quad| ML_in |
| :--- |
| when |
| $n>0$ |
| then |
| $n:=n-1$ |
| end |

When $d=0$, the disjunction of guards evaluates to false: $0<0 \vee 0>0$
\Rightarrow As soon as the system is initialized, it deadlocks immediately

Fixing the Context of Initial Model

- Having understood the failed proof, we add a proper axiom to m_{0} :

```
axioms:
    axm0_2 : d>0
```

- We have effectively elaborated on REQ2:

REQ2	The number of cars on bridge and island is limited but positive.

- Having changed the context, an updated sequent will be generated for the PO/VC rule of deadlock freedom.
- Is this new sequent now provable?

Discharging PO of DLF: Second Attempt

Initial Model: Summary

- The final version of our initial model m_{0} is provably correct w.r.t.:
- Establishment of Invariants
- Preservation of Invariants
- Deadlock Freedom
- Here is the final specification of m_{0} :

Model m_{1} : "More Concrete" Abstraction

- First refinement has a more concrete perception of the bridge controller:
- We "zoom in" by observing the system from closer to the ground, so that the island-bridge compound is split into:
- the island
- the (one-way) bridge

- Nonetheless, traffic lights and sensors remain abstracted away!
- That is, we focus on these two requirement:

REQ1	The system is controlling cars on a bridge connecting the mainland to an island.
REQ3	The bridge is one-way or the other, not both at the same time.

- We are obliged to prove this added concreteness is consistent with m_{0}.

Model m_{1} : Refined State Space

1. The static part is the same as m_{0} 's:
constants: d
axioms:

$$
\begin{aligned}
& \operatorname{axm}^{2} 1: d \in \mathbb{N} \\
& \operatorname{axm} 0 _2: d>0
\end{aligned}
$$

2. The dynamic part of the concrete state consists of three variables:

- a: number of cars on the bridge, heading to the island
- b: number of cars on the island
- c : number of cars on the bridge, heading to the mainland

	invariants: inv1_1 $: a \in \mathbb{N}$ inv1_2: $b \in \mathbb{N}$ inv1_3: $c \in \mathbb{N}$
variables: a, b, c	
inv1_4: ??	
inv1_5: ??	

\checkmark inv1_1, inv1_2, inv1_3 are typing constraints.
\checkmark inv1_4 links/glues the abstract and concrete states.
\checkmark inv1_5 specifies that the bridge is one-way.

Model m_{1} : State Transitions via Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" events already existing in m_{0}.
- Concrete/Refined version of event ML_out:

ML_out
when
??
then
$a:=a+1$
end

- Meaning of ML_out is refined:
a car exits mainland (getting on the bridge).
- ML_out enabled only when:
- the bridge's current traffic flows to the island
- number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

ML_in
when
then
$c:=c-1$
end

- Meaning of ML_in is refined:
a car enters mainland (getting off the bridge).
- ML_in enabled only when:
there is some car on the bridge heading to the mainland.

Model m_{1} : Actions vs. Before-After Predicatesonos

- Consider the concrete/refined version of actions of m_{0} 's two events:

- An event's actions are a specification: "c becomes c-1 after the transition".
- The before-after predicate (BAP) " c ' $=c-1$ " expresses that c^{\prime} (the post-state value of c) is one less than c (the pre-state value of c).
- Given that the concrete state consists of three variables:
- An event's actions only specify those changing from pre-state to post-state.

$$
\text { [e.g., } \left.c^{\prime}=c-1\right]
$$

- Other unmentioned variables have their post-state values remain unchanged.

$$
\left[\text { e.g., } a^{\prime}=a \wedge b^{\prime}=b\right]
$$

- When we express proof obligations (POs) associated with events, we use BAP.

States \& Invariants: Abstract vs. Concrete

- m_{0} refines m_{1} by introducing more variables:
- Abstract State (of m_{0} being refined):
Concrete State (of the refinement model m_{1}):
variables: n
variables: a, b, c
- Accordingly, invariants may involve different states:

Abstract Invariants
(involving the abstract state only):

Concrete Invariants (involving at least the concrete state):

```
invariants:
    inv0_1: n\in\mathbb{N}
    inv0_2: n\leqd
```

invariants:
inv1_1: $a \in \mathbb{N}$
inv1_2: $b \in \mathbb{N}$
inv1_3: $c \in \mathbb{N}$
inv1_4: $a+b+c=n$
inv1_5: $a=0 \vee c=0$

Events: Abstract vs. Concrete

- When an event exists in both models m_{0} and m_{1}, there are two versions of it:
- The abstract version modifies the abstract state.

```
(abstract_)ML_out
    when
        n<d
    then
        a:= n:= n+1
    end
```

```
(abstract_)ML_in
    when
        n>0
    then
        n:= n-1
    end
```

- The concrete version modifies the concrete state.

```
(concrete_)ML_out
    when
        a+b<d
        c=0
    then
        a:= a+1
    end
```

(concrete_)ML_in
when
$c>0$
then
$c:=c-1$
end

- A new event may only exist in m_{1} (the concrete model): we will deal with this kind of events later, separately from "redefined/overridden" events.

PO of Refinement：Components（1）

－c ：list of constants
－$A(c)$ ：list of axioms
－v and v^{\prime} ：abstract variables in pre－\＆post－states
－w and w^{\prime} ：concrete variables in pre－\＆post－states
－$I(c, v)$ ：list of abstract invariants〈inv0＿1，inv0－2〉
－$J(c, v, w)$ ：list of concrete invariants $\left\langle i n v 1 _1\right.$, inv1＿2，inv1＿3，inv1＿4，inv1＿5〉

PO of Refinement: Components (2)

- $G(c, v)$: list of guards of the abstract event

$$
G(\langle d\rangle,\langle n\rangle) \text { of } M L \text { out } \widehat{\equiv}\langle n<d\rangle, G(c, v) \text { of } M L \text { in } \leqq\langle n\rangle 0\rangle
$$

- $H(c, w)$: list of guards of the concrete event

$$
H(\langle d\rangle,\langle a, b, c\rangle) \text { of } M L_{-} \text {out } \widehat{\equiv}\langle a+b<d, c=0\rangle, H(c, w) \text { of } M L \text { in } \widehat{\equiv}\langle c>0\rangle
$$

PO of Refinement: Components (3)

- $E(c, v)$: effect of the abstract event's actions i.t.o. what variable values become

$$
E(\langle d\rangle,\langle n\rangle) \text { of } M L \text { out } \leqq\langle n+1\rangle, E(\langle d\rangle,\langle n\rangle) \text { of } M L \text { out } \leqq\langle n-1\rangle
$$

- $F(c, w)$: effect of the concrete event's actions i.t.o. what variable values become

$$
F(c, v) \text { of } M L_{-} \text {out } \widehat{\equiv}\langle a+1, b, c\rangle, F(c, w) \text { of } M L_{-o u t} \leqq\langle a, b, c-1\rangle
$$

Sketching PO of Refinement

The PO/VC rule for a proper refinement consists of two parts:

1. Guard Strengthening

Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event
\vdash
Guards of the Abstract Event

2. Invariant Preservation
```
Axioms
Abstract Invariants Satisfied at Pre-State
Concrete Invariants Satisfied at Pre-State
Guards of the Concrete Event
\vdash
Concrete Invariants Satisfied at Post-State
```

- A concrete event is enabled if its abstract counterpart is enabled.
- A concrete transition always has an abstract counterpart.
- A concrete event performs a transition on concrete states.
- This concrete state transition must be consistent with how its abstract counterpart performs a corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable to events that might be enabled after the system is launched.

