Review of Math

MEB: Chapter 9

EECS3342 Z: System Specification and Refinement Winter 2022

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you **review**:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Unary logical operator: negation (¬)

p	$\neg p$
true	false
false	true

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

LASSONDE SCHOOL OF ENGINEERING

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - We call *p* the antecedent, assumption, or premise.
 - We call q the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - ∘ antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
 - \circ consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - \circ honoured if the obligations fulfilled. [(true \Rightarrow true) \iff true]
 - \circ breached if the obligations violated. [(true \Rightarrow false) \iff false]
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$:

- ∘ *q* if *p*
 - g is true if p is true
- \circ p only if q

If p is *true*, then for $p \Rightarrow q$ to be *true*, it can only be that q is also *true*. Otherwise, if p is *true* but q is *false*, then $(true \Rightarrow false) \equiv false$.

Note. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"):

p if q

 $[q \Rightarrow p]$

• p only if q

 $[p \Rightarrow q]$

∘ p is sufficient for q

For *q* to be *true*, it is sufficient to have *p* being *true*.

q is necessary for p

[similar to p only if q]

If p is true, then it is necessarily the case that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

a unless ¬p

[When is $p \Rightarrow q true?$]

If q is true, then $p \Rightarrow q$ true regardless of p.

If q is *false*, then $p \Rightarrow q$ cannot be *true* unless p is *false*.

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- **Inverse**: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- Converse: $q \Rightarrow p$ [swap antecedent and consequence]
- **Contrapositive**: $\neg q \Rightarrow \neg p$ [inverse of converse]

Propositional Logic (2)

• **Axiom**: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

• **Theorem**: Identity of ⇒

$$true \Rightarrow p \equiv p$$

• **Theorem**: Zero of ⇒

$$false \Rightarrow p \equiv true$$

Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - \circ \mathbb{Z} : the set of integers $[-\infty, ..., -1, 0, 1, ..., +\infty]$ \circ \mathbb{N} : the set of natural numbers $[0, 1, ..., +\infty]$
- Variable(s) in a predicate may be quantified:
 - Universal quantification:
 All values that a variable may take satisfy certain property.
 e.g., Given that i is a natural number, i is always non-negative.
 - Existential quantification:
 Some value that a variable may take satisfies certain property.
 e.g., Given that i is an integer, i can be negative.

LASSONDE SCHOOL OF ENGINEERING

Predicate Logic (2.1): Universal Q. (∀)

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied.

[true] [false]

 $\forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$

[false]

- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?

• **Hint**. When is $R \Rightarrow P$ **true**?

[$true \Rightarrow true, false \Rightarrow _{-}$]

- Show that for <u>all</u> instances of $x \in X$ s.t. R(x), P(x) holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.
- **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ *false*?

• **Hint.** When is $R \Rightarrow P$ **false**?

[$true \Rightarrow false$]

• Give a **witness/counterexample** of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

Predicate Logic (2.2): Existential Q. (∃)

- An existential quantification has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.

```
\circ \exists i \bullet i \in \mathbb{N} \land i \geq 0
```

[true]

 $\circ \exists i \bullet i \in \mathbb{Z} \land i \geq 0$

[*true*]

 $\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land i < j \lor i > j$

[true]

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is *R* ∧ *P true*?

[true \(\) true \)

- Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
- **2.** How to prove $(\exists X \bullet R \land P)$ *false*?
 - **Hint.** When is $R \wedge P$ **false**?

[true ∧ false, false ∧ _]

- Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1.
 Integer 1 (a witness/counterexample) in the range between 1 and 10 is not greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
 Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are not greater than 10.

Predicate Logic (4): Switching Quantification Sonde

Conversions between ∀ and ∃:

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P)$$
$$(\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

LASSONDE SCHOOL OF ENGINEERING

Sets: Definitions and Membership

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - o Order in which elements are arranged does not matter.
 - o An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.
 - e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
- An empty set (denoted as {} or ∅) has no members.
- We may check if an element is a *member* of a set:

e.g.,
$$5 \in \{1,3,5,7,9\}$$

e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$

[true] [true]

• The number of elements in a set is called its *cardinality*.

e.g.,
$$|\emptyset| = 0$$
, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a **subset** of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$$

• S_1 and S_2 are **equal** iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a **proper subset** of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

? \subseteq S always holds	$[\varnothing \text{ and } S]$
? ⊂ S always fails	[8]
? $\subset S$ holds for some S and fails for some S	[Ø]
$S_1 = S_2 \Rightarrow S_1 \subseteq S_2$?	[Yes]
$S_1 \subseteq S_2 \Rightarrow S_1 = S_2$?	[No]

Set Operations

Given two sets S_1 and S_2 :

• *Union* of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

 Difference of S₁ and S₂ is a set whose members are in S₁ but not S₂.