Refinement Rule: Guard Strengthening

- Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

$A(c)$
$I(c, v)$
$J(c, v, w)$
$H(c, w)$
\vdash
$G_{i}(c, v)$

where G_{i} denotes a single guard condition of the abstract event

- How many sequents to be proved?
[\# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

$d \in \mathbb{N}$	$d>0$		
$n \in \mathbb{N}$	$n \leq d$		
$a \in \mathbb{N}$	$b \in \mathbb{N}$	$c \in \mathbb{N}$	$a+b+c=n$
$a+b<d$	$c=0$		
\vdash			
$\square<d$			

- Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of ML_out

PO Rule: Guard Strengthening of ML_in

Proving Refinement: ML out/GRD

Proving Refinement: ML in/GRD

Refinement Rule: Invariant Preservation

- Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

```
A(c)
\(I(c, v)\)
\(J(c, v, w)\)
\(H(c, w)\)
\(\vdash\)
\(J_{i}(c, E(c, v), F(c, w))\)
```

INV where J_{i} denotes a single concrete invariant

- How many sequents to be proved? [\# concrete evts \times \# concrete invariants]
- Here are two (of the ten) sequents generated:

$d \in \mathbb{N}$
$d>0$
$n \in \mathbb{N}$
$n \leq d$
$a \in \mathbb{N}$
$b \in \mathbb{N}$
$c \in \mathbb{N}$
$a+b+c=n$
$a=0 \vee c=0$
$a+b<d$
$c=0$
\vdash
$(a+1)+b+c=(n+1)$

ML_out/inv1_4/INV \begin{tabular}{l}

$d \in \mathbb{N}$
$d>0$
$n \in \mathbb{N}$
$n \leq d$
$a \in \mathbb{N}$
$b \in \mathbb{N}$
$c \in \mathbb{N}$
$a+b+c=n$
$a=0 \vee c=0$
$c>0$
\vdash
$a=0 \vee(c-1)=0$

\hline
\end{tabular}$|$ ML_in/inv1_5/INV

- Exercises. Specify and prove other eight POs of Invariant Preservation.

Visualizing Inv. Preservation in Refinement

Each concrete event (w to w^{\prime}) is simulated by an abstract event (v to v^{\prime}):

- abstract \& concrete pre-states related by concrete invariants $J(c, v, w)$
- abstract \& concrete post-states related by concrete invariants $J\left(c, v^{\prime}, w^{\prime}\right)$

	(v)	Abstract event	$I\left(v^{\prime}\right)$
$G(c, v)$		Abstract event	$v^{\prime}=E(c, v)$
	$J(c, v, w)$		$J\left(c, v^{\prime}, w^{\prime}\right)$
	$!$	Concrete event	,
$H(c, w)$	w		$w^{\prime}=F(c, w)$

INV PO of m_{1} : ML_out/inv1_4/INV

Concrete invariant inv1_4 with ML_out's effect in the post-state

$$
\{(a+1)+b+c=(n+1)
$$

INV PO of m_{1} : ML_in/inv1 5/INV

Concrete invariant inv1_5 with ML_in's effect in the post-state

$$
\{a=0 \vee(c-1)=0
$$

Proving Refinement: ML out/inv1_4/INV

Proving Refinement: MLin/inv1 5/INV

Initializing the Refined System m_{1}

- Discharging the twelve sequents proved that:
- concrete invariants preserved by ML_out \& ML_in
- concrete guards of ML_out \& ML_in entail their abstract counterparts
- What's left is the specification of how the $A S M$'s initial state looks like:
init
begin
$a:=0$
$b:=0$
$c:=0$
end

No cars on bridge (heading either way) and island
\checkmark Initialization always possible: guard is true.
\checkmark There is no pre-state for init.
\therefore The RHS of := must not involve variables.
\therefore The RHS of := may only involve constants.
\checkmark There is only the post-state for init.
\therefore Before-After Predicate: $a^{\prime}=0 \wedge b^{\prime}=0 \wedge c^{\prime}=0$

PO of m_{1} Concrete Invariant Establishment

- Some (new) formal components are needed:
- K(c): effect of abstract init's actions:

$$
\text { e.g., } K(\langle d\rangle) \text { of init } \widehat{\equiv}\langle 0\rangle
$$

- $v^{\prime}=K(c)$: before-after predicate formalizing abstract init's actions

$$
\text { e.g., BAP of init: }\left\langle n^{\prime}\right\rangle=\langle 0\rangle
$$

- $L(c)$: effect of concrete init's actions:

$$
\text { e.g., } K(\langle d\rangle) \text { of init } \widehat{\equiv}\langle 0,0,0\rangle
$$

- $w^{\prime}=L(c)$: before-after predicate formalizing concrete init's actions

$$
\text { e.g., BAP of init: }\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle=\langle 0,0,0\rangle
$$

- Accordingly, PO of invariant establisment is formulated as a sequent:
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Axioms } \\ \vdash \\ \text { Concrete Invariants Satisfied at Post-State }\end{array} & \underline{\text { INV }}\end{array} \quad \begin{array}{l}A(c) \\ \vdash \\ J_{i}(c, K(c), L(c))\end{array}\right]$ INV

Discharging PO of m_{1}
 Concrete Invariant Establishment

- How many sequents to be proved?
[\# concrete invariants]
- Two (of the five) sequents generated for concrete init of m_{1} :

$\left.$$d \in \mathbb{N}$ $d>0$ \vdash $0+0+0=0$$\quad \underline{\text { init/inv1_4/INV }} \right\rvert\,$$d \in \mathbb{N}$ $d>0$ \vdash $0=0 \vee 0=0$
init/inv1_5/INV

- Can we discharge the $P O$ init/inv1_4/INV?

- Can we discharge the $P O$ init/inv1_5/INV?

$d \in \mathbb{N}$
$d>0$
\vdash
$0=0 \vee 0=0$

ARI, MON $\vdash \mathrm{T}$ TRUE_R

\therefore init/inv1_5/INV

succeeds in being discharged.

Model m_{1} : New, Concrete Events

- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in m_{0} : ML_out \& ML_in
- New event IL_in:

IL_in
when
$? ? ?$
then
$? ?$
end

- IL_in denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
- The bridge's current traffic flows to the island.
Q. Limited number of cars on the bridge and the island?
A. Ensured when the earlier ML_out (of same car) occurred
- New event IL_out:

```
IL_out
``` when
end
- IL_out denotes a car exiting the island (getting on the bridge).
- IL_out enabled only when:
- There is some car on the island.
- The bridge's current traffic flows to the mainland.

\section*{Model \(m_{1}\) : BA Predicates of Multiple Actions}

Consider actions of \(m_{1}\) 's two new events:
\begin{tabular}{|l|}
\hline IL_in \\
when \\
\(a>0\) \\
then \\
\(a:=a-1\) \\
\(b:=b+1\) \\
end \\
\hline
\end{tabular}
```

IL_out
when
b>0
a=0
then
b:= b-1
c:=c+1
end

```
- What is the BAP of ML_in's actions?
\[
a^{\prime}=a-1 \wedge b^{\prime}=b+1 \wedge c^{\prime}=c
\]
- What is the BAP of ML_in's actions?
\[
a^{\prime}=a \wedge b^{\prime}=b-1 \wedge c^{\prime}=c+1
\]

\section*{Visualizing Inv. Preservation in Refinement}
- Recall how a concrete event is simulated by its abstract counterpart:

- For each new event:
- Strictly speaking, it does not have an abstract counterpart.
- It is simulated by a special abstract event (transforming \(v\) to \(v^{\prime}\)):
skip
begin
end
- skip is a "dummy" event: non-guarded and does nothing
- Q. BAP of the skip event?

\section*{Refinement Rule: Invariant Preservation}
- The new events \(/ L _i n\) and \(I L_{-}\)out do not exist in \(m_{0}\), but:
- They exist in \(\mathrm{m}_{1}\) and may impact upon the concrete state space.
- They preserve the concrete invariants, just as ML_out \& ML_in do.
- Recall the PO/VC Rule of Invariant Preservation for Refinement:
\begin{tabular}{|l|}
\hline\(A(c)\) \\
\(I(c, v)\) \\
\(J(c, v, w)\) \\
\(H(c, w)\) \\
\(\vdash\) \\
\(J_{i}(c, E(c, v), F(c, w))\) \\
\hline
\end{tabular}

INv where \(J_{i}\) denotes a single concrete invariant
- How many sequents to be proved? [\# new evts \(\times\) \# concrete invariants]
- Here are two (of the ten) sequents generated:
\begin{tabular}{|l|}
\hline\(d \in \mathbb{N}\) \\
\(d>0\) \\
\(n \in \mathbb{N}\) \\
\(n \leq d\) \\
\(a \in \mathbb{N}\) \\
\(b \in \mathbb{N}\) \\
\(c \in \mathbb{N}\) \\
\(a+b+c=n\) \\
\(a=0 \vee c=0\) \\
\(a>0\) \\
\(\vdash\) \\
\((a-1)+(b+1)+c=n\) \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline\(d \in \mathbb{N}\) \\
\(d>0\) \\
\(n \in \mathbb{N}\) \\
\(n \leq d\) \\
\(a \in \mathbb{N}\) \\
\(b \in \mathbb{N}\) \\
\(c \in \mathbb{N}\) \\
\(a+b+c=n\) \\
\(a=0 \vee c=0\) \\
\(a>0\) \\
\(\vdash\) \\
\((a-1)=0 \vee c=0\)
\end{tabular}
- Exercises. Specify and prove other eight POs of Invariant Preservation.

\section*{INV PO of \(m_{1}\) : IL_in/inv1_4/INV}
\begin{tabular}{|c|c|}
\hline axm0_1 & \(d \in \mathbb{N}\) \\
\hline axm0_2 & \(d>0\) \\
\hline inv0_1 & \(n \in \mathbb{N}\) \\
\hline inv0_2 & \(n \leq d\) \\
\hline inv1_1 & \(a \in \mathbb{N}\) \\
\hline inv1_2 & \(b \in \mathbb{N}\) \\
\hline inv1_3 & \(c \in \mathbb{N}\) \\
\hline inv1_4 & \(a+b+c=n\) \\
\hline inv1_5 & \(a=0 \vee c=0\) \\
\hline Guards of IL_in & a>0 \\
\hline
\end{tabular}

Concrete invariant inv1_4 with \(/ L_{-} i n\) 's effect in the post-state
\[
\{(a-1)+(b+1)+c=n
\]

\section*{INV PO of \(m_{1}\) : IL_in/inv1_5/INV}
\begin{tabular}{rll|}
\hline \begin{tabular}{l}
axm0_1 \\
axm0_2
\end{tabular} & \(\left\{\begin{array}{l}d \in \mathbb{N} \\
d>0\end{array}\right.\) \\
inv0_1 & \(\{n \in \mathbb{N}\) \\
inv0_2 & \(\left\{\begin{array}{l}n \leq d \\
\text { inv1_1 }\end{array}\right.\) & \(\{\in \mathbb{N}\) \\
inv1_2 & \(\{b \in \mathbb{N}\) \\
inv1_3 & \(\{\in \mathbb{N}\) \\
inv1_4 & \(\{a+b+c=n\) \\
inv1_5 & \(\{a=0 \vee c=0\) \\
Guards of IL_in & \(\{a>0\) \\
& \(\vdash\) \\
with IL_in's effect in the post-state & \(\{(a-1)=0 \vee c=0\)
\end{tabular}

\section*{Proving Refinement: IL_in/inv1_4/INV}
\begin{tabular}{|l|}
\hline\(d \in \mathbb{N}\) \\
\(d>0\) \\
\(n \in \mathbb{N}\) \\
\(n \leq d\) \\
\(a \in \mathbb{N}\) \\
\(b \in \mathbb{N}\) \\
\(c \in \mathbb{N}\) \\
\(a+b+c=n\) \\
\(a=0 \vee c=0\) \\
\(a>0\) \\
\(\vdash\) \\
\((a-1)+(b+1)+c=n\) \\
\hline
\end{tabular}
MON \begin{tabular}{l}
\begin{tabular}{l}
\(a+b+c=n\) \\
\(\vdash\) \\
\((a-1)+(b+1)+c=n\)
\end{tabular} \\
ARI \\
\begin{tabular}{l}
\(a+b+c=n\) \\
\(\vdash\) \\
\(a+b+c=n\)
\end{tabular} \\
\end{tabular} HYP

\section*{Proving Refinement: IL_in/inv1 5/INV}

\section*{Livelock Caused by New Events Diverging}
- An alternative \(m_{1}\) (with inv1_4, inv1_5, and guards of new events removed):
```

constants: d

```
```

axioms:
axm0_1: d\in\mathbb{N}
axm0_2:d>0

```
ML_in
when
\(c>0\)
then
\(c:=c-1\)
end
```

variables: a,b,c

```
invariants: inv1_1: \(a \in \mathbb{Z}\) inv1_2: \(b \in \mathbb{Z}\)
inv1_3: \(c \in \mathbb{Z}\)

IL_out
begin
\(b:=b-1\) \(c:=c+1\)
end

Concrete invariants are under-specified: only typing constraints.

Exercises: Show that Invariant Preservation is provable, but Guard Strengthening is not.
- Say this alternative \(m_{1}\) is implemented as is:

IL_in and IL_out always enabled and may occur indefinitely, preventing other "old" events (ML_out and ML_in) from ever happening:
\[
\langle\text { init, IL_in, IL_out, IL_in, IL_out, . . . }\rangle
\]

Q: What are the corresponding abstract transitions?
A: 〈init, skip, skip, skip, skip, ...〉
[\(\approx\) executing
while(true);
- We say that these two new events diverge , creating a livelock:
- Different from a deadlock \(\because\) always an event occurring (IL_in or IL_out).
- But their indefinite occurrences contribute nothing useful.

\section*{PO of Convergence of New Events}

The PO/VC rule for non-divergence/livelock freedom consists of two parts:
- Interleaving of new events charactered as an integer expression: variant.
- A variant \(V(c, w)\) may refer to constants and/or concrete variables.
- In the original \(m_{1}\), let's try variants : \(2 \cdot a+b\)
1. Variant Stays Non-Negative
\[
\begin{aligned}
& A(c) \\
& I(c, v) \\
& J(c, v, w) \\
& H(c, w) \\
& \vdash \\
& V(c, w) \in \mathbb{N} \\
& \text { - Variant } V(c, w) \text { measures } \\
& \text { how many more times the new events can occur. } \\
& \text { - If a new event is enabled, then } V(c, w)>0 \text {. } \\
& \text { - When } V(c, w) \text { reaches } 0 \text {, some "old" events } \\
& \text { must happen s.t. } V(c, w) \text { goes back above } 0 \text {. }
\end{aligned}
\]
2. A New Event Occurrence Decreases Variant
```

A(c)
I(c,v)
J(c,v,w)
H(c,w)
\vdash
V(c,F(c,w))<V(c,w)

```

\section*{PO of Convergence of New Events: NAT}
- Recall: PO related to Variant Stays Non-Negative:
\begin{tabular}{|l|}
\hline\(A(c)\) \\
\(I(c, v)\) \\
\(J(c, v, w)\) \\
\(H(c, w)\) \\
\(\vdash\) \\
\(V(c, w) \in \mathbb{N}\)
\end{tabular}\(\quad\) NAT
- For the new event IL_in:

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

\section*{PO of Convergence of New Events: VAR}
- Recall: PO related to A New Event Occurrence Decreases Variant
\begin{tabular}{|l|}
\hline\(A(c)\) \\
\(I(c, v)\) \\
\(J(c, v, w)\) \\
\(H(c, w)\) \\
\(\vdash\) \\
\(V(c, F(c, w))<V(c, w)\) \\
\hline
\end{tabular}

How many sequents to be proved?
VAR
[\# new events]
- For the new event IL_in:
\begin{tabular}{|ll|}
\hline\(d \in \mathbb{N}\) & \(d>0\) \\
\(n \in \mathbb{N}\) & \(n \leq d\) \\
\(a \in \mathbb{N}\) & \(b \in \mathbb{N}\) \\
\(a+b+c=n\) & \(a=0 \vee c=0\) \\
\(a>0\) & \\
\(\vdash\) & \\
\(2 \cdot(a-1)+(b+1)<2 \cdot a+b\) & \\
\hline
\end{tabular}

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

\section*{Convergence of New Events: Exercise}

Given the original \(m_{1}\), what if the following variant expression is used:
variants : \(a+b\)

Are the formulated sequents still provable?