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

Power Sets

The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

$$\mathbb{P}(S) = \{ s \mid s \subseteq S \}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality 0, 1, 2, or 3:

$$\left\{ \begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array} \right\}$$

Exercise: What is $\mathbb{P}(\{1,2,3,4,5\}) \setminus \mathbb{P}(\{1,2,3\})$?

Set of Tuples

Given n sets S_1, S_2, \ldots, S_n , a *cross/Cartesian product* of theses sets is a set of n-tuples.

Each n-tuple (e_1, e_2, \dots, e_n) contains n elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \leq i \leq n\}$$

e.g., $\{a,b\} \times \{2,4\} \times \{\$,\&\}$ is a set of triples:

Relations (1): Constructing a Relation

A <u>relation</u> is a set of mappings, each being an **ordered pair** that maps a member of set S to a member of set T.

e.g., Say
$$S = \{1, 2, 3\}$$
 and $T = \{a, b\}$

- $\circ \varnothing$ is an empty relation.
- \circ $S \times T$ is the *maximum* relation (say r_1) between S and T, mapping from each member of S to each member in T:

$$\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

∘ $\{(x,y) \mid (x,y) \in S \times T \land x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in T:

$$\{(2,a),(2,b),(3,a),(3,b)\}$$

Relations (2.1): Set of Possible Relations

 We use the power set operator to express the set of all possible relations on S and T:

$$\mathbb{P}(S \times T)$$

Each member in $\mathbb{P}(S \times T)$ is a relation.

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$r: \mathbb{P}(S \times T)$$

Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Relations (2.2): Exercise

Enumerate $\{a,b\} \leftrightarrow \{1,2,3\}$.

- Hints:
 - You may enumerate all relations in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$ via their cardinalities: $0, 1, \ldots, |\{a,b\} \times \{1,2,3\}|$.
 - What's the *maximum* relation in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$? $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- The answer is a set containing <u>all</u> of the following relations:
 - Relation with cardinality 0: Ø
 - How many relations with cardinality 1? $[(\frac{|\{a,b\} \times \{1,2,3\}|}{1}) = 6]$
 - How many relations with cardinality 2? $\left[{|\{a,b\} \times \{1,2,3\}| \choose 2} = \frac{6 \times 5}{2!} = 15 \right]$

. . .

• Relation with cardinality $|\{a,b\} \times \{1,2,3\}|$:

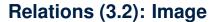
$$\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

Relations (3.1): Domain, Range, Inverse

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- domain of r : set of first-elements from r
 - Definition: $dom(r) = \{ d \mid (d, r') \in r \}$
 - \circ e.g., dom(r) = {a, b, c, d, e, f}
 - ASCII syntax: dom(r)
- |range| of r: set of second-elements from r
 - Definition: $ran(r) = \{ r' \mid (d, r') \in r \}$
 - \circ e.g., ran(r) = {1, 2, 3, 4, 5, 6}
 - ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - e.g., $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
 - ∘ ASCII syntax: r~

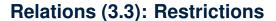


Given a relation

```
r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
```

relational image of r over set s: sub-range of r mapped by s.

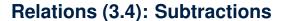
- Definition: $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$
- e.g., $r[{a,b}] = {1,2,4,5}$
- ASCII syntax: r[s]



Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- domain restriction of r over set ds: sub-relation of r with domain ds.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
 - e.g., $\{a,b\} \triangleleft r = \{(\mathbf{a},1), (\mathbf{b},2), (\mathbf{a},4), (\mathbf{b},5)\}$
 - ASCII syntax: ds <| r
- range restriction of r over set rs: sub-relation of r with range rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(a,1),(b,2),(d,1),(e,2)\}$
 - ASCII syntax: r |> rs



Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- **domain subtraction** of r over set ds: sub-relation of r with domain <u>not</u> ds.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a,b\} \le r = \{(\mathbf{c},3), (\mathbf{c},6), (\mathbf{d},1), (\mathbf{e},2), (\mathbf{f},3)\}$
 - ASCII syntax: ds <<| r
- *range subtraction* of *r* over set *rs*: sub-relation of *r* with range <u>not</u> *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - e.g., $r \triangleright \{1,2\} = \{\{(c,3),(a,4),(b,5),(c,6),(f,3)\}\}$
 - ASCII syntax: r |>> rs

Relations (3.5): Overriding

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

overriding of r with relation t: a relation which agrees with t within dom(t), and agrees with r outside dom(t)

o Definition:
$$r \Leftrightarrow t = \{ (d, r') \mid (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}$$

o e.g.,

$$r \Leftrightarrow \{(a,3), (c,4)\}$$

$$= \underbrace{\{(a,3), (c,4)\} \cup \{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\{(d,r') \mid (d,r') \in r \land d \notin dom(t)\}}$$

$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

ASCII syntax: r <+ t

Relations (4): Exercises

1. Define r[s] in terms of other relational operations.

Answer:
$$r[s] = ran(s \triangleleft r)$$

e.g., $r[\{a,b\}] = ran(\{(a,1),(b,2),(a,4),(b,5)\}) = \{1,2,4,5\}$

2. Define $r \triangleleft t$ in terms of other relational operators.

Answer:
$$r \Leftrightarrow t = t \cup (\text{dom}(t) \Leftrightarrow r)$$

e.g.,
$$r \Leftrightarrow \underbrace{\{(a,3),(c,4)\}}_{t} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{\text{dom}(t) \Leftrightarrow r}$$

$$= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}$$

[Yes]

Functions (1): Functional Property

A relation r on sets S and T (i.e., r ∈ S ↔ T) is also a function
if it satisfies the functional property:

```
isFunctional (r)
\iff
\forall s, t_1, t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2)
```

- That is, in a *function*, it is <u>forbidden</u> for a member of S to map to <u>more than one</u> members of T.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say S = {1,2,3} and T = {a,b}, which of the following relations satisfy the above functional property?
 - o $S \times T$ [No] <u>Witness 1</u>: (1, a), (1, b); <u>Witness 2</u>: (2, a), (2, b); <u>Witness 3</u>: (3, a), (3, b). o $(S \times T) \setminus \{(x, y) \mid (x, y) \in S \times T \land x = 1\}$ [No] <u>Witness 1</u>: (2, a), (2, b); <u>Witness 2</u>: (3, a), (3, b)o $\{(1, a), (2, b), (3, a)\}$ [Yes]

 $\circ \{(1,a),(2,b)\}$

Functions (2.1): Total vs. Partial

Given a **relation** $r \in S \leftrightarrow T$

• r is a partial function if it satisfies the functional property:

$$r \in S \nrightarrow T \iff (\text{isFunctional}(r) \land \text{dom}(r) \subseteq S)$$

Remark. $r \in S \Rightarrow T$ means there **may (or may not) be** $s \in S$ s.t. r(s) is **undefined**.

- ∘ e.g., $\{ \{(\mathbf{2}, a), (\mathbf{1}, b)\}, \{(\mathbf{2}, a), (\mathbf{3}, a), (\mathbf{1}, b)\} \} \subseteq \{1, 2, 3\} \nrightarrow \{a, b\}$
- ASCII syntax: r : +->
- r is a *total function* if there is a mapping for each $s \in S$:

$$|r \in S \rightarrow T| \iff (\text{isFunctional}(r) \land \text{dom}(r) = S)$$

Remark. $r \in S \rightarrow T$ implies $r \in S \rightarrow T$, but <u>not</u> vice versa. Why?

- ∘ e.g., $\{(\mathbf{2},a), (\mathbf{3},a), (\mathbf{1},b)\} \in \{1,2,3\} \rightarrow \{a,b\}$
- \circ e.g., $\{(\mathbf{2}, a), (\mathbf{1}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$
- ASCII syntax: r : -->

Functions (2.2):

Relation Image vs. Function Application

- Recall: A function is a relation, but a relation is not necessarily a function.
- Say we have a *partial function* $f \in \{1,2,3\} \rightarrow \{a,b\}$:

$$f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$$

With f wearing the relation hat, we can invoke relational images:

$$f[{3}] = {a}$$

 $f[{1}] = {b}$
 $f[{2}] = \emptyset$

Remark. Given that the inputs are **singleton** sets (e.g., $\{3\}$), so are the output sets (e.g., $\{a\}$). \therefore Each member in the domain is mappe to at most one member in the range.

• With *f* wearing the *function* hat, we can invoke *functional applications*:

$$f(3) = a$$

 $f(1) = b$
 $f(2)$ is undefined

Functions (2.3): Modelling Decision

An organization has a system for keeping $\underline{\text{track}}$ of its employees as to where they are on the premises (e.g., `'Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- Employee denotes the set of all employees working for the organization.
- $\circ \ \textit{Location}$ denotes the set of all valid locations in the organization.
- Is it appropriate to model/formalize such a track functionality as a relation (i.e., where_is ∈ Employee ↔ Location)?
 Answer. No an employee cannot be at distinct locations simultaneously.
 e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- How about a total function (i.e., where_is ∈ Employee → Location)?
 Answer. No in reality, not necessarily all employees show up.
 e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
- How about a partial function (i.e., where_is ∈ Employee → Location)?
 Answer. Yes this addresses the inflexibility of the total function.