\section*{PO of Refinement: Deadlock Freedom}
- Recall:
- We proved that the initial model \(m_{0}\) is deadlock free (see DLF).
- We proved, according to guard strengthening, that if a concrete event is enabled, then its abstract counterpart is enabled.
- PO of relative deadlock freedom for a refinement model:
\begin{tabular}{|l|l}
\hline\(A(c)\) \\
\(I(c, v)\) \\
\(J(c, v, w)\) \\
\(G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)\) \\
\(\vdash\) \\
\(H_{1}(c, w) \vee \cdots \vee H_{n}(c, w)\)
\end{tabular}\(\quad\)\begin{tabular}{ll}
DLF & (i.e., \(\left.G_{1}(c, v) \vee \cdots \vee G_{m}(c, v)\right)\), then \\
its concrete counterpart does not deadlock \\
\hline
\end{tabular}
- Another way to think of the above PO:

The refinement does not introduce, in the concrete, any "new" deadlock scenarios not existing in the abstract state.

\section*{PO Rule: Relative Deadlock Freedom \(m_{1}\)}

\section*{Example Inference Rules (6)}

To prove a disjunctive goal, it suffices to prove one of the disjuncts, with the the negation of the the other disjunct serving as an additional hypothesis.

To prove a goal with a conjunctive hypothesis, it suffices to prove the same goal, with the the two conjuncts serving as two separate hypotheses.
\(\square\) To prove a goal with a conjunctive goal, it suffices to prove each conjunct as a separate goal.

\section*{Proving Refinement: DLF of \(m_{1}\)}

\section*{\begin{tabular}{|l|l|}
\hline\(d \in \mathbb{N}\) \\
\(d>0\) \\
\(n \in \mathbb{N}\) \\
\(n \leq d\) \\
\(a \in \mathbb{N}\) \\
\(b \in \mathbb{N}\) \\
\(c \in \mathbb{N}\) \\
\(a+b+c=n\) \\
\(a=0 \vee c=0\) \\
\(n<d \vee n>0\) \\
\(\vdash\) & \\
& \(\quad a+b<d \wedge c=0\) \\
\(\vee\) & \(c>0\) \\
\(\vee\) & \(a>0\) \\
\(\vee\) & \(b>0 \wedge a=0\) \\
\hline
\end{tabular}}

MON
\begin{tabular}{|c|c|c|c|}
\hline \(d>0\) & \multirow{10}{*}{OR_R, ARI} & & \multirow{10}{*}{EQ_LR, MON} \\
\hline \(a \in \mathbb{N}\) & & \multirow[t]{4}{*}{\[
\begin{aligned}
& d>0 \\
& a \in \mathbb{N} \\
& b \in \mathbb{N} \\
& c=0
\end{aligned}
\]} & \\
\hline \(b \in \mathbb{N}\) & & & \\
\hline \(c \in \mathbb{N}\) & & & \\
\hline \(c \in N\) & & & \\
\hline \(a+b<d \wedge c=0\) & & & \\
\hline \(\checkmark \quad c>0\) & & \(a+b<d \wedge c=0\) & \\
\hline \(\checkmark \quad a>0\) & & \(\checkmark \quad c>0\) & \\
\hline \(\vee b>0 \wedge a=0\) & & \(\checkmark \quad a>0\) & \\
\hline \(\checkmark b>0 \wedge a=0\) & & \(\checkmark b>0 \wedge a=0\) & \\
\hline
\end{tabular}

OR_R
ARI

EQ_LR \(\square\) ARI
\(d>0\) \(b=0 \vee b>0\)
MON

\section*{Proving Refinement: DLF of \(m_{1}\) (continued)}

\section*{First Refinement: Summary}
- The final version of our first refinement \(m_{1}\) is provably correct w.r.t.:
- Establishment of Concrete Invariants
- Preservation of Concrete Invariants
- Strengthening of guards
[old \& new events] [old events]
- Convergence (a.k.a. livelock freedom, non-divergence) [new events]
- Relative Deadlock Freedom
- Here is the final specification of \(m_{1}\) :

\section*{Model \(m_{2}\) : "More Concrete" Abstraction}
- 2nd refinement has even more concrete perception of the bridge controller: - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:
\(m I_{-} t l\) : a traffic light for exiting the ML il_tl: a traffic light for exiting the IL abstract variables \(a, b, c\) from \(m_{1}\) still used (instead of being replaced)

- Nonetheless, sensors remain abstracted away!
- That is, we focus on these three environment constraints:
\begin{tabular}{|c|l|}
\hline ENV1 & The system is equipped with two traffic lights with two colors: green and red. \\
\hline \hline ENV2 & The traffic lights control the entrance to the bridge at both ends of it. \\
\hline ENV3 & Cars are not supposed to pass on a red traffic light, only on a green one. \\
\hline
\end{tabular}
- We are obliged to prove this added concreteness is consistent with \(m_{1}\).

\section*{Model \(m_{2}\) : Refined, Concrete State Space}
1. The static part introduces the notion of traffic light colours:
```

sets: COLOR constants: red,green

```

\section*{axioms:}
axm2_1 : COLOR \(=\{\) green, red \(\}\) axm2_2: green \(=\) red
2. The dynamic part shows the superposition refinement scheme:

- Abstract variables \(a, b, c\) from \(m_{1}\) are still in use in m_2.
- Two new, concrete variables are introduced: ml_tl and il_tl
- Constrast: In \(m_{1}\), abstract variable \(n\) is replaced by concrete variables \(a, b, c\).

\(\diamond\) inv2_1 \& inv2_2: typing constraints
\(\diamond\) inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
\(\diamond\) inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

\section*{Model \(m_{2}\) : Refining Old, Abstract Events}
- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out:
\begin{tabular}{|l|}
\hline ML_out \\
when \\
?? \\
then \\
\(a:=a+1\) \\
end
\end{tabular}
- Recall the abstract guard of ML_out in \(m_{1}:(c=0) \wedge(a+b<d)\)
\(\Rightarrow\) Unrealistic as drivers should not know about \(a, b, c\) !
- ML_out is refined: a car exits the ML (to the bridge) only when:
- the traffic light ml_tl allows
- Concrete/Refined version of event IL_out:
\begin{tabular}{|l|}
\hline IL_out \\
when \\
?? \\
then \\
\(b:=b-1\) \\
\(c:=c+1\) \\
end
\end{tabular}
- Recall the abstract guard of IL_out in \(m_{1}:(a=0) \wedge(b>0)\)
\(\Rightarrow\) Unrealistic as drivers should not know about \(a, b, c\) !
- IL_out is refined: a car exits the IL (to the bridge) only when:
- the traffic light il_tl allows

Q1. How about the other two "old" events IL_in and ML_in?
A1. No need to refine as already guarded by ML_out and IL_out.
Q2. What if the driver disobeys \(m l_{-} t l\) or \(i l_{-} t l\) ?
[A2. ENV3]

\section*{Model \(m_{2}\) : New, Concrete Events}
- The system acts as an Abstract State Machine (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered events already existing in \(m_{1}\) :
- ML_out \& IL_out
- IL_in \& ML_in
- New event ML_tl_green:
```

ML_tl_green
when
??
then
ml_tl := green
end

```
- ML_tl_green denotes the traffic light \(m l_{-} t \mathrm{t}\) turning green.
- ML_tl_green enabled only when:
- the traffic light not already green
- limited number of cars on the bridge and the island
- No opposite traffic
\[
\text { [} \Rightarrow \text { ML_out's abstract guard in } m_{1} \text {] }
\]
- New event IL_tl_green:
IL_tl_green
when
??
then
il_tl \(:=\) green
end
- IL_tl_green denotes the traffic light il_tl turning green.
- IL_tl_green enabled only when:
- the traffic light not already green
- some cars on the island (i.e., island not empty)
- No opposite traffic
\[
\text { [} \Rightarrow \text { IL_out's abstract guard in } m_{1} \text {] }
\]

\section*{Invariant Preservation in Refinement \(m_{2}\)}

Recall the PO/VC Rule of Invariant Preservation for Refinement:
\begin{tabular}{|l|}
\begin{tabular}{|l|}
\hline\(A(c)\) \\
\(I(c, v)\) \\
\(J(c, v, w)\) \\
\(H(c, w)\) \\
\(\vdash\) \\
\(J_{i}(c, E(c, v), F(c, w))\)
\end{tabular} \\
\end{tabular}\(\quad\) INV \(\quad\) where \(J_{i}\) denotes a single concrete invariant
- How many sequents to be proved? [\# concrete evts \(\times\) \# concrete invariants \(=6 \times 4\)]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.

\section*{INV PO of \(m_{2}\) : ML out/inv2_4/INV}

\section*{INV PO of \(m_{2}\) : IL out/inv2 3/INV}

\section*{Example Inference Rules (7)}
\(H, P, Q \vdash R\)
\[
H, P, P \Rightarrow Q \vdash R
\]

If a hypothesis \(P\) matches the assumption of another implicative hypothesis \(P \Rightarrow Q\), then the conclusion \(Q\) of the implicative hypothesis can be used as a new hypothesis for the sequent.
\[
H, P \vdash Q
\]

IMP_R
To prove an implicative goal \(P \Rightarrow Q\), it suffices to prove its conclusion \(Q\),
\[
H \vdash P \Rightarrow Q
\] with its assumption \(P\) serving as a new hypotheses.

To prove a goal \(Q\) with a negative hypothesis \(\neg P\),
it suffices to prove the negated hypothesis \(\neg(\neg P) \equiv P\) with the negated original goal \(\neg Q\) serving as a new hypothesis.

\section*{Proving ML_out/inv2 4/INV: First Attempt}
\(d \in \mathbb{N}\)
\(d>0\)
\(C O L O U R=\{\) green, red \(\}\)
green \(=\) red
\(n \in \mathbb{N}\)
\(n \leq d\)
\(a \in \mathbb{N}\)
\(b \in \mathbb{N}\)
\(c \in \mathbb{N}\)
\(a+b+c=n\)
\(a=0 \vee c=0\)
\(m l_{-} t l \in\) COLOUR
il_t \(l \in\) COLOUR
\(m I_{-} t l=\) green \(\Rightarrow a+b<d \wedge c=0\) \(i l_{t} t l=\) green \(\Rightarrow b>0 \wedge a=0\)
\(m l_{-} t /=\) green
\(i l_{-} t l=\) green \(\Rightarrow b>0 \wedge(a+1)=0\)

\section*{MON}

\section*{Proving IL_out/inv2 3/INV: First Attempt}
\(d \in \mathbb{N}\)
COLOUR \(=\{\) green, red \(\}\)
green \(=\) red
\(n \in \mathbb{N}\)
\(n \leq d\)
\(a \in \mathbb{N}\)
\(b \in \mathbb{N}\)
\(c \in \mathbb{N}\)
\(a+b+c=n\)
\(a=0 \vee c=0\)
\(m I_{-} t l \in\) COLOUR
il_t \(l \in\) COLOUR
\(m l_{-} t l=\) green \(\Rightarrow a+b<d \wedge c=0\)
\(i l_{-} t l=\) green \(\Rightarrow b>0 \wedge a=0\)
il_tl = green
\(m I_{-} t l=\) green \(\Rightarrow a+(b-1)<d \wedge(c+1)=0\)

\section*{MON}
green \(=\) red
\(m I_{-} t l=\) green \(\Rightarrow a+b<d \wedge c=0\)
\(i I_{-} t l=\) green
\(m l_{-} t l=\) green \(\Rightarrow a+(b-1)<d \wedge(c+1)=0\)

\section*{IMP_R}

\section*{Failed: ML out/inv2_4/INV, IL out/inv2 3/INV}
- Our first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both failed the 2nd case (resulted from applying IR AND_R):
\[
\text { green } \neq \text { red } \wedge i l_{-} t l=\text { green } \wedge m l_{-} t l=\text { green } \vdash 1=0
\]
- This unprovable sequent gave us a good hint:
- Goal \(1=0 \equiv\) false suggests that the safety requirements \(a=0\) (for inv2_4) and \(c=0\) (for inv2_3) contradict with the current \(m_{2}\).
- Hyp. il_tl = green = ml_tl suggests a possible, dangerous state of \(m_{2}\), where two cars heading different directions are on the one-way bridge:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underbrace{\text { init }}\) & ML_tl_green & \(\underbrace{\text { ML_out }}\) & \(\underbrace{\text { IL_in }}\) & IL_tl_green & \(\underbrace{\text { IL_out }}\) & \(\underbrace{\text { ML_out }}\) \\
\hline \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) \\
\hline \(a^{\prime}=0\) & \(a^{\prime}=0\) & \(\mathrm{a}^{\prime}=1\) & \(\mathrm{a}^{\prime}=0\) & \(a^{\prime}=0\) & \(a^{\prime}=0\) & \(\mathrm{a}^{\prime}=1\) \\
\hline \(b^{\prime}=0\) & \(b^{\prime}=0\) & \(b^{\prime}=0\) & \(\mathrm{b}^{\prime}=1\) & \(b^{\prime}=1\) & \(\mathrm{b}^{\prime}=0\) & \(b^{\prime}=0\) \\
\hline \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=1\) & \(c^{\prime}=1\) \\
\hline ml_tl' \(=\) red & ml_tl' = green & \(m l_{\text {_t }}{ }^{\prime}=\) green & \(m l_{\text {_t }} l^{\prime}=\) green & \(m l_{-} l^{\prime}=\) green & ml_tl \({ }^{\prime}=\) green & \(m l_{\text {_t }} l^{\prime}=\) green \\
\hline \(i l_{-} t l^{\prime}=\) red & il_tl' \(=\) red & il_tt \({ }^{\prime}=\) red & il_tl' \(=\) red & il_tl' = green & il_tl' \(=\) green & il_tl' \(=\) green \\
\hline
\end{tabular}

\section*{Fixing \(m_{2}\) : Adding an Invariant}
- Having understood the failed proofs, we add a proper invariant to \(m_{2}\) :

\section*{invariants:}
\[
\text { inv2_5 : ml_tl = red } \vee \text { il_tl = red }
\]
- We have effectively resulted in an improved \(m_{2}\) more faithful w.r.t. REQ3:
\begin{tabular}{|l|l|}
\hline REQ3 & The bridge is one-way or the other, not both at the same time. \\
\hline
\end{tabular}
- Having added this new invariant inv2_5:
- Original \(6 \times 4\) generated sequents to be updated: inv2_5 a new hypothesis e.g., Are ML_out/inv2_4/INV and IL_out/inv2_3/INV now provable?
- Additional \(6 \times 1\) sequents to be generated due to this new invariant e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?