Functions (3.1): Injective Functions

Given a *function* f (either <u>partial</u> or <u>total</u>):

32 of 41

 f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T.

```
isInjective(f)
      \Leftrightarrow
     \forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)
• If f is a partial injection, we write: f \in S \Rightarrow T
     • e.g., \{\emptyset, \{(1, \mathbf{a})\}, \{(2, \mathbf{a}), (3, \mathbf{b})\}\} \subseteq \{1, 2, 3\} \Rightarrow \{a, b\}
     • e.g., \{(1, \mathbf{b}), (2, a), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}
                                                                                                    [total, not inj.]
     \circ e.g., \{(1, \mathbf{b}), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\}
                                                                                                 [partial, not inj.]
     ASCII syntax: f : >+>
• If f is a total injection, we write: |f \in S \rightarrow T|
     \circ e.g., \{1,2,3\} \rightarrow \{a,b\} = \emptyset
     • e.g., \{(2,d),(1,a),(3,c)\}\in\{1,2,3\} \rightarrow \{a,b,c,d\}
     ∘ e.g., \{(\mathbf{2},d),(\mathbf{1},c)\} \notin \{1,2,3\} \rightarrow \{a,b,c,d\}
                                                                                                    [ not total, inj. ]
     \circ e.g., \{(2,\mathbf{d}),(1,c),(3,\mathbf{d})\} \notin \{1,2,3\} \rightarrow \{a,b,c,d\}
                                                                                                    [total, not inj.]
     ASCII syntax: f : >->
```


Functions (3.2): Surjective Functions

Given a *function* f (either partial or total):

f is surjective/onto/a surjection if f maps to all members of T.

$$isSurjective(f) \iff ran(f) = T$$

• If f is a **partial surjection**, we write: $f \in S \rightarrow T$ • e.g., $\{\{(1,\mathbf{b}),(2,\mathbf{a})\},\{(1,\mathbf{b}),(2,\mathbf{a}),(3,\mathbf{b})\}\}\subseteq\{1,2,3\} \nrightarrow \{a,b\}$ • e.g., $\{(2,\mathbf{a}),(1,\mathbf{a}),(3,\mathbf{a})\} \notin \{1,2,3\} \nrightarrow \{a,b\}$ [total, not sur.] \circ e.g., $\{(2, \mathbf{b}), (1, \mathbf{b})\} \notin \{1, 2, 3\} \nrightarrow \{a, b\}$ [partial, not sur.] ASCII syntax: f : +->>

• If f is a **total surjection**, we write: $| f \in S \rightarrow T |$ • e.g., $\{\{(2,a),(1,b),(3,a)\},\{(2,b),(1,a),(3,b)\}\}\subseteq\{1,2,3\} \twoheadrightarrow \{a,b\}$ \circ e.g., $\{(\mathbf{2}, a), (\mathbf{3}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$ [not total, sur.] \circ e.g., $\{(2,\mathbf{a}),(3,\mathbf{a}),(1,\mathbf{a})\} \notin \{1,2,3\} \twoheadrightarrow \{a,b\}$

ASCII syntax: f : -->>

[total., not sur]

Functions (3.3): Bijective Functions

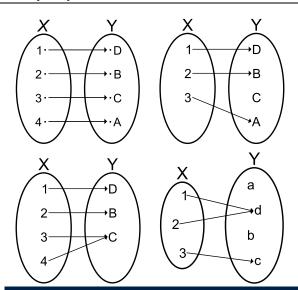
Given a function f:

ASCII syntax: f : >->>

f is **bijective**/a **bijection**/one-to-one correspondence if f is **total**, **injective**, and **surjective**.

34 of 41

Functions (4.1): Exercises



Functions (4.2): Modelling Decisions

- **1.** Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., $a \in \mathbb{Z} \rightarrow String$) or a total function (i.e., $a \in \mathbb{Z} \rightarrow String$)?

 Answer. $a \in \mathbb{Z} \rightarrow String$ is not appropriate as:
 - Indices are <u>non-negative</u> (i.e., a(i), where i < 0, is **undefined**).
 - Each array size is finite: not all positive integers are valid indices.
- 2. What does it mean if an array is modelled/formalized as a partial injection (i.e., a ∈ Z → String)?
 Answer. It means that the array does not contain any duplicates.
- Can an integer array "int[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → Z)?
 Answer. Yes, if a stores all 2³² integers (i.e., [-2³¹, 2³¹ 1]).
- **4.** Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \twoheadrightarrow String$)? **Answer**. No :: # possible strings is ∞ .
- **5.** Can an integer array "int[]" storing all 2^{32} values be *modelled/formalized* as a *bijection* (i.e., $a \in \mathbb{Z} \rightarrow \mathbb{Z}$)?

Answer. No, because it cannot be total (as discussed earlier).

 For the where_is ∈ Employee → Location model, what does it mean when it is:

- Review examples discussed in your earlier math courses on logic and set theory.
- Ask questions in the Q&A sessions to clarify the reviewed concepts.

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Index (3)

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

Index (4)

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...