\section*{INV PO of \(m_{2}\) : ML out/inv2_4/INV - Updated}
\begin{tabular}{|c|c|}
\hline axm0_1 & \(\{d \in \mathbb{N}\) \\
\hline axm0_2 & \(\{d>0\) \\
\hline axm2_1 & \{ COLOUR \(=\) \{ green, red \(\}\) \\
\hline axm2_2 & \{ green \(=\) red \\
\hline inv0_1 & \(\{n \in \mathbb{N}\) \\
\hline inv0.2 & \(\{n \leq d\) \\
\hline inv1-1 & \(\{a \in \mathbb{N}\) \\
\hline inv1_2 & \(b \in \mathbb{N}\) \\
\hline inv1_3 & \(c \in \mathbb{N}\) \\
\hline inv1-4 & \(a+b+c=n\) \\
\hline inv1_5 & a \(=0 \vee c=0\) \\
\hline inv2.1 & \{ ml_tl COLOUR \\
\hline inv2_2 & \(i l_{-} t t \in\) COLOUR \\
\hline inv2_3 & \(\{\mathrm{ml}\) _tl \(=\) green \(\Rightarrow a+b<d \wedge c=0\) \\
\hline inv2_4 & il_tl \(=\) green \(\Rightarrow b>0 \wedge a=0\) \\
\hline inv2.5 & \(\left\{\mathrm{ml}\right.\) _t \(=\) red \(\vee i l_{\text {_ }} t \mathrm{l}=\) red \\
\hline Concrete guards of ML_out & \(m l_{-} t l=\) green \\
\hline & \(\vdash\) \\
\hline Concrete invariant inv2_4 out's effect in the post-state & \(\left\{i l_{_} t l=\right.\) green \(\Rightarrow b>0 \wedge(a+1)=0\) \\
\hline
\end{tabular}

\section*{ML_out/inv2_4/INV}

\section*{INV PO of \(m_{2}\) : IL_out/inv2 3/INV - Updated}
```

axm0.1 $\{d \in \mathbb{N}$
axm0_2 $\{d>0$
axm2_1 COLOUR $=\{$ green, red $\}$
axm2_2 \{ green $\neq$ red
inv0.1 $\{n \in \mathbb{N}$
inv0_2 $n \leq d$
inv1_1 $a \in \mathbb{N}$
inv1_2 $b \in \mathbb{N}$
inv1_3 $\{c \in \mathbb{N}$
inv1_4 $\{a+b+c=n$
inv1_5 $a=0 \vee c=0$
inv2_1 \{ ml_tl $\in$ COLOUR
inv2_2 \{il_tl $\in$ COLOUR
inv2.3 $m l_{-} t l=$ green $\Rightarrow a+b<d \wedge c=0$
inv2_4 $\left\{i l_{-} t l=\right.$ green $\Rightarrow b>0 \wedge a=0$
inv2_5 \{ $m l_{-} t l=r e d \vee i l_{-} t l=r e d$
Concrete guards of IL_out $\quad$ il_tl = green

```

Concrete invariant inv2_3
with ML_out's effect in the post-state

IL_out/inv2_3/INV

\section*{Proving ML out/inv2_4/INV: Second Attempt}
\begin{tabular}{|c|}
\hline \multirow[t]{19}{*}{} \\
\hline \\
\hline
\end{tabular}

MON
green \(₹\) red
\(i_{1}\). \(t=\) green \(\Rightarrow b>0 \wedge a=0\)
\(m l_{-1} t=\) red \(\vee i i, t t=\) red
\(m l_{-} t l=\) green
\(i_{-} t l=\) green \(\Rightarrow b>0 \wedge(a+1)=0\)
IMP_R

\section*{Proving IL_out/inv2_3/INV: Second Attempt}
\begin{tabular}{|c|}
\hline \\
\hline MON \\
\hline ```
green \(=\) red
\(m \| t i=\) green \(\Rightarrow a+b<d \wedge c=0\)
\(m l_{-\Delta t}=\operatorname{ced} \sim\| \|_{-\Delta t}=\) red
\(i i_{-} t l=\) green
\(m)_{-} t i=\) green \(\Rightarrow a+(b-1)<d \wedge(c+1)=0\)
``` \\
\hline
\end{tabular}


\section*{Fixing \(m_{2}\) : Adding Actions}
- Recall that an invariant was added to \(m_{2}\) :
```

invariants:
inv2_5 : ml_tl = red v il_tl = red

```
- Additional \(6 \times 1\) sequents to be generated due to this new invariant:
- e.g., ML_tl_green/inv2_5/INV
[ for ML_tl_green to preserve inv2_5]
- e.g., IL_tl_green/inv2_5/INV [ for IL_tl_green to preserve inv2_5 ]
- For the above sequents to be provable, we need to revise the two events:
\begin{tabular}{|l|}
\hline ML_tl_green \\
when \\
\(m I_{\_} t l=r e d\) \\
\(a+b<d\) \\
\(c=0\) \\
then \\
\(m I_{t l}:=\) green \\
il_tl:= red \\
end
\end{tabular}
IL_tl_green
when
il_tl \(=\) red
\(b>0\)
\(a=0\)
then
il_tl := green
ml_tl : \(=\) red
end

Exercise: Specify and prove ML_tl_green/inv2_5/INV \& IL_tl_green/inv2_5/INV.

\section*{INV PO of \(m_{2}\) : ML out/inv23/INV}
```

axm0_1 $\{d \in \mathbb{N}$
axm0_2 $\{d>0$
axm2_1 COLOUR $=\{$ green, red $\}$
axm2_2 \{ green $=$ red
inv0_1 $\{n \in \mathbb{N}$
inv0_2 $n \leq d$
inv1_1 $a \in \mathbb{N}$
inv1_2 $b \in \mathbb{N}$
inv1_3 $\{c \in \mathbb{N}$
inv1_4 $a+b+c=n$
inv1_5 $a=0 \vee c=0$
inv2_1 \{ ml_tl \in COLOUR
inv2_2 il_tl \in COLOUR
inv2_3 $m l_{-} t l=$ green $\Rightarrow a+b<d \wedge c=0$
inv2_4 $\{$ il_tl $=$ green $\Rightarrow b>0 \wedge a=0$
inv2_5 \{ ml_tl $=$ red \vee il_tl $=$ red
Concrete guards of ML_out $\quad \mathrm{ml} l_{-} \mathrm{tl}=$ green
\vdash
$m l_{-} t l=$ green $\Rightarrow(a+1)+b<d \wedge c=0$

```

\section*{Proving ML out/inv2 3/INV: First Attempt}
\(d \in \mathbb{N}\)
\(d>0\)
COLOUR \(=\{\) green, red \(\}\)
green \(\neq\) red
\(n \in \mathbb{N}\)
\(n \leq d\)
\(a \in \mathbb{N}\)
\(b \in \mathbb{N}\)
\(c \in \mathbb{N}\)
\(a+b+c=n\)
\(a=0 \vee c=0\)
ml_tl \(\in\) COLOUR
il_t \(t \in\) COLOUR
\(m l_{-} t l=\) green \(\Rightarrow a+b<d \wedge c=0\)
il_tl \(=\) green \(\Rightarrow b>0 \wedge a=0\)
\(m I_{-} t l=r e d \vee i l_{-} t l=r e d\)
ml _t \(=\) green
\(+\)
\(m I_{-} t l=\) green \(\Rightarrow(a+1)+b<d \wedge c=0\)
MON


\section*{Failed: ML out/inv2 3/INV}
- Our first attempt of proving ML_out/inv2_3/INV failed the 1st case (resulted from applying IR AND_R):
\[
a+b<d \wedge c=0 \wedge m l_{-} t l=\text { green } \vdash(a+1)+b<d
\]
- This unprovable sequent gave us a good hint:
- Goal \((\underbrace{a+1})+\underbrace{b}<d\) specifies the capacity requirement.
- Hypothesis \(c=0 \wedge m l_{-} t l=\) green assumes that it's safe to exit the ML.
- Hypothesis \(a+b<d\) is not strong enough to entail \((a+1)+b<d\).
e.g., \(d=3, b=0, a=0\)
\([(a+1)+b<d\) evaluates to true ]
e.g., \(d=3, b=1, a=0\)
[ \((a+1)+b<d\) evaluates to true ]
e.g., \(d=3, b=0, a=1\)
\([(a+1)+b<d\) evaluates to true ]
e.g., \(d=3, b=0, a=2\)
\([(a+1)+b<d\) evaluates to false ]
e.g., \(d=3, b=1, a=1\)
e.g., \(d=3, b=2, a=0\)
[ \((a+1)+b<d\) evaluates to false ]
[ \((a+1)+b<d\) evaluates to false ]
- Therefore, \(a+b<d\) (allowing one more car to exit ML) should be split:
\(a+b+1 \neq d\)

\section*{Fixing \(m_{2}\) : Splitting ML_out and IL_out}
- Recall that ML_out/inv2_3/INV failed \(\because\) two cases not handled separately:
\[
\begin{aligned}
& a+b+1=d \\
& a+b+1=d
\end{aligned}
\] [ more later cars may exit ML, ml_tl remains green ] [ no more later cars may exit ML, ml_tl turns red ]
- Similarly, IL_out/inv2_4/INV would fail \(\because\) two cases not handled separately:
\[
\begin{aligned}
& b-1 \neq 0 \\
& b-1=0
\end{aligned}
\]
[ more later cars may exit IL, il_tI remains green ]
[ no more later cars may exit IL, il_tl turns red ]
- Accordingly, we split ML_out and IL_out into two with corresponding guards.
```

ML_out_1
when
ml_tl = green
a+b+1 =d
then
a:= a+1
end

```
```

ML_out_2
when
ml_tl = green
a+b+1=d
then
a:=a+1
ml_tl:= red
end

```
```

IL_out_1
when
il_tl = green
b}=
then
b:= b-1
c:=c+1
end

```
```

IL_out_2
when
il_tl = green
b=1
then
b:= b-1
c:=c+1
il_tl:= red
end

```

Exercise: Specify and prove ML_out/inv2_3/INV \& IL_out/inv2_4/INV.
Exercise: Given the latest \(m_{2}\), how many sequents to prove for invariant preservation?
Exercise: Each split event (e.g., ML_out_1) refines its abstract counterpart (e.g., ML_out)?

\section*{\(m_{2}\) Livelocks: New Events Diverging}
- Recall that a system may livelock if the new events diverge.
- Current \(m_{2}\) 's two new events ML_tl_green and IL_tI_green may diverge :
```

ML_tl_green
when
ml_tl = red
a+b<d
c=0
then
ml_tl := green
il_tl:= red
end

```
IL_tl_green
    when
        il_tl = red
        \(b>0\)
        \(a=0\)
    then
        il_tl := green
        \(m l_{-} t\) := red
    end
- ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline init & ML_tl_green & ML_out_1 & IL_in & IL_tl_green & ML_tl_green & IL_tl_green \\
\hline \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) & \(d=2\) \\
\hline \(a^{\prime}=0\) & \(a^{\prime}=0\) & \(a^{\prime}=1\) & \(a^{\prime}=0\) & \(a^{\prime}=0\) & \(a^{\prime}=0\) & \(a^{\prime}=0\) \\
\hline \(b^{\prime}=0\) & \(b^{\prime}=0\) & \(b^{\prime}=0\) & \(b^{\prime}=1\) & \(b^{\prime}=1\) & \(b^{\prime}=1\) & \(b^{\prime}=1\) \\
\hline \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) & \(c^{\prime}=0\) \\
\hline \(m l_{-}+t=r e d\) & ml_tl \({ }^{\prime}=\) green & \(m l . t t l^{\prime}=\) green & ml_tl' \(=\) green & \(m l_{\text {_t }} l^{\prime}=\) red & mı_tl' \(=\) green & \(m l_{\text {ctil }}=\) red \\
\hline il_tl = red & il_tt \(=\) red & il_tl' = red & il_tt' = red & il_tl' \(=\) green & il_tt' \(=\) red & il_tı' \(=\) green \\
\hline
\end{tabular}
\(\Rightarrow\) Two traffic lights keep changing colors so rapidly that no drivers can ever pass!
- Solution: Allow color changes between traffic lights in a disciplined way.

\section*{Fixing \(m_{2}\) : Regulating Traffic Light Changes}

We introduce two variables/flags for regulating traffic light changes:
- ml_pass is \(1 \underline{\text { if }}\), since \(m l / t l\) was last turned green, at least one car exited the ML onto the bridge. Otherwise, ml_pass is 0 .
- il_pass is \(1 \underline{\mathrm{if}}\), since il_tl was last turned green, at least one car exited the IL onto the bridge. Otherwise, il_pass is 0 .
```

variables: ml_pass,il_pass

```

\section*{invariants:}
inv2_6: ml_pass \(\in\{0,1\}\)
inv2_7: il_pass \(\in\{0,1\}\)
inv2_8: ml_tl = red \(\Rightarrow\) ml_pass = 1 inv2_9 : il_tl = red \(\Rightarrow\) il_pass = 1
```

ML_out_1
when
ml_tl = green
a+b+1 =d
then
a:= a+1
ml_pass := 1
end

```
```

ML_out_2

```
    when
        ml_tl = green
        \(a+b+1=d\)
    then
        \(a:=a+1\)
        ml_tl:= red
        ml_pass : \(=1\)
    end

IL_out_1
when il_tl \(=\) green \(b \neq 1\)

\section*{then} \(b:=b-1\) \(c:=c+1\) il_pass := 1
end
```

IL_out_2
when
il_tl = green
b=1
then
b:= b-1
c:=c+1
il_tl:= red
il_pass:= 1
end

```

ML_tI_green
when \(m l_{-} t l=r e d\)
\(a+b<d\)
\(c=0\)
il_pass \(=1\)
then
\(m l_{-} t l_{\text {: }}\) green
il_tl := red
ml_pass:= 0
end

\section*{IL_tl_green} when
il_tl = red
\(b>0\)
\(a=0\)
ml_pass = 1
then
il_tl := green
ml_tl := red
il_pass := 0

\section*{Fixing \(m_{2}\) : Measuring Traffic Light Changes}
- Recall:
- Interleaving of new events charactered as an integer expression: variant.
- A variant \(V(c, w)\) may refer to constants and/or concrete variables.
- In the latest \(m_{2}\), let's try variants : ml_pass + il_pass
- Accordingly, for the new event ML_tl_green:
\begin{tabular}{|c|c|c|c|}
\hline \(d \in \mathbb{N}\) & \(d>0\) & & \\
\hline COLOUR \(=\) \{ green, red \(\}\) & green \(=\) red & & \\
\hline \(n \in \mathbb{N}\) & \(n \leq d\) & & \\
\hline \(a \in \mathbb{N}\) & \(b \in \mathbb{N}\) & \(c \in \mathbb{N}\) & \\
\hline \(a+b+c=n\) & \(a=0 \vee c=0\) & & \\
\hline \(m l_{-} t l \in\) COLOUR & \(i l \_t l \in\) COLOUR & & \\
\hline \[
\begin{aligned}
& m l_{-} t l=\text { green } \Rightarrow a+b<d \wedge c=0 \\
& m l_{-} t l=r e d \vee i l_{-} t l=\text { red }
\end{aligned}
\] & il_tl \(=\) green \(\Rightarrow b>0 \wedge a=0\) & & ML_tl_green/VAR \\
\hline \(m \mathrm{l}\)-pass \(\in\{0,1\}\) & il_pass \(\in\{0,1\}\) & & \\
\hline \(m l_{-} t l=r e d \Rightarrow m l \_p a s s=1\) & \(i l_{-} t l=r e d \Rightarrow i l \_p a s s=1\) & & \\
\hline \(m l_{-} t l=r e d\) & \(a+b<d\) & \(c=0\) & \\
\hline il_pass = 1 & & & \\
\hline \(\vdash\) & & & \\
\hline 0 + il_pass < ml_pass + il_pass & & & \\
\hline
\end{tabular}

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/VAR.

\section*{PO Rule: Relative Deadlock Freedom of \(m_{2}\)}


\section*{Proving Refinement: DLF of \(m_{2}\)}
```

d\in\mathbb{N}
COLOUR = {green,red }
green = red
n\in\mathbb{N}
n\leqd
a\in\mathbb{N}
b\in\mathbb{N}
c\in\mathbb{N}
a+b+c=n
a=0\veec=0
ml_tl \in COLOUR
Il_tt \in COLOUR
m/_tl = green }=>a+b<d\wedgec=
il_tl= green }=>b>0\wedgea=
ml_tl= red v il_tl = red
ml_pass \in {0,1}
il_pass \in{0,1}
ml_tl=red }=>m|_\mathrm{ pass = 1
i__tl = red => il_pass = 1
a+b<d\wedgec=0
c>0
\vee a>0
\veeb>0\wedgea=0
ml_tl=red}\wedgea+b<d\wedgec=0\wedgeil_pass=
\vee il_tl=red}\wedgeb>0\wedgea=0\wedgeml_pass = 1
v m/_tl=green
v il_tl = green
\vee a>0
v c>0

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(d>0\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(b \in \mathbb{N}\)} \\
\hline \multicolumn{2}{|l|}{\(m l_{-} t l=\) red} \\
\hline \multicolumn{2}{|l|}{il_tl \(=\) red} \\
\hline \multicolumn{2}{|l|}{\(m l_{-} t /=r e d \Rightarrow m l_{-}\)pass \(=1\)} \\
\hline \multicolumn{2}{|l|}{iI_tl \(=\) red \(\Rightarrow\) il_pass \(=1\)} \\
\hline \multicolumn{2}{|l|}{\(\vdash\)} \\
\hline & \(b<d \wedge m l_{\text {_pass }}=1 \wedge\) il_pass \(=1\) \\
\hline & \(\checkmark b>0 \wedge m l_{\text {_pass }}=1 \wedge\) il_pass \(=1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(d \in \mathbb{N}\)} \\
\hline \multicolumn{2}{|l|}{\(d>0\)} \\
\hline \multicolumn{2}{|l|}{\(b \in \mathbb{N}\)} \\
\hline \multicolumn{2}{|l|}{\(m l_{-} t l=\) red} \\
\hline \multicolumn{2}{|l|}{\(i I_{\text {_ }}\) l \(=\) red} \\
\hline \multicolumn{2}{|l|}{ml_pass \(=1\)} \\
\hline \multicolumn{2}{|l|}{il_pass = 1} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline & \(b<d \wedge\) \\
\hline & \(b>0 \wedge\) \\
\hline
\end{tabular}


\section*{Second Refinement: Summary}
- The final version of our second refinement \(m_{2}\) is provably correct w.r.t.:
- Establishment of Concrete Invariants
- Preservation of Concrete Invariants
- Strengthening of guards
- Convergence (a.k.a. livelock freedom, non-divergence)
- Relative Deadlock Freedom
- Here is the final specification of \(m_{2}\) :


\section*{Index (1)}

\section*{Learning Outcomes}

\section*{Recall: Correct by Construction}

\section*{State Space of a Model}

Roadmap of this Module
Requirements Document: Mainland, Island
Requirements Document: E-Descriptions
Requirements Document: R-Descriptions

\section*{Requirements Document: \\ Visual Summary of Equipment Pieces}

\section*{Refinement Strategy}

Model \(m_{0}\) : Abstraction

\section*{Index (2)}

Model \(m_{0}\) : State Space
Model \(m_{0}\) : State Transitions via Events
Model \(m_{0}\) : Actions vs. Before-After Predicates
Design of Events: Invariant Preservation
Sequents: Syntax and Semantics
PO of Invariant Preservation: Sketch
PO of Invariant Preservation: Components
Rule of Invariant Preservation: Sequents
Inference Rules: Syntax and Semantics
Proof of Sequent: Steps and Structure
Example Inference Rules (1)

\section*{Index (3)}

Example Inference Rules (2)
Example Inference Rules (3)
Revisiting Design of Events: ML_out
Revisiting Design of Events: ML_in
Fixing the Design of Events
Revisiting Fixed Design of Events: ML_out
Revisiting Fixed Design of Events: ML_in
Initializing the Abstract System \(m_{0}\)
PO of Invariant Establishment
Discharging PO of Invariant Establishment
System Property: Deadlock Freedom

\section*{Index (4)}

PO of Deadlock Freedom (1)
PO of Deadlock Freedom (2)
Example Inference Rules (4)
Example Inference Rules (5)
Discharging PO of DLF: Exercise
Discharging PO of DLF: First Attempt
Why Did the DLF PO Fail to Discharge?
Fixing the Context of Initial Model
Discharging PO of DLF: Second Attempt
Initial Model: Summary
Model \(m_{1}\) : "More Concrete" Abstraction
117 of 124

\section*{Index (5)}

Model \(m_{1}\) : Refined State Space
Model \(m_{1}\) : State Transitions via Events
Model \(m_{1}\) : Actions vs. Before-After Predicates
States \& Invariants: Abstract vs. Concrete
Events: Abstract vs. Concrete
PO of Refinement: Components (1)
PO of Refinement: Components (2)
PO of Refinement: Components (3)
Sketching PO of Refinement
Refinement Rule: Guard Strengthening
PO Rule: Guard Strengthening of \(M L\) _out

\section*{Index (6)}

PO Rule: Guard Strengthening of ML_in
Proving Refinement: ML_out/GRD
Proving Refinement: ML_in/GRD
Refinement Rule: Invariant Preservation
Visualizing Inv. Preservation in Refinement
INV PO of \(m_{1}\) : ML_out/inv1_4/INV
INV PO of \(m_{1}\) : ML_in/inv1_5/INV
Proving Refinement: ML_out/inv1_4/INV
Proving Refinement: ML_in/inv1 5/INV
Initializing the Refined System \(m_{1}\)
PO of \(m_{1}\) Concrete Invariant Establishment

\section*{Index (7)}

Discharging PO of \(m_{1}\)
Concrete Invariant Establishment
Model \(m_{1}\) : New, Concrete Events
Model \(m_{1}\) : BA Predicates of Multiple Actions
Visualizing Inv. Preservation in Refinement
Refinement Rule: Invariant Preservation
INV PO of \(m_{1}\) : IL_in/inv1_4/INV
INV PO of \(m_{1}\) : IL_in/inv1_5/INV
Proving Refinement: IL_in/inv1_4/INV
Proving Refinement: IL_in/inv1_5/INV
Livelock Caused by New Events Diverging

\section*{Index (8)}

PO of Convergence of New Events
PO of Convergence of New Events: NAT
PO of Convergence of New Events: VAR
Convergence of New Events: Exercise
PO of Refinement: Deadlock Freedom
PO Rule: Relative Deadlock Freedom of \(m_{1}\)
Example Inference Rules (6)
Proving Refinement: DLF of \(m_{1}\)
Proving Refinement: DLF of \(m_{1}\) (continued)
First Refinement: Summary
Model \(m_{2}\) : "More Concrete" Abstraction
121 of 124

\section*{Index (9)}

\title{
Model \(m_{2}\) : Refined, Concrete State Space
}

\section*{Model \(m_{2}\) : Refining Old, Abstract Events}

Model \(m_{2}\) : New, Concrete Events
Invariant Preservation in Refinement \(m_{2}\)
INV PO of \(m_{2}\) : ML_out/inv2_4/INV
INV PO of \(m_{2}\) : IL_out/inv2 3/INV
Example Inference Rules (7)
Proving ML_out/inv2_4/INV: First Attempt
Proving IL_out/inv2_3/INV: First Attempt

\section*{Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV}

Fixing \(m_{2}\) : Adding an Invariant

\section*{Index (10)}

INV PO of \(m_{2}\) : ML out/inv2_4/INV - Updated
INV PO of \(m_{2}\) : IL out/inv2 3/INV - Updated
Proving ML_out/inv2_4/INV: Second Attempt
Proving IL_out/inv2_3/INV: Second Attempt
Fixing \(m_{2}\) : Adding Actions
INV PO of \(m_{2}\) : ML_out/inv2_3/INV
Proving ML_out/inv2_3/INV: First Attempt
Failed: ML_out/inv2_3/INV
Fixing \(m_{2}\) : Splitting ML_out and IL_out
\(m_{2}\) Livelocks: New Events Diverging
Fixing \(m_{2}\) : Regulating Traffic Light Changes

\section*{Index (11)}

Fixing \(m_{2}\) : Measuring Traffic Light Changes
PO Rule: Relative Deadlock Freedom of \(m_{2}\)
Proving Refinement: DLF of \(m_{2}\)
Second Refinement: Summary```

